

备用 _{PMT}

锦屏地下实验室的液闪无中微子双贝塔衰变计划

续本达(代表 JNE 合作组)

清华大学 工程物理系 高能物理研究中心

0νββ研讨会 2023-05-22 中山大学珠海校区

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 のへで 1/30 锦屏地下实验 室的液闪无中 微子双贝塔衰 变计划

续本达

液闪特色

・ロ・・母・・ヨ・・ヨ・ ヨー りゅつ

锦屏地下实验 室的液闪无空 微子双贝塔和 变计划

续本达

液闪特色

备用 PMT

粒子鉴别、能量分辨率、大靶质量不可兼得

锦屏地下实验 室的液闪无空 微子双贝塔和 变计划

续本达

液闪特色

粒子鉴别、能量分辨率、大靶质量不可兼得

各类技术路线对比

类型	质量大	能量分辨率	粒子鉴别
液体闪烁体	00		?
时间投影室	o(液态)		o(气态)
高纯锗半导体		00	
辐射热计量		0	o(光读出)
漂移追踪器			00

液闪特色

KamLAND-Zen: 立足大靶质量,尽一切可能压低本底

- Lightest neutrino mass (meV)
- KamLAND-Zen 在 2013 年、2016 年分别给出了 $\langle m_{etaeta}
 angle$ 的最强限制
- 2023 年,2.3 × 10²⁶ yr, $\langle m_{\beta\beta} \rangle$ = 36 meV至 156 meV, (10.1103/PhysRevLett.130.051801)

锦屏地下实验 室的液闪无中 微子双贝塔衰 变计划

续本达

液闪特色

 更亮的液闪,把 偏三甲苯 (18%)+癸烷 (82%)+PPO 换为 LAB+PPO/bis-MSB

KamLAND2-Zen 升级的关键:提升能量分辨率

图: 线性烷基苯 图: 偏三甲苯 图: 二苯基恶唑

● 更亮的液闪,把 偏三甲苯 (18 %)+癸烷 (82 %)+PPO 换为 LAB+PPO/bis-MSB

续本达

液闪特色

● 使用集光器(Winston Cone)达到更高光电倍增管(PMT)覆盖率 ×1.8

液闪特色

KamLAND2-Zen 升级的关键:提升能量分辨率

图: 偏三甲苯 图: 线性烷基苯 图:二苯基恶唑

- ❶ 更亮的液闪,把 偏三甲苯 (18 %)+癸烷 (82 %)+PPO 换为 LAB+PPO/bis-MSB
- ❷ 使用集光器(Winston Cone)达到更高光电倍增管(PMT)覆盖率 ×1.8
- ④ 使用新型 PMT 将量子效率翻倍

锦屏地下实验 室的液闪无向 微子双贝塔顿 变计划

续本达

液闪特色

KamLAND2-Zen 升级的关键:提升能量分辨率

图: 癸烷

 $\begin{array}{cccc} H & H & H & H \\ H - C - C - \cdots - C - C - H \\ L & L & L \\ \end{array}$

图: 偏三甲苯

图:线性烷基苯 图:二

图: 二苯基恶唑

● 更亮的液闪,把 偏三甲苯 (18 %)+癸烷 (82 %)+PPO 换为

LAB+PPO/bis-MSB

- ❷ 使用集光器(Winston Cone)达到更高光电倍增管(PMT)覆盖率 ×1.8
- 3 使用新型 PMT 将量子效率翻倍
- ④ 宇宙线 μ-¹³⁶Xe 和 μ-¹²C 散列本底(神冈地下实验室 1 km 无法解决)

KamLAND2-Zen 升级的关键:提升能量分辨率

图: 偏三甲苯

图: 线性烷基苯

图: 二苯基恶唑

- 更亮的液闪,把 偏三甲苯 (18 %)+癸烷 (82 %)+PPO 换为 LAB+PPO/bis-MSB
- ❷ 使用集光器(Winston Cone)达到更高光电倍增管(PMT)覆盖率 ×1.8
- 3 使用新型 PMT 将量子效率翻倍

图: 癸烷

续本达

液闪特色

④ 宇宙线 μ -¹³⁶Xe 和 μ -¹²C 散列本底(神冈地下实验室 1 km 无法解决)

努力并跑("毛坯房"装修更高效)

在锦屏地下实验室 2.4 km,能否直接实现 KamLAND2-Zen 的设计指标?

液闪特色

2023-04-09 下挖工程完成,最大化球形探测器体积。
 与地下实验室同步建设

锦屏地下实验室 D2 实验厅下挖

图: 下挖施工 图: 墙面支护完成

• 2026 年完工取数,建成 500 吨水切伦科夫太阳中微子观测站。

6/30

锦屏地下实验室的 500 吨液闪实验

续本达

液闪特色

7/30

锦屏中微子实验"清心计划"

续本达

液闪特色

一期目标 (2026-2027 年):
 在极低本底下,水相测量太阳 ⁸B 中微子谱形与通量。

・ロト・雪ト・雪ト・雪・ うらの

锦屏中微子实验"清心计划"

イロト 不得 トイヨト イヨト

- 一期目标 (2026-2027 年):
 在极低本底下,水相测量太阳 ⁸B 中微子谱形与通量。
- 完成第一期观测后,如果进行无中微子双贝塔衰变改造:

在锦屏实现 KamLAND2-Zen 的标准

KamLAND2-Zen锦屏中微子实验 二期工程更亮的液闪LAB 掺杂液闪使用 Winston Cone3D 的 PMT 集光器设计,效率高于 1D高量子效率 PMT北方夜视新型 Ø20 cm MCP-PMT

arXiv:1703.07527 , arXiv:2303.05373

续本达

液闪特色

锦屏地下实验 室的液闪无中 微子双贝塔衰 变计划

续本达

液闪特色

掺钕液闪

Dirac 属性验 太阳中微子

备用 _{PMT}

掺钕液闪

(ロ) (四) (主) (主) (主) (つ) (の)

- 液闪特色
- 掺钕液闪
- 液闪研发 同位素富集 Dirac 属性验证 太阳中微子
- 总结
- 备用 _{PMT}

当 0νββ 被发现后,需要多种核素交叉检验

- 排除原子核矩阵元的模型依赖,获得精准的 $\langle m_{etaeta}
 angle$ 测量
- 压低天然放射性干扰,提升能量分辨率
 - 最好 Q_{ββ} 值大于 3 MeV

受计划续本达

掺钕液闪

- 当 0νββ 被发现后,需要多种核素交叉检验
 - 排除原子核矩阵元的模型依赖,获得精准的 $\langle m_{etaeta}
 angle$ 测量
- 压低天然放射性干扰,提升能量分辨率
 - 最好 Q_{ββ} 值大于 3 MeV

锦屏地下实 室的液闪无 微子双贝塔 变计划

续本达

液闪特色

500 t 液闪,质量分数 2% 的天然钕(初试),10% 的富集钕(终级)

掺 Nd 液闪方案

- 稀土元素钕,我国矿藏丰富,占世 界绝大部分产量;
- 工业用途:激光器、永磁铁、电动机、发电机
- 磷酸盐矿石,工业原料为 NdCl_{3 2000} 11/30

液闪制备方法

- SNO+ 早年样品
 融合大亚湾液闪
- 技术

总结

奋用 PMT

液闪研发

续本达

<ロト < 団ト < 巨ト < 巨ト < 巨ト 12/30

液闪制备方法

续本达

液闪研发

液闪特色 掺钕液闪 液闪紫富集 Dirac 属性验 太阳中微子 总结

备用 РМТ

• 把 PPO 换为 BPO,发光谱避开 ¹⁵⁰Nd 的发光谱

Barabanov et al. arXiv:0909.2152: → (□) → (Ξ) →

避开 Nd 的黄光吸收

液闪特色 掺钕液闪 ^{Dirac} 属性验 太阳中微子

备用 _{PMT}

• 作为稀土元素,Nd 没有气态物料,无法使用离心机组

液闪特色 掺钕液闪 _{液闪研发} 同位素富集 Dirac 属性验证 太阳中微子 总结

备用 _{PMT}

• 作为稀土元素,Nd 没有气态物料,无法使用离心机组 原子蒸气激光同位素分离 (atomic vapor laser isotope separation, AVLIS)

¹⁵⁰Nd 的丰度尚有 20 倍提升空间

Suryanarayana 2022

中微子是 Dirac 型吗?

- 室的液闪无中 微子双贝塔琴 变计划
 - 续本达
- 液闪特色 掺钕液闪 ^{肉位素富集} Dirac 属性验证 太阳中微子 总结
- 备用 PMT

• 倘或 10 年后,JUNO 测出中微子质量为逆序,我们把实验灵敏度推进到了 $\langle m_{\beta\beta} \rangle \sim 1 \text{ meV}$ 仍然没有观察到 $0\nu\beta\beta$,如之奈何?

中微子是 Dirac 型吗?

• 倘或 10 年后,JUNO 测出中微子质量为逆序,我们把实验灵敏度推进到了 $\langle m_{\beta\beta} \rangle \sim 1 \text{ meV}$ 仍然没有观察到 $0\nu\beta\beta$,如之奈何?

续本达

Dirac 属性验证

• 反之,倘或 20 年后,我们把实验灵敏度推进到了 $\langle m_{\beta\beta} \rangle = 1 \text{ meV}$,仍然没有观察到 $0\nu\beta\beta$,如之奈何?

中微子是 Dirac 型吗?

- 倘或 10 年后,JUNO 测出中微子质量为逆序,我们把实验灵敏度推进到了 $\langle m_{\beta\beta} \rangle \sim 1 \text{ meV}$ 仍然没有观察到 $0\nu\beta\beta$,如之奈何?
- 反之,倘或 20 年后,我们把实验灵敏度推进到了 $\langle m_{\beta\beta} \rangle = 1 \text{ meV}$,仍然没有观察到 $0\nu\beta\beta$,如之奈何?

无中微子四贝塔衰变 $0\nu4\beta$ Heeck and Rodejohann 2013

续本达

Dirac 属性验证

本底与待寻找的目标信号

• $0\nu4\beta$ 主要的本底是 $2\nu2\beta$, 应竭力提升能量分辨率

续本达

Dirac 属性验证

若识别切伦科夫光,有可能测量产生的电子数目,区分本底和电子动量等
 有待详细预研

500 t 液闪,取数两年,能量分辨率 5% @ 1 MeV

续本达

Dirac 属性验证

	丰度	靶质量 分数	¹⁵⁰ Nd 曝光量	$T_{1/2}^{0 uetaeta}$ 灵敏度	$T_{1/2}^{0 u4eta}$ 灵敏度	$\langle m_{etaeta} angle$ 灵敏度
初试 (2028–2030) 终级 (2033?–)	5.6% 90%	2% 10%	1 吨年 80 吨年	$\begin{array}{l}4\times10^{25}\text{y}\\3\times10^{26}\text{y}\end{array}$	$\begin{array}{c} 3\times10^{22}\text{y}\\ 2\times10^{23}\text{y} \end{array}$	\sim 55 meV \sim 20 meV

• 基于 Vergados, Ejiri, Simkovic 2012 的粗略数量级估计,仅供定性参考

掺杂液闪测量太阳中微子能谱

N H K NOKK N E K N E K

续本达

Ejiri, H. et. al., Physics Reports, 797 (March 23, 2019): 1-102.

$2\nu\beta\beta$ 可被太阳中微子诱导

$$u_e + {}^{150}\text{Nd} \rightarrow {}^{150}\text{Pm}^* + e^- - 0.197 \text{ MeV}$$
 ${}^{150}\text{Pm} \rightarrow {}^{150}\text{Sm} + e^- + \bar{\nu}_e, T_{1/2} = 2.65 \text{ h}$
 ${}^{150}\text{Nd} \rightarrow 2\bar{\nu}_e + 2e^- + {}^{150}\text{Sm}$

$$\begin{split} \nu_e + {}^{100}\text{Mo} \to {}^{100}\text{Tc}^* + e^- &- 0.168 \,\text{MeV} \\ {}^{100}\text{Tc} \to {}^{100}\text{Ru} + e^- + \bar{\nu}_e, T_{1/2} = 16 \,\text{s} \\ {}^{100}\text{Mo} \to &2\bar{\nu}_e + 2e^- + {}^{100}\text{Ru} \end{split}$$

掺钆液闪工艺基础迁移,稀土元素
 纳米晶体掺杂液闪
 化学性质相近
 SAE Arai et. al., Journal of the Ceramic Society of

Japan 127, no. 1 (2019): 28-34.

- 恰当寿命激发态有可能实现太阳中微子的延迟符合测量
 - 显著压低放射性本底,大大降低测量的能量阈值
 - 研究太阳 pp 和 CNO 中微子

	Nd	Мо
天然丰度	5.6%	9.74%
Q_{etaeta}/MeV	3.37	3.035
液闪制备	Nd-TMHA	SrMoO₄ 纳米晶体
同位素富集	原子蒸气激光	MoF ₆ 离心
靶核质量分数	2%	0.054%
太阳中微子	有待测量 ¹⁵⁰ Pm 的激发态	16s 弱符合

太阳中微子

<ロト < 回 ト < 直 ト < 直 ト < 直 ト < 直 ト 20 / 30

锦屏地下实验 室的液闪无中 微子双贝塔衰 变计划

续本达

液闪特色 掺钕液闪 ^{液闪研发} Dirac 属性验证 太阳中微子

总结

备用 _{PMT}

锦屏地下实骑 室的液闪无中 微子双贝塔朝 变计划

续本达

液闪特色 掺钕液闪 ^{液闪研发} ^{回位素富集} Dirac 属性验证 太阳中微子

总结

备用 _{PMT}

	2023	2024	2025	2026	2027
探测器结构	设计	加工完成			
光电倍增管研制	研制	加工制作	加工完成		
电子学读出系统	研制	加工制作	加工完成		
探測器重建研究	完成		v		
探測器主体结构建	设	开始进行		完成	
数据获取和分析					完成
新型掺杂液闪研:	发				

锦屏中微子实验(JNE)可以在一期 ^{8}B 测量之后开展 $0\nu\beta\beta$ 寻找

• 液闪 150 Nd 特点:与现有实验计划互补,同时寻找 $0\nu4\beta$,观测太阳 pp 中 微子

• 初试(天然钕,成熟液闪配方)能达到有竞争力的结果。

• 终级版挑战: 原子蒸气激光同位素分离,高浓度液闪的研发

A DEPENDENCE A DEP

锦屏地下实验 室的液闪无中 微子双贝塔衰 变计划

续本达

液闪特色 液闪研发 同位素富集 Dirac属性验 太阳中微子

备用 PMT

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ─ 臣 ─ のへで

重力浮力自适应绳索支撑结构

イロト イボト イヨト

• 不锈钢方形水箱 12.9 m × 14 m × 13.2 m

续本达

备用

- 球形钢网壳支持 PMT 阵列(2000-8000)
- 绳索穿过网壳,上下支撑有机玻璃球形容器

э

高量子效率低本底 MCP-PMT

续本达

• Ø20 cm 微通道板 (MCP) 光电倍增管 (PMT) arXiv:2303.05373

- 快时间响应 ($\sigma_{\rm TT}$ < 1.5 ns), 高光子检出效率 (~30 %)。 低 238 U, 232 Th, 40 K 本底玻璃筛选。

Nd 提纯

续本达

PMT

锦屏地下实验 室的液闪无中 微子双贝塔衰 变计划

续本达

备用 PMT

锦屏地下实验 室的液闪无中 微子双贝塔衰 变计划

液掺液同Diac属的 一本总备用 MT

宽 12.9m 长 14m 高 13.2m 尺寸

绳索蠕变断裂实验

• 绳拉力 < 100 kN

续本达

PMT

・ロト・日本・日本・日本・日本・日本

29 / 30

两种放大机理猜想

续本达

 "宽大"分量一个光子对应的电荷值变化大,对光子计数和中微子能量测量 产生更大负面影响。