Recent Progress in Nuclear Lattice Effective Field Theory

2nd $0\nu\beta\beta$ Workshop, Zhu-Hai, 2023-05-21

Chiral effective field theory

Chiral EFT: The low-energy equivalence of the QCD Weinberg (1979,1990,1991), Gasser, Leutwyler (1984,1985)

- Proton (*uud*), neutron (*udd*), pion $(u\overline{d})$
- Spontaneously broken chiral symmetry: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$
- Goldstone theorem implies a light pion: Long-range part of the nuclear force
- Contact terms: Short-range part of the nuclear force
- Hard scale: $\Lambda_{\chi} \sim 1$ GeV: Chiral EFT works for momentum $Q \ll \Lambda_{\chi}$

Quarks confined in nucleons and pions

Dimensionality curse in nuclear many-body problems

Solution 1: Reduce effective Hilbert space

Introduction to Lattice Effective Field Theory

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing a ≈ 1 fm = 620 MeV (~chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range, δ-like and long-range, pion-exchange interactions
- Exact method, polynomial scaling ($\sim A^2$)

Comparison to Lattice QCD

	LQCD	LEFT					
degree of freedom	quarks & gluons	nucleons and pions					
lattice spacing	${\sim}0.1~\text{fm}$	${\sim}1~\text{fm}$					
dispersion relation	relativistic	non-relativistic					
renormalizability	renormalizable	effective field theory					
continuum limit	yes	no					
Coulomb difficult		easy					
accessibility	high ${\cal T}$ / low $ ho$	low T / $ ho_{ m sat}$					
sign problem	severe for $\mu > 0$	moderate					
Accessible by Lattice QCD							

Euclidean time projection

• Get *interacting g. s.* from imaginary time projection:

 $|\Psi_{g.s.}\rangle \propto \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_A\rangle$

with $|\Psi_A\rangle$ representing A free nucleons.

• Expectation value of any operator \mathscr{O} :

$$\langle O
angle = \lim_{ au o \infty} rac{\langle \Psi_A | \exp(- au H/2) \mathscr{O} \exp(- au H/2) | \Psi_A
angle}{\langle \Psi_A | \exp(- au H) | \Psi_A
angle}$$

τ is discretized into time slices:

$$\exp(-\tau H) \simeq \left[:\exp(-\frac{\tau}{L_t}H):\right]^{L_t}$$

All possible configurations in $\tau \in [\tau_i, -\tau_f]$ are sampled. Complex structures like nucleon clustering emerges naturally.

N-N scattering in the center of mass frame

For scattering in the **continuum**:

- Partial wave expansion: $\psi(\mathbf{r}) = \sum_{J=0}^{\infty} \psi_J(r) P_J(\cos \theta)$
- Asymptotically $(r > R_{\text{force}})$: $\psi_J(r) \rightarrow Ah_J^+(kr) - Bh_J^-(kr)$
- Phase shift: $e^{2i\delta} = B/A$

For scattering in a finite volume:

- Luescher's formula: $e^{2i\delta} = \frac{Z_{00}(1;q^2) + i\pi^{3/2}q}{Z_{00}(1;q^2) - i\pi^{3/2}q}, \quad \boldsymbol{q} = \frac{2\pi\boldsymbol{n}}{L}$ $Z_{00}(s,q^2) = \frac{1}{\sqrt{4\pi}}\sum_{\boldsymbol{n}} \frac{1}{(\boldsymbol{n}^2 - \boldsymbol{q}^2)^s}$
- Standard tool in LQCD Beane et al., Int. J. Mod. Phys. E 17(2008) 1517
- Not applicable in LEFT: noisy data, need higher precision

- Phase shifts and mixing angles for a tensor pontential (toy model). $V(r) = C \left\{ 1 + \frac{r^2}{R_0^2} \left[3(\hat{\boldsymbol{r}} \cdot \boldsymbol{\sigma}_1)(\hat{\boldsymbol{r}} \cdot \boldsymbol{\sigma}_2) - \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right] \right\} \exp\left(-\frac{r^2}{2R_0^2}\right)$
- Continuum results by solving the Lippmann-Schwinger equation.

Auxiliary potential method: Lu et al., Phys. Lett. B 760 (2016) 309; Generalized to arbitrary number of channels: Bovermann et al., Phys. Rev. C 100, 064001 (2019).

Chiral nuclear force up to N³LO: fit on the lattice

fit to N²LO: Alarcon, Du, Klein, Lahde, Lee, Ning Li, B.L., Luu, Meissner, <u>EPJA 53, 83 (2017)</u> fit to N³LO: Ning Li, Elhatisari, Epelbaum, Lee, B.L., Meissner, <u>PRC 98, 044002 (2018)</u>

Bing-Nan Lü 9 / 26

Nuclear binding from a SU(4) nuclear force

Ab initio calculation = precise nuclear force + exactly solving Schrödinger equations

In full quantum Monte Carlo simulations, equations are solved exactly A simple SU(4) interaction (central force only!) can describe the nuclear binding

"Essential elements for nuclear binding", Lu et al., Phys. Lett. B 797, 134863 (2019)

Pinhole algorithm: Schematic plot

In terms of auxiliary fields, the amplitude Z can be written as a path-integral,

$$Z_{f,i}(i_1,j_1,\cdots,i_A,j_a;\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A;\boldsymbol{L}_t) = \int \mathscr{D}s \mathscr{D}\pi \langle \Psi_f(s,\pi) | \rho_{i_1,j_1,\cdots,i_A,j_A}(\boldsymbol{n}_1,\cdots,\boldsymbol{n}_A) | \Psi_i(s,\pi) \rangle.$$

We generate a combined probability distribution

 $P(s,\pi,i_1,j_1,\cdots,i_A,j_a;\mathbf{n}_1,\cdots,\mathbf{n}_A) = |\langle \Psi_f(s,\pi)|\rho_{i_1,j_1,\cdots,i_A,j_A}(\mathbf{n}_1,\cdots,\mathbf{n}_A)|\Psi_i(s,\pi)\rangle|$ by updating both the auxiliary fields and the pinhole quantum numbers.

Elhatisari et al., Phys. Rev. Lett. 119, 222505 (2017)

Pinhole algorithm: α -cluster geometry in carbon isotopes

Positions of 3rd proton relative to the other two in $^{12,14,16}C$

- Hoyle state: Triple-α resonance, essential for creating ¹²C in stars (Hoyle, 1954). *Fine-tuning for life?* Epelbaum et al., Phys. Rev. Lett. 106, 192501 (2011)
- Perspective: important many-body correlations, understand internal structures of ground and excited states by *ab initio* calculations.
- Next step: high-precision chiral interaction → EM form factors, shape coexistence, clustering, ... Elhatisari et al., Phys. Rev. Lett. 119, 222505 (2017)

Tomographic scan of ¹²C

- Structure of ¹²C states are full of complexity and duality (clustering v.s. mean-field)
- we provide the first model-independent tomographic scan of the three-dimensional geometry of the nuclear states of 12C using the ab initio framework of nuclear lattice EFT.
- 0_1^+ : ground state, 0_2^+ : Hoyle state

Shihang Shen et al., Nat. Commun. 14 (2023) 2777

Impurity Lattice Monte Carlo for Hypernuclei

- In hypernuclei the number of hyperons is usually much smaller than the number of nucleons.
- The hyperons can be integrated out and simulated with worldlines.
- Tested for ⁵_ΛHe with a simplified nucleon-hyperon interaction.
- Perspective: Towards an *ab initio* simulation with realistic *N-N* and *N-*Λ interactions of hypernuclei.

"Impurity Lattice Monte Carlo for Hypernuclei", Dillon Frame et al., Eur. Phys. J. A 56:248 (2020)

Towards finite-temperature: *Ab initio* nuclear thermodynamics

Bing-Nan Lu, Ning Li, Serdar Elhatisari, Dean Lee, Joaquín E. Drut, Timo A. Lähde, Evgeny Epelbaum, Ulf-G. Meißner, Phys. Rev. Lett. 125, 192502 (2020).

Nuclear phase diagram (theoretical)

16/26

Response to external fields (light / neutrino)

Upper: Alcohol near T_c

- Critical Opalescence
- Lower: Neutron star cooling
 - Energies carried off by neutrinos
 - Absorption by neutron matter

"In a newly born neutron star, neutrinos are temporarily trapped in the opaque stellar core, but they diffuse out in a matter of seconds, leaving most of their energy to heat the matter in the core to more than **500 billion kelvin**. Over the next million years, the star mainly cools by emitting more neutrinos." PRL 120, 182701 (2018)

Lattice EFT simulation:

Ma, Yuan-zhuo et al., in preparation

Simulate canonical ensemble with pinhole trace algorithm

- All we need: partition function Z(T, V, A) = Σ_k ⟨exp(−βH)⟩_k, sum over all othonormal states in Hilbert space ℋ(V, A).
- The basis states $|n_1, n_2, \dots, n_A\rangle$ span the whole *A*-body Hilbert space. $n_i = (r_i, s_i \sigma_i)$ consists of coordinate, spin, isospin of *i*-th nucleon.
- Cannonical partition function can be expressed in this complete basis:

$$Z_A = \operatorname{Tr}_A\left[\exp(-\beta H)\right] = \sum_{\boldsymbol{n}_1, \dots, \boldsymbol{n}_A} \int \mathscr{D} s \mathscr{D} \pi \langle \boldsymbol{n}_1, \dots, \boldsymbol{n}_A | \exp\left[-\beta H(s, \pi)\right] | \boldsymbol{n}_1, \dots, \boldsymbol{n}_A \rangle$$

- Pinhole algorithm + periodicity in β = Pinhole trace
- Apply twisted boundary condition in 3 spatial dimensions to remove finite volume effects. Twist angle θ averaged with MC.

Critical point: Compare with experiment

Lu et al., Phys. Rev. Lett. 125, 192502 (2020)

- Pressure $p = \int \rho d\mu$ along every isotherm (Gibbs-Duhem equation).
- Extract *T_c*, *P_c* and *ρ_c* of neutral symmetric nuclear matter by numerical interpolation.
- Uncertainties estimated by adding noise and repeat the calculation.
- Experimental values and mean

field results taken from Elliott et al., Phys. Rev. C 87, 054622 (2013)

	This work	Exp.	RMF(NLSH)	RMF(NL3)
$T_c(MeV)$	15.80(3)	17.9(4)	15.96	14.64
$P_c({ m MeV}/{ m fm}^3)$	0.260(3)	0.31(7)	0.26	0.2020
$ ho_c({ m fm}^{-3})$	0.089(1)	0.06(1)	0.0526	0.0463
$ ho_0~({ m fm}^{-3})$	0.205(0)	0.132		
$ ho_c/ ho_0$	0.43	0.45		

Lu et al., Phys. Rev. Lett. 125, 192502 (2020)

Towards realistic interactions: Perturbative Quantum Monte Carlo Method for Nuclear Physics

Bing-Nan Lu, Ning Li, Serdar Elhatisari, Yuan-Zhuo Ma, Dean Lee, Ulf-G. Meißner, Phys. Rev. Lett. 128, 242501 (2022).

Reyleigh-Schrödinger perturbation theory

For a Hamiltonian $H = H^{(0)} + \lambda V_C$,

In conventional stationary perturbation theory:

$$\begin{split} E_{i} &= E_{i}^{(0)} + \lambda \langle \Psi_{i}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle + \lambda^{2} \sum_{k \neq 0} \frac{\langle \Psi_{k}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle}{E_{k}^{(0)} - E_{i}^{(0)}} + \mathscr{O}(\lambda^{3}) \\ |\Psi_{i}\rangle &= |\Psi_{i}^{(0)}\rangle + \lambda \sum_{k \neq 0} \frac{\langle \Psi_{k}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle}{E_{k}^{(0)} - E_{i}^{(0)}} | \Psi_{k}^{(0)} \rangle + \mathscr{O}(\lambda^{2}) \end{split}$$

However, in projection Monte Carlo algorithms,

$$E_{\text{g.s.}} = \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_T\rangle$$

targets the ground states (or low-lying states) directly.

- In projection methods, excited states are very expensive. ← required for 2nd order energy or 1st order wave function!
- All projection QMC calculations use at most first order perturbation theory.

Perturbative Monte Carlo (ptQMC) algorithm

$$E = E_0 + \delta E_1 + \delta E_2 + \mathcal{O}(V_C^3),$$

where the partial energy contributions

$$\begin{split} E_0 &= \langle \Psi_0 | (K+V) | \Psi_0 \rangle / \langle \Psi_0 | \Psi_0 \rangle, \\ \delta E_1 &= \langle \Psi_0 | V_C | \Psi_0 \rangle / \langle \Psi_0 | \Psi_0 \rangle, \\ \delta E_2 &= (\langle \Psi_0 | V_C | \delta \Psi_1 \rangle - \delta E_1 \operatorname{Re} \langle \delta \Psi_1 | \Psi_0 \rangle) / \langle \Psi_0 | \Psi_0 \rangle \end{split}$$

Perturbed amplitude can be transformed into an approximate Gaussian integral with a variable change. Note that

$$\langle \exp(\sqrt{-a_t C} s \rho) \rangle_T \approx \exp(\sqrt{-a_t C} s \langle \rho \rangle_T)$$
$$\mathscr{M}_k(O) = \langle \Psi_T | M_0^{L_t/2} O M_0^{L_t/2-k} M M_0^{k-1} | \Psi_T \rangle$$
$$= \int \mathscr{D} c P(c+\bar{c}) \langle \cdots O \cdots M(s_k, c+\bar{c}) \cdots \rangle_T$$

Left panel: Test calculation of the transfer matrix energy $E = -\ln\langle : \exp(-a_t H) : \rangle / a_t$ Lu *et al.*, PRL 128, 242501 (2022)

- We split $H = H_0 + (H H_0)$ and perform perturbative calculations
- E_0 is the ground state of H_0
- $E_1 = E_0 + \delta E_1$ is the first order corrected energy
- $E_2 = E_1 + \delta E_2$ is the second order corrected energy
- *E*_{non-pt} is the exact solution (~infinite order)
- Red bars on the right: Experiments Lu et al., PRL 128, 242501 (2022)

For ⁴He and ¹⁶O, sign problem prevent us from going to large τ , resulting in large statistical errors. But no need to worry,

Perturbation theory can save us!

Numerical results for several light nuclei

Table: The nuclear binding energies at different orders calculated with the ptQMC. E_{exp} is the experimental value. All energies are in MeV. We only show statistical errors from the MC simulations.

	E_0	δE_1	E_1	δE_2	<i>E</i> ₂	E_{exp}
³ Н	-7.41(3)	+2.08	-5.33(3)	-2.99	-8.32(3)	-8.48
⁴ He	-23.1(0)	-0.2	-23.3(0)	-5.8	-29.1(1)	-28.3
⁸ Be	-44.9(4)	-1.7	-46.6(4)	-11.1	-57.7(4)	-56.5
^{12}C	-68.3(4)	-1.8	-70.1(4)	-18.8	-88.9(3)	-92.2
¹⁶ O	-94.1(2)	-5.6	-99.7(2)	-29.7	-129.4(2)	-127.6
$^{16}\text{O}^{\dagger}$	-127.6(4)	+24.2	-103.4(4)	-24.3	-127.7(2)	-127.6
¹⁶ O‡	-161.5(1)	+56.8	-104.7(2)	-22.3	-127.0(2)	-127.6

Realistic N²LO chiral Hamiltonian fixed by few-body data + perturbative quantum MC simulation = nice agreement with the experiments Excellent predicative power \implies Demonstration of both nuclear force model and many-body algorithm

Summary of lattice EFT

Perspective: Open problems

- Can we have a general renormalization scheme for non-relativistic many-body systems?
- Can we design a sign-problem-free Monte Carlo algorithm for realistic nuclear interactions?
- Can we understand the universality and emergence in nuclear physics from *ab initio* calculations?
- Can we connect the many-body EFT to the underlying theory of QCD? (e.g., nuclear physics at different m_{π})

THANK YOU FOR YOUR ATTENTION