Double Beta Decay and Neutrino Physics in PandaX-4T

王秋红 (复旦大学)

Qiuhong Wang (Fudan University) on behalf of the PandaX Collaboration

May 20, 2023

第二届无中微子双贝塔衰变及相关物理研讨会

Outline

- Introduction to double beta decay (DBD)
- PandaX experiments
- ¹³⁶Xe DBD in PandaX-4T
 - Detector response at MeV range
 - Half-life measurement
- More neutrino physics in PandaX-4T
 - ¹³⁶Xe DBD to excited states
 - ¹²⁴Xe double electron capture (DEC)
- Summary and outlook

Detection of NLDBD and 2ν DBD

$$^{136}_{54}Xe \rightarrow ^{136}_{56}Ba + 2e^- + (2\bar{v})$$

- Detect NLDBD and 2vDBD through energies of emitted electrons
- Precision measurement of DBD is a major first step for any NLDBD experiment
- Understand better the background

PandaX collaboration

- Particle and Astrophysical Xenon Experiment
- Now 15 institutions, ~80 authors

Universidad Zaragoza

ENNE

PandaX experiments

Dual phase xenon TPC

- S1: prompt scintillation signal
- S2: delayed ionization signal

(S2/S1)_{NR}<<(S2/S1)_{ER}

Dual phase xenon detector capability:

- ER/NR identification
- Single / multi-site identification
- 3D reconstruction and fiducialization
- Calorimeter from sub keV to MeV

Gamma electron recoil

WIMP nuclear recoil

CJPL and CJPL-II: deepest underground lab

- Deepest (6800 m.w.e)
 - < 0.2 muons/m²/day
- Much larger space in CJPL-II
- National key science research facility for dark matter searches, neutrino physics, and astroparticle physics, etc.

PandaX-4T subsystems

PandaX-4T runs and multiple physics topics

Commissioning (Run 0)	Calibration	Distillation	Physics Run (<mark>Run 1</mark>)	Calibration	Detector Upgrade
2020/11/28 _ 2021/04/16	2021/04/17 _ 2021/06/09		2021/11/15 _ 2022/05/15	2022/05/16 _ 2022/07/08	

- Have completed data-taking of
 - commissioning Run 0 (~ 95 d)
 - physics Run 1 (~ 154 d)
- Detector upgrade and more physics runs are on-going
- Multiple physics topics are being studied now
- Commissioning run is chosen for following ¹³⁶Xe DBD analysis

Outline

- Introduction to double beta decay (DBD)
- PandaX experiments
- ¹³⁶Xe DBD in PandaX-4T
 - Detector response at MeV range
 - Half-life measurement
- More neutrino physics in PandaX-4T
 - ¹³⁶Xe DBD to excited states
 - ¹²⁴Xe DEC
- Summary and outlook

Identifying SS and MS

- MeV gamma events are mostly multi-site (MS) events; while signals (DBD) are mostly single site (SS)
- Identifying MS events with PMT waveforms
- Width of waveforms dominated by Z (electron diffusion)

PMT pulse saturation and desaturation

- PMT bases suffer serious saturation for MeV range events.
- Match the rising slope of the saturated to the non-saturated templates in the same events → True charge collected
- For events in the energy range of 1 to 3 MeV, the average correction factor is \sim 3.0 for the top PMT array

Establish an accurate background model

- Robust estimation of backgrounds in fiducial volume (4 regions)
 - Three categories of backgrounds: top bottom and side, based on weight and relative contribution to background counts in the ROI
 - Input values based on HPGe assay results and high energy alpha events

¹³⁶Xe 2vDBD half-life measurement

Research.10.34133/2022/979872

- First such result from a DM detector with natural xenon
 - ¹³⁶Xe DBD $T_{1/2}$ = 2.27 ± 0.03(stat.) ± 0.10(syst.) × 10²¹ year
 - Comparable with enriched ¹³⁶Xe experiments
 - The widest ROI from 440 keV to 2800 keV

Expected NLDBD search in PandaX-4T

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Run time	Sensitivity/Limit (90% CL, year)
PandaX-II	~200	4.2%	219	403.1 days	2.4 ×10 ²³
PandaX-4T	9	1.9%	649.7 ± 6.5	94.9 days	> 10 ²⁴
XENON1T	~20	0.8%	741 ± 9	202.7 days	1.2×10^{24}
Next Generation	~0.004	0.8%	5000	10 years	2.4×10^{27}

NLDBD search in PandaX-II

Future PandaX-xT

Outline

- Introduction to double beta decay (DBD)
- PandaX experiments
- ¹³⁶Xe DBD in PandaX-4T
 - Detector response at MeV range
 - Half-life measurement
- More neutrino physics in PandaX-4T
 - ¹³⁶Xe DBD to excited states
 - ¹²⁴Xe double electron capture (DEC)
- Summary and outlook

¹³⁶Xe DBD to excited states (ES)

- Double beta decay to excited states of daughter nuclei
- Present limit: $T_{1/2} > 1.4 \times 10^{24}$ yr from EXO-200
- Theoretical prediction: 10²³ ~10²⁶ yr
- More clear signature: double e^- + double γ

¹³⁶Xe DBD to ES in PandaX-4T

- Multi-site event energy reconstruction
 - Energy resolution: ~ 3% at 2615keV
- DBD-ES signals are not inapparent in the spectrum fit only
- Need to take account of the signature and use TMVA (Toolkit for Multivariate Data Analysis) to improve signal/background ratio
 - Total γ energy (760.5+818.5 keV)
 - Energy of first site
 - Max energy among all sites
 - Minimum distance to detector boundary

Counts /

tes. [σ]

Coun

Res. [ơ]

¹²⁴Xe double electron capture (DEC)

XENON1T, Physical Review C 106, 024328 (2022)

- Two-neutrino / neutrinoless double electron capture (DEC)
 - Q = 2857 keV
 - KK electron capture: ~72.4%, 64.3 keV
 - KL electron capture: ~20%, 36.8 keV
 - KM electron capture: ~4.3%, ~33 keV
- 2nd order weak process, $T_{1/2}$ =(1.18±0.13_{stat}±0.14_{sys})×10²² yr from XENONnT

¹²⁴Xe DEC: spectrum fit to PandaX-4T data

- Energy resolution at 64.3keV: (5.4±0.4)%
- Spectrum fit to Run 0 + Run 1 data: obvious ¹²⁴Xe DEC signal peaks
- Measurement of ¹²⁴Xe abundance in PandaX-4T: (0.099±0.001)%

Summary and outlook

- PandaX-4T has completed its commissioning run and first physics run, upgrade and more runs are on-going
- PandaX-4T as multi-physics program
 - Extend DM detector response to MeV range
 - Provide leading measurement on ¹³⁶Xe DBD half-life
- Studying more neutrino physics in PandaX!
 - NLDBD
 - ¹³⁶Xe DBD to excited states
 - ¹²⁴Xe DEC, ...

Thanks very much for your attention!

Backup slides

王秋红 (复旦大学)

Qiuhong Wang (Fudan University) on behalf of the PandaX Collaboration

May 20, 2023

第二届无中微子双贝塔衰变及相关物理研讨会

NLDBD probes the nature of neutrinos

- Majorana or Dirac
- Lepton number violation
- Effective Majorana neutrino mass: Measures effective Majorana mass: relate 0vββ to the neutrino oscillation physics $|\langle m_{\beta\beta} \rangle| = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right|$ $(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q,Z) |M_{\uparrow}^{0\nu}|^2 \frac{|\langle m_{\beta\beta}\rangle|^2}{m_{\rho}^2}$ 10³ Phase space factor **Current Experiments** 10² Nuclear matrix element m_{ββ} (meV) 15 meV 10^{1} Inverted Normal 10^{0} Hierarchy Hierarchy $10^2 \quad 10^{-1}$ 10^{0} 10^{1} 10^{0} 10^{1} 10² 10^{-1} m_3 (meV) m_1 (meV)

CJPL: Deepest underground lab

- Deepest (6800 m.w.e): < 0.2 muons/m²/day
- Horizontal access with ~9 km long tunnel: large truck can drive in.
- National key science research facility for dark matter searches, neutrino physics, and astroparticle physics, etc.

Position reconstruction improvement with desaturation

Before

3000

2500

2000

1500

1000

500

- Position reconstruction based on PAF (photon acceptance function) methods devloped in DM analysis
- Reconstruction at HE is significantly improved with desaturation
- Removed the band structure in R² distribution

600

۲ [mm]

Fiducial volume

Counts

10³

10²

distribution (440, 2800) keV R²(0,140e3)

700-600-500-400-300-200-100

- Z direction: smaller background rate
- Outer (dashed) region for cross-validation

Systematic uncertainties

systematic source	Uncertainty [%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
Pb214 spectrum correction	2.03
Bin size	0.05
Xe136 abundance	1.92
Energy range	1.23
Region difference	1.58
resolution	0.58
shift MC spectrum	0.26
total	4.05

Systematic uncertainties

systematic source	Uncertainty [%]
Quality cut	0.39
FV cut	0.99
SS cut	1.75
LXe density	0.13
Pb214 spectrum correction	2.03
Bin size	0.05
Xe136 abundance	1.92
Energy range	1.23
Region difference	1.58
resolution	0.58
shift MC spectrum	0.26
total	4.05

- ¹³⁶Xe IA: 8.79% if ionization efficiencies not corrected; 9.03% if corrected with NIST values
- Taken nominal value 8.86% as input and difference to our measurement as uncertainties