EFFECTIVE FIELD THEORY FOR NEUTRINOLESS DOUBLE BETA DECAY

Jordy de Vries
University of Amsterdam \& Nikhef

NikThef

EFTs and neutrino mass: an old story

- Neutrinos are formally massless in the SM \rightarrow but neutrino oscillations
- Easy fix: Insert gauge-singlet right-handed neutrino v_{R}

$$
\mathscr{L}=-y_{\nu} \bar{L} \tilde{H} \nu_{R} \quad y_{\nu} \sim 10^{-12} \rightarrow m_{\nu} \sim 0.1 \mathrm{eV}
$$

- Nothing really wrong with this.... But nothing forbids a Majorana Mass term

$$
\mathscr{L}=-y_{\nu} \bar{L} \tilde{H} \nu_{R}-M_{R} \nu_{R}^{T} C \nu_{R}
$$

'Everything that is not forbidden is compulsary'

EFTs and neutrino mass: an old story

- Neutrinos are formally massless in the SM \rightarrow but neutrino oscillations
- Easy fix: Insert gauge-singlet right-handed neutrino v_{R}

$$
\mathscr{L}=-y_{\nu} \bar{L} \tilde{H} \nu_{R} \quad y_{\nu} \sim 10^{-12} \rightarrow m_{\nu} \sim 0.1 \mathrm{eV}
$$

- Nothing really wrong with this.... But nothing forbids a Majorana Mass term

$$
\mathscr{L}=-y_{\nu} \bar{L} \tilde{H} \nu_{R}-M_{R} \nu_{R}^{T} C \nu_{R}
$$

'Everything that is not forbidden is compulsary'

- If M_{R} is significantly larger than active neutrino masses ($<\mathrm{eV}$) : see-saw mechanism
- In case of I left and I right-handed neutrino: $\quad m_{1} \simeq\left|\frac{y_{\nu}^{2} v^{2}}{m_{R}}\right| \quad m_{2} \simeq m_{R}$
- The mass eigenstates are Majorana states

$$
\nu_{i}^{c}=\nu_{i}
$$

- Violation of lepton number by two units \longrightarrow neutrinoless double beta decay

EFT point of view

- Integrating out heavy states leads to local operator

- Obtain the single dimension-5 SMEFT operator

$$
\mathscr{L}_{5}=\frac{c_{5}}{\Lambda}\left(L^{T} C \tilde{H}\right)\left(\tilde{H}^{T} L\right) \quad \mathscr{L}_{5}=c_{5} \frac{v^{2}}{\Lambda} \nu^{T} C \nu \quad c_{5}=y_{\nu}^{2}
$$

EFT point of view

- Integrating out heavy states leads to local operator

- Obtain the single dimension-5 SMEFT operator

$$
\mathscr{L}_{5}=\frac{c_{5}}{\Lambda}\left(L^{T} C \tilde{H}\right)\left(\tilde{H}^{T} L\right)
$$

Dimension-five
$\mathcal{L}_{5}=\frac{c_{5}}{\Lambda}\left(L^{T} C \tilde{H}\right)\left(\tilde{H}^{T} L\right)$

- One operator
- Induces Majorana mass

Dimension-seven	

Dimension-nine

Li et al '20
Many many terms
19 4-quark 2-lepton operators after EWSB

Graesser et al ' 17 ' 18

Applications effective field theory in Ovbb

I. Use EFT to scrutinize and guide nuclear calculations (focus here on Weinberg operator)
2. Investigate non-standard mechanisms (beyond Weinberg term)
3. Use EFTs in presence of explicit light degrees of freedom (sterile neutrinos)

Leading-order transition currents

- Neutrinos are still degrees of freedom in low-energy chiral EFT

- Leads to 'long-range' nn \rightarrow pp + ee

$$
V_{\nu} \sim \frac{m_{\beta \beta}}{\mathbf{q}^{2}} \quad \mathbf{q} \sim k_{F} \sim m_{\pi}
$$

$$
V_{\nu}=\left(2 G_{F}^{2} m_{\beta \beta}\right) \tau_{1}^{+} \tau_{2}^{+} \frac{1}{\mathbf{q}^{2}}\left[\left(1+2 g_{A}^{2}\right)+\frac{g_{A}^{2} m_{\pi}^{4}}{\left(\mathbf{q}^{2}+m_{\pi}^{2}\right)}\right] \otimes \bar{e}_{L} e_{L}^{c}
$$

- Note: the nucleons appear in a bound state and \mathbf{q} is a loop momentum
- Then insert this into nuclear wave functions (from nuclear many-body methods)

$$
A_{\nu} \sim\langle\Psi| V_{\nu}|\Psi\rangle
$$

Leading-order transition currents

- Neutrinos are still degrees of freedom in low-energy chiral EFT

- Leads to 'long-range' nn \rightarrow pp + ee

$$
V_{\nu} \sim \frac{m_{\beta \beta}}{\mathbf{q}^{2}} \quad \mathbf{q} \sim k_{F} \sim m_{\pi}
$$

$$
V_{\nu}=\left(2 G_{F}^{2} m_{\beta \beta}\right) \tau_{1}^{+} \tau_{2}^{+} \frac{1}{\mathbf{q}^{2}}\left[\left(1+2 g_{A}^{2}\right)+\frac{g_{A}^{2} m_{\pi}^{4}}{\left(\mathbf{q}^{2}+m_{\pi}^{2}\right)}\right] \otimes \bar{e}_{L} e_{L}^{c}
$$

- Contributions from virtual hard neutrinos
- Naive-dimensional analysis tells us this is higher-order

$$
V_{\nu}^{\text {short }} \sim \frac{m_{\beta \beta}}{\Lambda_{\chi}^{2}} \ll V_{\nu}
$$

Leading-order transition currents

- Neutrinos are still degrees of freedom in low-energy chiral EFT

- Leads to 'long-range' nn \rightarrow pp + ee

$$
V_{\nu} \sim \frac{m_{\beta \beta}}{\mathbf{q}^{2}} \quad \mathbf{q} \sim k_{F} \sim m_{\pi}
$$

- More contributions at higher orders in chiral perturbation theory

- Loops at N2LO are divergent: come with counter terms

$$
V_{\nu}^{N^{2} L \mathrm{LO}} \sim\left(V_{\text {finite }}+V_{U V} \log \frac{m_{\pi}^{2}}{\mu^{2}}+V_{\mathrm{CT}}\right) \otimes \bar{e}_{L} e_{L}^{c}
$$

- Divergences absorbed by counter terms

Cirigliano, Dekens, Mereghetti, Walker-Loud 'I7

- At higher orders also 'closure corrections' and three-body effects

Leading-order transition currents

$$
V_{\nu}=\left(2 G_{F}^{2} m_{\beta \beta}\right) \tau_{1}^{+} \tau_{2}^{+} \frac{1}{\mathbf{q}^{2}}\left[\left(1+2 g_{A}^{2}\right)+\frac{g_{A}^{2} m_{\pi}^{4}}{\left(\mathbf{q}^{2}+m_{\pi}^{2}\right)}\right] \otimes \bar{e}_{L} e_{L}^{c}
$$

- Leading-order Ovbb current is very simple
- No unknown hadronic input! Only unknown is $m_{\beta \beta}$

Leading-order transition currents

$$
V_{\nu}=\left(2 G_{F}^{2} m_{\beta \beta}\right) \tau_{1}^{+} \tau_{2}^{+} \frac{1}{\mathbf{q}^{2}}\left[\left(1+2 g_{A}^{2}\right)+\frac{g_{A}^{2} m_{\pi}^{4}}{\left(\mathbf{q}^{2}+m_{\pi}^{2}\right)}\right] \otimes \bar{e}_{L} e_{L}^{c}
$$

- Leading-order Ovbb current is very simple
- No unknown hadronic input! Only unknown is $m_{\beta \beta}$
- Many-body methods disagree significantly
- Idea: see what happens for lighter systems
- Not relevant for experiments but as a theoretical laboratory

Neutron-Neutron \rightarrow Proton-Proton

- Study simplest nuclear process: $\mathrm{nn} \rightarrow \mathrm{pp}+$ ee

Cirigliano, Dekens, JdV, Graesser, Mereghetti, Pastore van Kolck, PRL ‘I 8
Cirigliano, Dekens, JdV, Hoferichter, Mereghetti PRL '2।

Neutron-Neutron \rightarrow Proton-Proton

- Study simplest nuclear process: nn \rightarrow pp + ee

- Derive wave functions from chiral effective field theory $T=V+V G_{0} T$

$$
\text { LO } \quad V_{\text {strong }}=C_{0}-\frac{g_{A}^{2}}{4 f_{\pi}^{2}} \frac{m_{\pi}^{2}}{\mathbf{q}^{2}+m_{\pi}^{2}}
$$

- To solve Schrodinger equation need regulator $\quad V_{\text {strong }} \rightarrow e^{-p^{6} / \Lambda^{6}} \times V_{\text {strong }} \times e^{-p^{6} / \Lambda^{6}}$
- Dim-reg possible as well but much more complicated.

Neutron-Neutron \rightarrow Proton-Proton

$$
V_{\text {strong }}=C_{0}-\frac{g_{A}^{2}}{4 f_{\pi}^{2}} \frac{m_{\pi}^{2}}{\mathbf{q}^{2}+m_{\pi}^{2}}
$$

- Fit counter terms to nucleon-nucleon scattering lengths for each Λ
- Predict cross sections (phase shifts) for other energies.

Leading-order transition currents

- Insert long-distance neutrino exchange into scattering states

$$
\sim\left(1+2 g_{A}^{2}\right)\left(\frac{m_{N} C_{0}}{4 \pi}\right)^{2}\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{p^{2}}\right)
$$

New divergences

Leading-order transition currents

- Insert long-distance neutrino exchange into scattering states

$\sim\left(1+2 g_{A}^{2}\right)\left(\frac{m_{N} C_{0}}{4 \pi}\right)^{2}\left(\frac{1}{\epsilon}+\log \frac{\mu^{2}}{p^{2}}\right)$

New divergences

- Logarithmic regulator dependence
- Divergence indicates sensitivity to short-distance physics (hard-neutrino exchange)
- Requires a counter term: a short-range nn \rightarrow pp + ee operator

A new leading-order contribution

'Long-range' neutrino-exchange

'Short-distance' neutrino exchange
required by renormalization of amplitude

- Short-distance piece depends on unknown QCD matrix element
- How to determine the value of this matrix element ? Obviously no data!
- Lattice QCD can do this in the future. But not yet....
- But solved already for the 'toy-problem'

$$
\pi^{-}+\pi^{-} \rightarrow e^{-}+e^{-}
$$

Tuo et al. 'I9; Detmold, Murphy '20'22

A connection to electromagnetism

- A neutrino-exchange process looks like a photon-exchange process

Cirigliano et al ‘/9

- Isospin-breaking nucleon-nucleon scattering data determines $C_{1}+C_{2}$
- Electromagnetism conserves parity $(L+R)$ coupling and $g_{v} \sim C_{\text {। }}$ only
- Large-Nc arguments indicates $C_{1}+C_{2} \gg C_{1}-C_{2} \quad$ Richardson, Schindler, Pastore, Springer'21
- In this way, we can extract g_{v} from data.

An analytic approach

- The $n n \rightarrow \mathrm{pp}+$ ee amplitude can be represented as an integral expression

- Can represent the 'red box' in regions of the virtual neutrino momentum k
- Skip the details but analysis agree with CIB extraction

Impact on realistic nucleus

- First calculations now include this heavier nuclei

- N3LO chiral nucleon-nucleon potential with certain regulator
- Fit short-distance g_{ν} to synthetic data
- Similarity Renormalization Group transformation to perform many-body computations

Wirth, Yao, Hergert PRL'21

- Bigger effect for $I=2$ transitions due to node
$\sim 100 \%$ for ${ }^{8} \mathrm{He}$
$\sim 60 \%$ for ${ }^{48} \mathrm{Ca}$
${ }^{48} \mathrm{Ca}$ decay rate increases by factor >2

Enhanced sensitivity to neutrino Majorana mass

Similar enhancements found for ${ }^{76} \mathbf{G e}$ and ${ }^{136} \mathrm{Xe}$ (Menendez et al '22)

Other mechanism of Ovbb

- Many beyond-the-SM model induce different Ovbb mechanism
- Examples: Left-right symmetry, supersymmetry, leptoquarks,

Other mechanism of Ovbb

- Many beyond-the-SM model induce different Ovbb mechanism
- Examples: Left-right symmetry, supersymmetry, leptoquarks,

- If new fields are heavy, can use effective field theory !

Higher-dimensional operators

- Effective operators appear at odd dimension (5, 7, 9,)

Kobach '16

Dimension-five	Dimension-seven	Dimension-nine
$\mathcal{L}_{5}=\frac{c_{5}}{\Lambda}\left(L^{T} C \tilde{H}\right)\left(\tilde{H}^{T} L\right)$ - One operator - Induces Majorana mass	- $12 \Delta L=2$ operators	Li et al '20 Many many terms 19 4-quark 2-lepton operators after EWSB Graesser et al ' 17 ' 18

- Higher-dimensional terms only relevant if dim-5 operator are suppressed
- Example: in left-right symmetric models

$$
c_{5} \sim y_{e}^{2} \sim 10^{-10} \quad c_{7} \sim y_{e}^{1} \sim 10^{-5} \quad c_{9} \sim y_{e}^{0} \sim 1
$$

$$
\frac{v^{2}}{\Lambda^{2}} \sim y_{e} \rightarrow \Lambda \simeq(10-100) \mathrm{TeV}
$$

- Dim-7 or dim-9 can dominate low-energy phenomenology !

Example dim-7 operators

Example dim-7 operators

Associated low-energy constants well known (nucleon charges gA,s,t,v)

Example dim-9 operators

- Often missed in literature which uses factorization methods (O(I00) error on decay rate)
- Depend on four-quark matrix elements: great improvements by CalLat and MIT groups

$$
g_{4}^{\pi \pi}=-(1.9 \pm 0.2) \mathrm{GeV}^{2} \quad g_{5}^{\pi \pi}=-(8.0 \pm 0.6) \mathrm{GeV}^{2}
$$

New Ovbb topologies

- Straightforward to calculate generalized Ovbb transition current
- Need additional nuclear matrix elements (NMEs)

New Ovbb topologies

- Straightforward to calculate generalized Ovbb transition current
- Need additional nuclear matrix elements (NMEs)
- At leading-order in Chiral-EFT: I5 NMEs (all in literature)
- Similar uncertainties as before

NMEs	${ }^{76} \mathrm{Ge}$				Hyvarinen/Suhonen '15			
	[74]	[31]	[81]	[82,83]	Menendez et al '17 '18Barea et al '15 '18			
M_{F}	-1.74	-0.67	-0.59	-0.68	Horoi/Neacsu '17			
$M_{G T}^{A A}$	5.48	3.50	3.15	5.06				
$M_{G T}^{A P}$	-2.02	-0.25	-0.94	NMEs	${ }^{76} \mathrm{Ge}$			
$M_{G T}^{P P}$	0.66	0.33	0.30	$M_{F, s d}$	-3.46	-1.55	-1.46	-1.1
$M_{G T}^{M M}$	0.51	0.25	0.22	$M_{G T, s d}^{A A}$	11.1	4.03	4.87	3.62
M_{T}^{A}	-	-	-	$M_{G T, s d}^{A P}$	-5.35	-2.37	-2.26	-1.37
$M_{T}^{A P}$	-0.35	0.01	-0.01	$M_{G T, a d}^{P P}$	1.99	0.85	0.82	0.42
$M_{T}^{P P}$	0.10	0.00	0.00	$M_{T, s d}^{A P}$	-0.85	0.01	-0.05	-0.97
$M_{T}^{M M}$	-0.04	0.00	0.00	$M_{T, s d}^{P P}$	0.32	0.00	0.02	0.38

Using the framework

- Example: a model of heavy leptoquarks (LHC probes I TeV leptoquarks roughly)

Ton-scale
expectations

- Dramatic impact on Ovbb phenomenology!
- Sensitivity to $500-\mathrm{TeV}$ new physics scales

The Ovbb metro map

Cirigliano, Dekens, JdV, Graesser, Mereghetti' I 8

- Open-access Python tool almost ready to be submitted (Scholer + Graf + JdV)

NuDoBe

- Open-access Python tool automizes the EFT calculations
[Submitted on 11 Apr 2023]

\downarrow DoBe -- A Python Tool for Neutrinoless Double Beta Decay

Oliver Scholer, Jordy de Vries, Lukáš Gráf

- User specifies which SM-EFT LNV operators are turned on at which scale
- Code computes Ovbb (differential rates) of all isotopes of interest
- User can vary different results for NMEs/Hadronic LECs etc
- Comes with many built-in plotting options

NuDoBe

- Tool also computes angular\&energy electron distributions

Concluding remarks

- Neutrinoless double beta decay best way to determine if neutrinos are Majorana states
- Heroic experimental effort! Particle/Hadronic/Nuclear theory needed to interpret data
- Progress from EFT + lattice + nuclear structure
- New findings: standard mechanism depends on short-distance physics Significant impact on NMEs: larger than before.

- End-to-End EFT framework for any LNV source
- Automized with Python Tool: NuDoBE
- Not discussed today: light sterile neutrinos and EFT

An analytic approach

- The $n n \rightarrow \mathrm{pp}+$ ee amplitude can be represented as an integral expression
- At small virtual momentum: NLO chiral EFT
- Intermediate momentum: (model-dependent) resonance contributions to nucleon form factors and to NN scattering
- Large momentum: Perturbative QCD + Operator Product Expansion

Small dependence on local 4-quark matrix elements

- Analytic and CIB approach within uncertainties (~30-40\%)
- Analytic approach agrees with nucleon-nucleon CIB data

Current procedure in literature

- Compute nuclear matrix element computations for different neutrino masses

$$
\begin{aligned}
A_{\nu} \sim \sum_{i=1}^{3} U_{e i}^{2} m_{i} \frac{1}{\left\langle p^{2}\right\rangle}+U_{e 4}^{2} m_{4} \frac{1}{\left\langle p^{2}\right\rangle+m_{4}^{2}} \xrightarrow{m_{4} \gg 100 \mathrm{MeV}} A_{\nu} \sim \sum_{i=1}^{3} U_{e i}^{2} m_{i} \frac{1}{\left\langle p^{2}\right\rangle}+\frac{U_{e 4}^{2}}{m_{4}} \\
A_{\nu} \sim \sum_{i=1}^{4} U_{e i}^{2} m_{i} \frac{1}{\left\langle p^{2}\right\rangle}
\end{aligned}
$$

Revisit the light regime

$A_{\nu} \sim \sum_{i=1}^{3} U_{e i}^{2} m_{i} \frac{1}{\left\langle p^{2}\right\rangle}+U_{e 4}^{2} m_{4} \frac{1}{\left\langle p^{2}\right\rangle+m_{4}^{2}} \xrightarrow{m_{4} \ll 100 \mathrm{MeV}} A_{\nu} \sim \sum_{i=1}^{4} U_{e i}^{2} m_{i} \frac{1}{\left\langle p^{2}\right\rangle}+\mathcal{O}\left(\frac{m_{i}^{3}}{\left\langle p^{2}\right\rangle^{2}}\right)$

- The first term depends on $\quad \sum_{i=1}^{4} U_{e i}^{2} m_{i}=M_{e e}=0 \quad M=\left(\begin{array}{cc}0 & v y_{\nu} \\ v y_{\nu} & M_{R}\end{array}\right)$
- The 'GIM' mechanism for neutrinos ! (only valid if all steriles are light)
- The amplitude is strongly suppressed $A_{\nu} \sim \sum_{i=1}^{4} U_{e i}^{2} m_{i}^{3} \quad$ Blennow et al 'I 0 JHEP
- Example in 3+ I model
- Cancellation between light + sterile contributions leads to

$$
\tau_{1 / 2} \sim m_{4}^{4}
$$

Light extra neutrinos

- Is there a way to avoid the GIM mechanism ?
- There are additional contributions from 'ultra-soft' neutrinos

$$
\sum_{n}\langle f| J_{\mu}|n\rangle\langle f| J^{\mu}|i\rangle \times \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{E_{\nu}\left[E_{\nu}+\left(E_{n}-E_{0}\right)-i \epsilon\right]} \quad E_{\nu}=\sqrt{k^{2}+m_{i}^{2}}
$$

- Depends on nuclear excited states. Normally these are tiny effects (5\%)
- But become dominant in the GIM mechanism! $\sim U_{e i}^{2} m_{i}^{3}$
- For $m_{4} \sim M e V$ we get new contributions

$$
\sim U_{e i}^{2} m_{i}^{2}
$$

- For $m_{4} \ll M e V$ we get new contributions

$$
\sim U_{e i}^{2} m_{i}^{3} \log \frac{\left(E_{n}-E_{0}\right)^{2}}{m_{i}^{2}}
$$

- These effects are not considered in any analysis of neutrinoless double beta decay
- Javier Menendez computed for us the necessary matrix elements

Light extra neutrinos

- Is there a way to avoid the GIM mechanism ?
- There are additional contributions from 'ultra-soft' neutrinos

$$
\sum_{n}\langle f| J_{\mu}|n\rangle\langle f| J^{\mu}|i\rangle \times \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{1}{E_{\nu}\left[E_{\nu}+\left(E_{n}-E_{0}\right)-i \epsilon\right]} \quad E_{\nu}=\sqrt{k^{2}+m_{i}^{2}}
$$

100x larger decay rates

 Still small ;)- These effects are not considered in any analysis of neutrinoless double beta decay
- Work in progress: compute these corrections for realistic models
- Other issues (not today) $g_{\nu}^{N N}\left(m_{i}\right)$? NME's don't make sense for $m_{i} \gg \mathrm{GeV} \ldots$

