Lattice QCD calculation of $0\nu 2\beta$ Decay

Xin-Yu Tuo (脱心宇)

School of physics, Peking University

2023.5.20

In collaboration with Xu Feng (冯旭), Luchang Jin (靳路昶),

Zi-Yu Wang (王子毓) and Teng Wang (王腾)

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
- 4 Conclusion and outlook

Plan

1 Background: Lattice QCD and $0\nu 2\beta$ decay

- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
- 4 Conclusion and outlook

Why are $0\nu 2\beta$ decays so important?

Test the nature of neutrino: Dirac fermion? Majorana fermion?

[1] Ettore Majorana. Nuovo Cim. 1937, 14:171–184

Why are $0\nu 2\beta$ decays so important?

Test the nature of neutrino: Dirac fermion? Majorana fermion?

Lepton-number violation: BSM

[2] M. A. Luty. Phys Rev. 1992, D45:455-465

Theoretical roadmap

Particle physics

wide energy scales

Nuclear physics

Theoretical roadmap

Submitted to the Proceedings of the U.S. Community Study on the Future of Particle Physics (Snowmass 2021)

Neutrinoless Double-Beta Decay: A Roadmap for Matching Theory to Experiment

Vincenzo Cirigliano, et al. Snowmass 2021. arxiv:2203.12169

Snowmass points out the theoretical roadmap:

Effective Field Theories (EFTs) Lattice QCD nuclear many-body theory

Challenge from low energy QCD

Lattice QCD

Calculation of QCD in non-perturbative region:

Perturbation theory?

Numerical solution? Lattice QCD

Cooperation between EFTs and LQCD

Nuclear physics

Particle physics

Cooperation between EFTs and LQCD

Lattice QCD: bridging theories (EFTs) in different energy scales

Coulomb-range contribution:

hadronic inputs: single-nucleon g_A , scalar charge, tensor charge...

Extracted from lattice QCD Y. Aoki, et al. Eur Phys J C. 2022, 82(10):869

Coulomb-range contribution:

hadronic inputs: single-nucleon g_A , scalar charge, tensor charge...

Extracted from lattice QCD Y. Aoki, et al. Eur Phys J C. 2022, 82(10):869

Short-range contribution: hard neutrino exchange

In ChPT/ChEFT: $g_{\nu}^{\pi\pi}$, g_{ν}^{NN} , ...

Vincenzo Cirigliano, et al. Snowmass 2021. arxiv:2203.12169

Coulomb-range contribution:

hadronic inputs: single-nucleon g_A , scalar charge, tensor charge...

Extracted from lattice QCD Y. Aoki, et al. Eur Phys J C. 2022, 82(10):869

Short-range contribution: hard neutrino exchange

PHYSICAL REVIEW LETTERS 120, 202001 (2018)

New Leading Contribution to Neutrinoless Double- β Decay

Vincenzo Cirigliano,¹ Wouter Dekens,¹ Jordy de Vries,² Michael L. Graesser,¹ Emanuele Mereghetti,¹ Saori Pastore,¹ and Ubirajara van Kolck^{3,4}

 g_{v}^{NN} : additional contact operator at LO

Coulomb-range contribution:

hadronic inputs: single-nucleon g_A , scalar charge, tensor charge...

Extracted from lattice QCD Y. Aoki, et al. Eur Phys J C. 2022, 82(10):869

Short-range contribution: hard neutrino exchange

PHYSICAL REVIEW LETTERS 120, 202001 (2018)

New Leading Contribution to Neutrinoless Double- β Decay

Vincenzo Cirigliano,¹ Wouter Dekens,¹ Jordy de Vries,² Michael L. Graesser,¹ Emanuele Mereghetti,¹ Saori Pastore,¹ and Ubirajara van Kolck^{3,4}

```
g_{\nu}^{NN}: additional contact operator at LO
```


Determination of LEC g_{ν}^{NN} : non-perturbative QCD

Short-range contribution: dimension-9 operators

In ChPT/ChEFT: $g_i^{\pi\pi}$ (*i* = 1, ..., 5), g_i^{NN} (*i* = 1, ..., 7), ...

Short-range contribution: dimension-9 operators

In ChPT/ChEFT:
$$g_i^{\pi\pi}$$
 (*i* = 1, ..., 5), g_i^{NN} (*i* = 1, ..., 7), ...

Vincenzo Cirigliano, et al. Snowmass 2021. arxiv:2203.12169

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
 - 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
- 4 Conclusion and outlook

Lattice work 1: pionic $0\nu 2\beta$ decay

Challenge: massless neutrino

H(x): hadronic part, from lattice four-point function

 $S_0(x)$: massless neutrino, propagate out of lattice range

How to combine massless propagator into lattice calculation?

Traditional method: neutrino in finite volume

Z. Davoudi, M. Savage Phys. Rev. D 90, 054503 (2014)

- > Lattice data: H(x) in finite volume
- Traditional method: also put neutrino into finite volume
- > For example: subtract zero mode (QED_L), massive neutrino

Traditional method: neutrino in finite volume

Z. Davoudi, M. Savage Phys. Rev. D 90, 054503 (2014)

- > Lattice data: H(x) in finite volume
- Traditional method: also put neutrino into finite volume
- > For example: subtract zero mode (QED_L), massive neutrino

[1] X. Feng, L. Jin, PRD100 (2019) 094509, arXiv:1809.10511
[2] X. Tuo, X. Feng, L. Jin, PRD100 (2019) 094511, arXiv:1909.13525

[1] X. Feng, L. Jin, PRD100 (2019) 094509, arXiv:1809.10511
[2] X. Tuo, X. Feng, L. Jin, PRD100 (2019) 094511, arXiv:1909.13525

Improving finite volume errors

Benefit of IVR method: $O(e^{-mL})$ FV errors

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
 - 3 Lattice work 2: sterile neutrino contribution
- 4 Conclusion and outlook

Lattice work 2: sterile neutrino contribution

Sterile neutrino: explain the source of tiny mass of neutrino through the

seesaw mechanism, the hypothesis of many BSM models

Lattice work 2: sterile neutrino contribution

Sterile neutrino: explain the source of tiny mass of neutrino through the seesaw mechanism, the hypothesis of many BSM models

Enhancement due to sterile neutrino

W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, and G. Zhou, JHEP 06, 097 (2020)

 $0\nu 2\beta$ decay can be enhanced by sterile neutrino contribution in pion exchange diagram

Enhancement due to sterile neutrino

W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, and G. Zhou, JHEP 06, 097 (2020)

 $0\nu 2\beta$ decay can be enhanced by sterile neutrino contribution in pion exchange diagram

Enhancement due to sterile neutrino

W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, and G. Zhou, JHEP 06, 097 (2020)

 $0\nu 2\beta$ decay can be enhanced by sterile neutrino contribution in pion exchange diagram

Benefit of our method

Neutrino: infinite volume version with known analytical form It is convenient to adjust the neutrino mass and study the mass dependence

$$S_0^E(x) = \int \frac{d^4q}{(2\pi)^4} \frac{e^{-iqx}}{q^2 + m_\nu^2} = \frac{m_\nu}{4\pi^2 |x|} K_1(m_\nu |x|).$$

Lattice calculation of $g_{LR}^{\pi\pi}(m_{\nu})$

X. Tuo, X. Feng, L. Jin, PRD106 (2022) 074510, arXiv:2206.00879

Lattice calculation of $g_{LR}^{\pi\pi}(m_{\nu})$

X. Tuo, X. Feng, L. Jin, PRD106 (2022) 074510, arXiv:2206.00879

PRL121 (2018) 172501

Nontrivial consistency check

Enhancement due to $g_{LR}^{\pi\pi}(m_{\nu})$

Help to reduce the uncertainties from LEC $g_{LR}^{\pi\pi}(m_{\nu})$ and determine the peak shape

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
 - 4 Conclusion and outlook

Conclusion

1. Infinite volume reconstruction method solves the finite volume

effects caused by massless neutrino.

2. Determine LEC related to pionic 0ν2β decay g^{ππ}_ν = 10.9(3)(7)
[1] X. Feng, L. Jin, X. Tuo, S. Xia, PRL122 (2019) 022001
[2] X. Tuo, X. Feng, L. Jin, PRD100 (2019) 094511

3. Study the mass Dependence of LEC $g_{LR}^{\pi\pi}(m_{\nu})$ related to sterile neutrino Contributions

[3] **X. Tuo**, X. Feng, L. Jin, PRD106 (2022) 074510

Outlook: nucleon sector g_{ν}^{NN}

[1] Zohreh Davoudi, et al. Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory[C]. Snowmass 2021.

Three stages:

1. Calculation of two-nucleon

spectra and elastic scattering

2. Calculation of two-nucleon

 $0\nu 2\beta$ matrix elements

3. Relating lattice calculation

to physical quantities

Outlook: nucleon sector g_{ν}^{NN}

[1] Zohreh Davoudi, et al. Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory[C]. Snowmass 2021.

Three stages:

1. Calculation of two-nucleon

spectra and elastic scattering

2. Calculation of two-nucleon

 $0\nu 2\beta$ matrix elements

3. Relating lattice calculation

to physical quantities

Challenging due to signal-to-

noise problem, main goal of

future lattice QCD study

[2] Xu Feng, Lu-Chang Jin, Zi-Yu Wang, Zheng Zhang. Phys Rev D. 2021, 103(3):034508
[3] Zohreh Davoudi, Saurabh V. Kadam. Phys Rev Lett. 2021, 126(15):152003

Zi-Yu Wang (王子毓), talk on 5.22, 16:10-16:30