Neutrinoless double beta decay in the Type-I Seesaw model

Yu-Feng Li (李玉峰) Institute of High Energy Physics & University of Chinese Academy of Sciences 2023-05-20@珠海 第二届"无中微子双贝塔衰变及相关物理研讨会"

vs do oscillate!

e→e

e→e

µ→μ

µ→μ

e→e

μ→е

 $\mu \rightarrow \tau$

Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric).

(a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], DeepCore, MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS, NOvA; (g) OPERA [plot], Super-K atmospheric.

From Lisi

The current global picture

Neutrino mass spectrum

v masses: Dirac versus Majorana

Two possibilities to define neutrino mass:

> **Dirac mass**

Left & right handed v's

Lepton number conservation

Majorana mass

Only left handed v's

Lepton number violation

Double beta decay

Two-Neutrino Double- β Decay: $\Delta L = 0$ $\mathcal{N}(A,Z) \rightarrow \mathcal{N}(A,Z+2) + e^- + e^$ d $+ \overline{\nu}_e + \overline{\nu}_e$ Goeppert Mayer (1935) $(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |\mathcal{M}_{2\nu}|^2$ second order weak interaction process in the Standard Model Neutrinoless Double- β Decay: $\Delta L = 2$ $\mathcal{N}(A, Z) \rightarrow \mathcal{N}(A, Z+2) + e^- + e^-$ Furry (1939) $(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |\mathcal{M}_{0\nu}|^2 |m_{\beta\beta}|^2$ $\sqrt{\overline{
u}_{kR}}$ effective $|m_{etaeta}| = \left|\sum_{k} U_{ek}^2 m_k
ight|$ Majorana mass See recent reviews: 2203.12169, 2203.12169, 1902.04097 etc.

u

U

u

6

The **0v2β**-decay rate

Leptonic tensor in the $\beta\beta_{0\nu}$ amplitude:

$$egin{aligned} &\mathcal{A}_{\mu
u}=-\sum_{k,j}\overline{e}(x)\gamma_{\mu}\left(1-\gamma_{5}
ight)U_{ek}
u_{k}(x)\overline{
u_{j}^{c}}(y)U_{ej}\left(1-\gamma_{5}
ight)\gamma_{
u}e^{c}(y) \ &\mathcal{A}_{\mu
u}\propto\sum_{k}U_{ek}^{2}\intrac{\mathrm{d}^{4}p}{(2\pi)^{4}}\overline{e}(x)\gamma_{\mu}\left(1-\gamma_{5}
ight)rac{p}{p^{2}-m_{k}^{2}}\left(1-\gamma_{5}
ight)\gamma_{
u}e^{c}(y)\,\mathrm{e}^{-ip\cdot(x-y)} \end{aligned}$$

Effective Majorana Neutrino Mass

- > 7 out of 9 parameters of light Majorana neutrinos !
- > Neutrino oscillation and non-oscillation measurements contribute to the prediction of $m_{\beta\beta}$!

$m_{\beta\beta}$: Decomposition

Three different regions:

> QD: m_{1/3}>10 meV

- Hierarchical:
 m_{1/3}<1 meV
- Cancelation:[1, 10] meV

Fine structure: towards the meV goal

- The critical threshold point could serve as the ultimate goal for 0v2β searches.
- The possibility of falling into the well is very small.
- Have unique (otherwise impossible) constraints on non-oscillation parameters

Nuclear Matrix Element (light vs)

	g_A	src	dQRPA [27]	sQRPA-Tu 28	sQRPA-Jy 30	IBM-2 [49]	CDFT [33]	ISM [34]
	1.27	w/o	3.27	-	-	-	7.61	-
		Argonne	3.12	5.157	-	5.98	7.48	2.89
		CD-Bonn	3.40	5.571	6.54	6.16	7.84	3.07
76 Ge		${\it Miller-Spencer}$	-	-	-	5.42	6.36	-
	1.00	w/o	2.64	-	-	-	-	-
		Argonne	2.48	3.886	-	-	-	1.77
		CD-Bonn	2.72	4.221	5.26	-	-	1.88
82 Se	1.27	w/o	3.01	-	-	-	7.60	-
		Argonne	2.86	4.642	-	4.84	7.48	2.73
		CD-Bonn	3.13	5.018	4.69	4.99	7.83	2.90
		Miller-Spencer	-	-	-	4.37	6.48	-
	1.00	w/o	2.41	-	-	-	-	-
		Argonne	2.26	3.460	-	-	-	2.41
		CD-Bonn	2.49	3.746	3.73	-	-	2.56
$^{130}\mathrm{Te}$	1.27	w/o	3.10				9.55	
		Argonne	2.90	3.888		4.47	9.38	2.76
		CD-Bonn	3.22	4.373	5.27	4.61	9.82	2.96
		Miller-Spencer	-	-	-	4.03	8.03	
	1.00	w/o	2.29					
		Argonne	2.13	2.945	-	-	-	1.72
		CD-Bonn	2.37	3.297	4.00	-	-	1.84
136 Xe	1.27	w/o	1.12	-	-	-	6.62	
		Argonne	1.11	2.177		3.67	6.51	2.28
		CD-Bonn	1.18	2.460	3.50	3.79	6.80	2.45
		Miller-Spencer	-	-	-	3.33	5.58	
	1.00	w/o	0.85					
		Argonne	0.86	1.643	-	-	-	1.42
		CD-Bonn	0.89	1.847	2.91	-	-	1.53

Nuclear Matrix Element (light vs)

- Correlation of different isotopes
- Each model has rather small uncertainty
- Different models differ by a factor of 3
- CDFT tends to have the largest values
- ISM predicts most of the lowest values
- > QRPA has the lowest value for Xe

Current experimental results

PHYSICAL REVIEW LETTERS 125, 252502 (2020)

Editors' Suggestion Featured in Physics

Final Results of GERDA on the Search for Neutrinoless Double-β Decay

M. Agostini, ^{9,17} G. R. Araujo,²¹ A. M. Bakalyarov,¹⁵ M. Balata,¹ I. Barabanov,¹³ L. Baudis,²¹ C. Bauer,⁸ E. Bellotti,^{10,11}
 S. Belogurov, ^{14,13,²} A. Bettini,^{18,19} L. Bezrukov,¹³ V. Biancacci,^{18,19} D. Borowicz,⁶ E. Bossio,¹⁷ V. Bothe,⁸ V. Brudanin,⁶
 R. Brugnera, ^{18,19} A. Caldwell,¹⁶ C. Cattadori,¹¹ A. Chernogorov,^{14,15} T. Comellato,¹⁷ V. D'Andrea,² E. V. Demidova,¹⁴
 N. Di Marco,¹ E. Doroshkevich,¹³ F. Fischer,¹⁶ M. Fomina,⁶ A. Gangapshev,^{13,8} A. Garfagnini,^{18,19} C. Gooch,¹⁶
 P. Grabmayr,²⁰ V. Gurentsov,¹³ K. Gusev,^{6,15,17} J. Hakenmüller,⁸ S. Hemmer,¹⁹ R. Hiller,²¹ W. Hofmann,⁸ J. Huang,²¹

PHYSICAL REVIEW LETTERS 123, 161802 (2019)

Editors' Suggestion

Search for Neutrinoless Double- β Decay with the Complete EXO-200 Dataset

G. Anton,¹ I. Badhrees,^{2,a} P. S. Barbeau,³ D. Beck,⁴ V. Belov,⁵ T. Bhatta,⁶ M. Breidenbach,⁷ T. Brunner,^{8,9} G. F. Cao,¹⁰ W. R. Cen,¹⁰ C. Chambers,^{11,b} B. Cleveland,^{12,c} M. Coon,⁴ A. Craycraft,¹¹ T. Daniels,¹³ M. Danilov,^{5,d} L. Darroch,⁸ S. J. Daugherty,¹⁴ J. Davis,⁷ S. Delaquis,^{7,*} A. Der Mesrobian-Kabakian,¹² R. DeVoe,¹⁵ J. Dilling,⁹ A. Dolgolenko,⁵ M. Der Mesrobian-Kabakian,¹² R. DeVoe,¹⁵ J. Dilling,⁹ A. Dolgolenko,⁵

PHYSICAL REVIEW LETTERS 130, 051801 (2023)

Editors' Suggestion Featured in Physics

Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen

S. Abeo,¹ S. Asami,¹ M. Eizukao,¹ S. Futagi,¹ A. Gando,¹ Y. Gando,¹ T. Gima,¹ A. Goto,¹ T. Hachiyao,¹ K. Hatao,¹ S. Hayashida,¹⁺ K. Hosokawa,¹⁺ K. Ichimurao,¹ S. Iekio,¹ H. Ikeda,¹ K. Inoue,¹⁻² K. Ishidoshiroo,¹ Y. Kameio,¹ N. Kawadao,¹ Y. Kashimoto,¹⁻² M. Koga,¹⁻² M. Kurasawa,¹ N. Maemura,¹ T. Mitsui,¹ H. Miyake,¹ T. Nakahata,¹ K. Nakamura,¹ K. Nakamura,¹ R. Nakamura,¹ H. Ozakio,¹⁻³ T. Sakaio,¹ H. Sambonsugi,¹ J. Shimizuo,¹ J. Shiraio,¹ K. Shiraishi,¹ A. Suzuki,¹ Y. Suzuki,¹ A. Takeuchi,¹ K. Tamae,¹ K. Ueshima,¹⁺ H. Watanabeo,¹ Y. Yoshida,¹ S. Obarao,^{4,4;} A. K. Ichikawa,⁵ D. Chernyak,²⁻⁸ A. Kozlovo,²⁻¹ K. Z. Nakamura,⁶ S. Yoshida,⁷ Y. Takemoto,^{8,4} S. Umehara,⁸ K. Fushimio,⁹ K. Kotera,¹⁰ Y. Urano,¹⁰ B. E. Berger,²¹¹ B. K. Fujikawao,²¹¹ J. G. Learned,¹² J. Maricic,¹² S. N. Axanio,¹³ J. Smolsky,¹³ Z. Fu,¹³ L. A. Winslow,¹³ Y. Efremenkoo,^{2,14} M. J. Karwowski,¹⁵ D. M. Markoffo,¹⁵ M. Tornowo,^{2,15} S. Dell'Oro,¹⁶ T. O'Donnello,¹⁶ J. A. Detwiler⁰,²¹⁷ S. Enomoto,^{2,17} M. P. Decowskio,^{2,18} C. Granto,¹⁹ A. Lio,^{19,15} and H. Song¹⁹

(KamLAND-Zen Collaboration)

PHYSICAL REVIEW C 100, 025501 (2019)

Search for neutrinoless double- β decay in ⁷⁶Ge with 26 kg yr of exposure from the MAJORANA DEMONSTRATOR

S. I. Alvis,¹ I. J. Arnquist,² F. T. Avignone, III,^{3,4} A. S. Barabash,⁵ C. J. Barton,⁶ V. Basu,⁷ F. E. Bertrand,⁴ B. Bos,⁸

Article

Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE

Current experimental results

- Results of Both Ge & Xe have reached 100 meV
- KamLAND-Zen even entered the boundary of IMO (50 meV)
- Important implications on the parameter space, and even additional contributions!

Dirac and Majorana mass Lagrangian

Seesaw Mechanism

➤ The smallness of light neutrino masses ← Seesaw: $m_R \gg m_D$ diagonalization of $\begin{pmatrix} 0 & m_D \\ m_D & m_R \end{pmatrix} \implies m_\nu \simeq \frac{m_D^2}{m_R} \qquad m_N \simeq m_R$

> In general, the light and heavy mass eigenstates are mixed:

$$\begin{pmatrix} 0 & M_{\rm D} \\ M_{\rm D}^{\rm T} & M_{\rm R} \end{pmatrix} = \begin{pmatrix} U & R \\ S & V \end{pmatrix} \begin{pmatrix} \hat{M}_{\nu} & 0 \\ 0 & \hat{M}_{\rm R} \end{pmatrix} \begin{pmatrix} U & R \\ S & V \end{pmatrix}^{\rm T}$$

> Exact seesaw relation:

$$\sum_{i} U_{\alpha i}^2 m_i + \sum_{I} R_{\alpha I}^2 M_I = 0.$$

- > Connection of the low energy and high energy parameters
- A minimal (3+2) seesaw: two heavy neutrinos (hep-ph/0208157) "Seesaw fair play rule" [0706.0052]: one massless active neutrino !

How to include heavy neutrinos?

- > To include the contribution of heavy neutrinos (aka, right handed neutrinos, or sterile neutrinos):
- > Mass Dependent Nuclear Matrix Elements

$$f_{\beta}(M) = \frac{M_{0\nu}(M)}{M_{0\nu}(0)} \simeq \frac{\langle p^2 \rangle}{\langle p^2 \rangle + M^2} \,.$$

Faessler et al, 1408.6077 See also 2303.04168

(a) When the masses are small enough

$$\sum_{i} U_{\alpha i}^2 m_i + \sum_{I} R_{\alpha I}^2 M_I = 0.$$

(b) When the masses are large enough

$$m_{
m eff}\simeq m_{
m eff}^{
u}$$
 e.g., Xing, 0907.3014

- (c) One light enough & others large enough (e.g., eV sterile neutrino)
- (d) Minimal 3+2 seesaw for a general study

Fang, YFL, Zhang, 2112.12779

$$m_{\text{eff}} = m_{\text{eff}}^{\nu} - m_{\text{eff}}^{\nu} f_{\beta}(M_2) + R_{e_1}^2 M_1 \left[f_{\beta}(M_1) - f_{\beta}(M_2) \right]$$

17

Generalized $m_{\beta\beta}$

$$m_{\text{eff}} = m_{\text{eff}}^{\nu} + m_{\text{eff}}^{N} = \sum_{i=1}^{3} U_{ei}^{2} m_{i} + \sum_{I=1}^{2} R_{eI}^{2} M_{I} f_{\beta}(M_{I})$$

18

Nuclear Matrix Element (heavy vs)

	g_A	src	dQRPA [27]	sQRPA-Tu [28]	sQRPA-Jy [30]	IBM-2 [40]	CDFT [33]	ISM [34]
	1.27	w/o	385.4				466.8	
		Argonne	187.3	316		107	267	130
		CD-Bonn	293.7	433	401.3	163	378.1	188
76 Ge		Miller-Spencer				48.1	135.7	
	1.00	w/o	275.9					
		Argonne	129.7	204				86
		CD-Bonn	207.2	287	298.3			122
82 Se	1.27	w/o	358.7				454	
		Argonne	175.9	287		84.4	261.4	121
		CD-Bonn	273.6	394	287.1	132	369	175
		Miller-Spencer				35.6	132.7	
	1.00	w/o	257.4					
		Argonne	122.1	186	-	-	-	80
		CD-Bonn	193.4	262	214.3	-	-	113
130 Te	1.27	w/o	401.1				573	
		Argonne	191.4	292		92	339.2	146
		CD-Bonn	303.5	400	338.3	138	472.8	210
		Miller-Spencer				44	168.5	
	1.00	w/o	281.2					
		Argonne	130.2	189	-	-	-	97
		CD-Bonn	209.5	264	255.7	-	-	136
136 Xe	1.27	w/o	117.1				394.5	
		Argonne	66.9	166		72.8	234.3	116
		CD-Bonn	90.5	228	186.3	109	326.2	167
		Miller-Spencer	-	-	-	35.1	116.3	
	1.00	w/o	82.7					
		Argonne	46.3	108	-	-	-	77
		CD-Bonn	62.8	152	137.3	-	-	108

Mass Dependent Nuclear Matrix Elements

Fang, YFL, Zhang (2023)

- dQRPA: Numerical calculation
- Others: interpolation with two extreme values

$$f_{\beta}(M) = \frac{M_{0\nu}(M)}{M_{0\nu}(0)} \simeq \frac{\left\langle p^2 \right\rangle}{\left\langle p^2 \right\rangle + M^2} \,.$$

- dQRPA, agrees with ISM for light vs and tends to be consistent with CDFT for heavy vs
- At high mass region,
 IBM-2 tends to have the smallest values

Minimal seesaw: current limits

Fang, YFL, Zhang, To appear

- > Different choices of parameters and models are scanned (not as Guassian)
- **>** Both the 0v2β-decay and oscillation data are used
- > Interpretations of three benchmark scenarios: two different roles!

 $m_{\text{eff}} = m_{\text{eff}}^{\nu} - m_{\text{eff}}^{\nu} f_{\beta}(M_2) + R_{e1}^2 M_1 \left[f_{\beta}(M_1) - f_{\beta}(M_2) \right]$

$$f_{\beta}(M) = \frac{M_{0\nu}(M)}{M_{0\nu}(0)} \simeq \frac{\langle p^2 \rangle}{\langle p^2 \rangle + M^2} \,.$$

Heavy vs: different probes

Conclusion

- Neutrino-less double decay: A smoking gun of the neutrino Majorana nature!
- After the observation of 0v2β, what is the true mechanism for neutrino mass generation and the 0v2β process ?

- In the type-I seesaw model, we have obtained the experimental limits on the seesaw parameters by using
 - a) the 0v2β data and neutrino oscillation data,
 - b) global model predictions of nuclear matrix elements,
 - c) and seesaw relation of light and heavy neutrino masses.

Thank you!

Schechter-Valle theorem

- $|m_{\beta\beta}| \text{ can vanish because of unfortunate cancellations among the } \nu_1, \nu_2, \\ \nu_3 \text{ contributions or because neutrinos are Dirac particles.}$
- However, $\beta\beta_{0\nu}$ decay can be generated by another BSM mechanism.
- In this case, Majorana masses are generated by radiative corrections:

Majorana-Dirac confusion theorem

Majorana neutrinos and their electromagnetic properties

Boris Kayser Division of Physics, National Science Foundation, Washington, D. C. 20550 (Received 29 January 1982)

Phys.Rev.D 26 (1982) 1662

 $SU(2)_L \times U(1)$ to one-loop order. Lastly, we compare the electromagnetic interactions of a Majorana and a Dirac neutrino in the massless limit. We find that they conform to what seems to be a general rule: If all weak currents are left-handed, then the difference between a Majorana and a Dirac neutrino becomes invisible as the mass goes to zero. This occurs in spite of gross differences between these particles when the mass is not negligible.

The practical Majorana-Dirac confusion theorem

Practical Majorana-Dirac Confusion Theorem

- Only left-handed weak interactions exist
- Experiments with neutrinos of negative helicity and antineutrinos of positive helicity
- The Majorana Dirac difference ~ m²_v

$$|\nu_e\rangle \sim |L\rangle + \left(\frac{m}{E}\right)|R\rangle.$$

Best Bet: 0v2β-decay

Other mechanisms

mechanism	physics parameter	current limit	test	
light neutrino exchange	$\left U_{ei}^2 m_i ight $	$0.2 \mathrm{eV}$	oscillations, cosmology, neutrino mass	
heavy neutrino exchange	$\left \frac{S_{ei}^2}{M_i} \right $	$2\times 10^{-8}~{\rm GeV}^{-1}$	LFV, collider	
heavy neutrino and RHC	$\left \frac{V_{ei}^2}{M_iM_{W_R}^4}\right $	$4\times 10^{-16}~{\rm GeV}^{-5}$	flavor, collider	
Higgs triplet and RHC	$\left \frac{(M_R)_{ee}}{m_{\Delta_R}^2 M_{W_R}^4}\right $	$10^{-15} \text{ GeV}^{-1}$	flavor, collider e^- distribution	
$\lambda\text{-mechanism}$ with RHC	$\left \frac{U_{ei} \tilde{S}_{ei}}{M_{W_R}^2} \right $	$1.4 \times 10^{-10} \text{ GeV}^{-2}$	flavor, collider, e^- distribution	
$\eta\text{-mechanism}$ with RHC	$ \tan \zeta \left U_{ei} \tilde{S}_{ei} \right $	6×10^{-9}	flavor, collider, e^- distribution	
short-range R	$\Lambda_{\text{SUSY}} = f(m_{\tilde{g}}, m_{\tilde{u}_L}, m_{\tilde{d}_B}, m_{\chi_i})$	$7 \times 10^{-18} \text{ GeV}^{-5}$	collider, flavor	
long-range R	$\frac{\left \sin 2\theta^{b} \lambda_{131}^{\prime} \lambda_{113}^{\prime} \left(\frac{1}{m_{\tilde{b}_{1}}^{2}} - \frac{1}{m_{\tilde{b}_{2}}^{2}}\right)\right \\ \sim \frac{G_{F}}{a} m_{b} \frac{\left \lambda_{131}^{\prime} \lambda_{113}^{\prime}\right }{\lambda_{131}^{3}}$	$2 \times 10^{-13} \text{ GeV}^{-2}$ $1 \times 10^{-14} \text{ GeV}^{-3}$	flavor, collider	
Majorons	$ \langle g_{\chi} \rangle $ or $ \langle g_{\chi} \rangle ^2$	$10^{-4} \dots 1$	spectrum, cosmology	

From Rodejohann

Convention of nuclear matrix element

$$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu} g_{\rm A}^{4} \times \\ \times \begin{cases} \left| \frac{\langle m_{\nu} \rangle}{m_{\rm e}} \right|^{2} \left| M_{\nu}^{\prime 0\nu} (g_{\rm A}^{\rm eff}) \right|^{2}, & \text{for } m_{\rm N} \ll p_{\rm F}, \\ \left| \langle \frac{1}{m_{\rm N}} \rangle m_{\rm p} \right|^{2} \left| M_{\rm N}^{\prime 0\nu} (g_{\rm A}^{\rm eff}) \right|^{2}, & \text{for } m_{\rm N} \gg p_{\rm F}, \end{cases}$$
(9)

with

$$\langle m_{\nu} \rangle = \sum_{\mathrm{N}} U_{e\mathrm{N}}^2 m_{\mathrm{N}}, \quad \left\langle \frac{1}{m_{\mathrm{N}}} \right\rangle = \sum_{\mathrm{N}} \frac{U_{e\mathrm{N}}^2}{m_{\mathrm{N}}}.$$
 (10)

Absolute neutrino masses: beta-decay

$$^{3}\text{H} \rightarrow ^{3}\text{He} + e^{-} + \bar{\nu}_{e}$$

0.8 eV (90 C.L.)

 10^{-1} 29 **Future Prospect:**

$$m_{\beta}^2 = \sum_k |U_{ek}|^2 m_k^2$$

- KATRIN: 200 meV
 - Systematic limit: ~100 meV
 - Project 8: 40 meV

Absolute neutrino masses: cosmology

PDG 2020	Model	95% CL (eV)	Ref.
CMB alone			
Pl18[TT+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.54	[16]
Pl18[TT, TE, EE+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.26	[16]
$\overline{\text{CMB}}$ + probes of background evolution	L		
$\overline{\text{Pl18}[\text{TT+lowE}]} + \text{BAO}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.16	[16]
Pl18[TT, TE, EE+lowE] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[16]
Pl18[TT,TE,EE+lowE]+BAO	$\Lambda \text{CDM} + \sum m_{\nu} + 5$ params.	< 0.515	[18]
$\overline{\text{CMB} + \text{LSS}}$			
Pl18[TT+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.44	[16]
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.24	[16]
$\overline{\text{CMB} + \text{probes of background evolution}}$	+ LSS		
$\overline{\text{Pl18}[\text{TT+lowE+lensing}] + \text{BAO}}$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[16]
Pl18[TT, TE, EE+lowE+lensing] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.12	[16]
Pl18[TT, TE, EE+lowE+lensing] + BAO+Pan	theon $\Lambda \text{CDM} + \sum m_{\nu}$	< 0.11	[16]

Cosmology: sum of neutrino masses

- > Data sets and model dependence
- > Current best limit: ~120 meV
- > Future projection \rightarrow 60 meV

Low energy 3v mixing

$$\nu_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k} \quad \text{for} \quad \alpha = e, \mu, \tau$$

Standard Parameterization of Mixing Matrix (as CKM)

