

- Fix the height of the combinatorial backgrounds and non-prompt backgrounds
 - The height of the $J/\psi_1\mu^+\mu^-$ and $\mu^+\mu^-J/\psi_2$ should be the same
 - The height of the $J/\psi_1(NP)J/\psi_2(P)$ and $J/\psi_1(P)J/\psi_2(NP)$ should be the same

Components		Ν	Components		Ν
$J/\psi_1 J/\psi_2$	P+P	2620 ± 60	$J/\psi_1 J/\psi_2$	P+P	2620 ± 60
	NP+P	940 ± 50		NP+P	920 ± 30
	P+NP	900 ± 50		P+NP	
	NP+NP	5020 ± 90		NP+NP	5020 ± 90
$J/\psi_1\mu^+\mu^-$		450 ± 40	$J/\psi_1\mu^+\mu^-$		500 ± 30
$\mu^+\mu^- J/\psi_2$		550 ± 50	$\mu^+\mu^- J/\psi_2$		
$\mu^+\mu^-\mu^+\mu^-$		4 ± 15	$\mu^+\mu^-\mu^-$	+μ-	2 ± 30

 A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds

Events / (0.003)

Pull

• Fix CB and Cheb

$J/\psi_1 J/\psi_2$	8750 + 110
$J/\psi\mu^+\mu^-$	830 <u>+</u> 30
$\mu^+\mu^-\mu^+\mu^-$	70 <u>+</u> 20

- The fitting quality is poor
- Overestimate the combinatorial backgrounds and underestimate the JJ

Pull

- A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds
 - Fix CB

$J/\psi_1 J/\psi_2$	8090 + 120
$J/\psi\mu^+\mu^-$	1120 <u>+</u> 50
$\mu^+\mu^-\mu^+\mu^-$	140 <u>+</u> 30

• Similar to the last case but the quality of the fitting is better

 A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds

450

400

350

300

250

200

150

100

50

Pull

Events / (0.003)

• Fix Cheb

$J/\psi_1 J/\psi_2$	10120 + 160
$J/\psi\mu^+\mu^-$	180 ± 60
$\mu^+\mu^-\mu^+\mu^-$	0 ± 3

- The fitting is unreasonable
- Underestimate the combinatorial backgrounds and overestimate the JJ

 A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds

450

400

350

300

250

200

150

100

50

Pull

Events / (0.003)

• Float

$J/\psi_1 J/\psi_2$	10090 + 170
$J/\psi\mu^+\mu^-$	190 ± 70
$\mu^+\mu^-\mu^+\mu^-$	0 <u>+</u> 15

• Similar to the last case

- Fix the height of two combinatorial backgrounds and two p-np combinations
 - No big discrepancy is observed compared to the origin method
 - The strategy is reasonable and propose to accept
- Pre 2D fit to fix the height of combinatorial backgrounds
 - A better result can be found if the CB shape is fixed
 - The result is unreasonable if the CB shape is float
 - The height acquired by this method shows a big difference with direct 4D fit
 - The direct 4D fit may be more reasonable since the time information can also help in differentiating the combinatorial background
 - Too complicated since the pre fit has to be applied for every bin in binning fit
 - Propose to abandon this method

Origin fitting (4.6)

Origin fitting (4.6)

Updated fitting

Updated fitting

Concise plotting

Concise plotting

Fitting procedure

- Mix SPS and DPS samples into the prompt sample (8K:4K)
- 1D fit to the prompt sample on the $c\tau_1$ dimension to acquire the shape1 (double gaussian)
- 1D fit to the non-prompt sample on the $c\tau_1$ dimension to acquire the shape2 (convolution of an exponent and a gaussian)
- 1D fit to the prompt sample on the M_{J/ψ_1} dimension to acquire the shape3 (double CB)
- 1D fit to the data sample on the M_{J/ψ_1} dimension to acquire the shape4 (second order Cheb, the fitting is applied with a merging of the float Cheb and the shape3)
- Side band cut to the data sample to acquire the combinatorial background $(J/\psi_1\mu^+\mu^-)$.
- 1D fit to the $J/\psi_1 \mu^+ \mu^-$ on the $c\tau_1$ dimension to acquire the shape5 (merging of a gaussian and a convolution)
- 1D fit to the $J/\psi_1 \mu^+ \mu^-$ on the $c\tau_2$ dimension to acquire the shape6 (convolution of an exponent and a gaussian)
- Final fitting

Final fitting

Components		$M_{J/\psi 1}$	$M_{J/\psi 2}$	$c au_1$	<i>c</i> τ ₂	Ν
$J/\psi_1 J/\psi_2$	P+P	Double CB	Double CB	Shape1	Shape1	N _{JJ(PP)}
	NP+P			Shape2	Shape1	N _{JJ(PNP)}
	P+NP			Shape1	Shape2	
	NP+NP			Shape2	Shape2	N _{JJ(NPNP)}
$J/\psi_1\mu^+\mu^-$		Double CB	Shape4	Shape5	Shape6	N
$\mu^+\mu^- J/\psi_2$		Shape4	Double CB	Shape6	Shape5	Ν _{Jµµ}
$\mu^+\mu^-\mu^+\mu^-$		Shape4	Shape4	Shape6	Shape6	$N_{\mu\mu\mu\mu}$

- The functions that share the same name listed in the table also share the same set of parameters (because of the smearing between two J/ψ s)
- The parameters for the shape1/2/4/5/6 are fixed from the previous fitting
- The parameters for the double CB are float
- All the heights are float