## Update about the fitting

- Fix the height of the combinatorial backgrounds and non-prompt backgrounds
- The height of the $J / \psi_{1} \mu^{+} \mu^{-}$and $\mu^{+} \mu^{-} J / \psi_{2}$ should be the same
- The height of the $J / \psi_{1}(N P) J / \psi_{2}(P)$ and $J / \psi_{1}(P) J / \psi_{2}(N P)$ should be the same

| Components |  | N |
| :---: | :---: | :---: |
| $J / \boldsymbol{\psi}_{1} J / \boldsymbol{\psi}_{2}$ | $\mathrm{P}+\mathrm{P}$ | $\mathbf{2 6 2 0} \pm \mathbf{6 0}$ |
|  | $\mathrm{NP}+\mathrm{P}$ | $\mathbf{9 4 0} \pm \mathbf{5 0}$ |
|  | $\mathrm{P}+\mathrm{NP}$ | $\mathbf{9 0 0} \pm \mathbf{5 0}$ |
|  | $\mathrm{NP}+\mathrm{NP}$ | $\mathbf{5 0 2 0} \pm \mathbf{9 0}$ |
| $J / \boldsymbol{\psi}_{1} \mu^{+} \mu^{-}$ |  | $\mathbf{4 5 0} \pm \mathbf{4 0}$ |
| $\mu^{+} \mu^{-} J / \boldsymbol{\psi}_{2}$ | $\mathbf{5 5 0} \pm \mathbf{5 0}$ |  |
| $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$ | $\mathbf{4} \pm \mathbf{1 5}$ |  |


| Components |  | N |
| :---: | :---: | :---: |
| $J / \psi_{1} J / \psi_{2}$ | P+P | $2620 \pm 60$ |
|  | NP+P |  |
|  | P+NP | 920 $\pm 30$ |
|  | NP+NP | $5020 \pm 90$ |
| $J / \psi_{1} \mu^{+} \mu^{-}$ |  | 500 |
| $\mu^{+} \mu^{-} J / \psi_{2}$ |  | - |
| $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$ |  | $2 \pm 30$ |

## Update about the fitting

- A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds
- Fix CB and Cheb

| $J / \psi_{1} J / \psi_{2}$ | $8750+110$ |
| :---: | :---: |
| $J / \psi \mu^{+} \mu^{-}$ | $830 \pm 30$ |
| $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$ | $70 \pm 20$ |

- The fitting quality is poor
- Overestimate the combinatorial backgrounds and underestimate the JJ



## Update about the fitting

- A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds
- Fix CB

| $J / \psi_{1} J / \psi_{2}$ | $8090+120$ |
| :---: | :---: |
| $J / \psi \mu^{+} \mu^{-}$ | $1120 \pm 50$ |
| $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$ | $140 \pm 30$ |

- Similar to the last case but the quality of the fitting is better



## Update about the fitting

- A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds
- Fix Cheb

| $J / \psi_{1} J / \psi_{2}$ | $10120+160$ |
| :---: | :---: |
| $J / \psi \mu^{+} \mu^{-}$ | $180 \pm 60$ |
| $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$ | $0 \pm 3$ |

- The fitting is unreasonable
- Underestimate the combinatorial backgrounds and overestimate the JJ



## Update about the fitting

- A pre 2Dfit (mass dimension) to fix the height of the combinatorial backgrounds
- Float

| $J / \psi_{1} J / \psi_{2}$ | $10090+170$ |
| :---: | :---: |
| $J / \psi \mu^{+} \mu^{-}$ | $190 \pm 70$ |
| $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$ | $0 \pm 15$ |

- Similar to the last case



## Summary

- Fix the height of two combinatorial backgrounds and two p-np combinations
- No big discrepancy is observed compared to the origin method
- The strategy is reasonable and propose to accept
- Pre 2D fit to fix the height of combinatorial backgrounds
- A better result can be found if the CB shape is fixed
- The result is unreasonable if the CB shape is float
- The height acquired by this method shows a big difference with direct 4D fit
- The direct 4D fit may be more reasonable since the time information can also help in differentiating the combinatorial background
- Too complicated since the pre fit has to be applied for every bin in binning fit
- Propose to abandon this method


## $D$

## Back Up



Origin fitting (4.6)



Origin fitting (4.6)


## Updated fitting



## Updated fitting



Concise plotting



Concise plotting


## Fitting procedure

- Mix SPS and DPS samples into the prompt sample (8K:4K)
- 1D fit to the prompt sample on the $c \tau_{1}$ dimension to acquire the shape1 (double gaussian)
- 1D fit to the non-prompt sample on the $c \tau_{1}$ dimension to acquire the shape2 (convolution of an exponent and a gaussian)
- 1D fit to the prompt sample on the $M_{J / \psi 1}$ dimension to acquire the shape3 (double CB)
- 1D fit to the data sample on the $M_{J / \psi 1}$ dimension to acquire the shape4 (second order Cheb, the fitting is applied with a merging of the float Cheb and the shape3)
- Side band cut to the data sample to acquire the combinatorial background $\left(J / \psi_{1} \mu^{+} \mu^{-}\right)$
- 1D fit to the $J / \psi_{1} \mu^{+} \mu^{-}$on the $c \tau_{1}$ dimension to acquire the shape5 (merging of a gaussian and a convolution)
- 1D fit to the $J / \psi_{1} \mu^{+} \mu^{-}$on the $c \tau_{2}$ dimension to acquire the shape6 (convolution of an exponent and a gaussian)
- Final fitting


## Final fitting

| Components |  | $M_{J / \psi 1}$ | $M_{J / \psi 2}$ | $c \tau_{1}$ | $c \tau_{2}$ | N |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $J / \psi_{1} J / \psi_{2}$ | P+P | Double CB | Double CB | Shape1 | Shape1 | $N_{J(P P)}$ |
|  | NP+P |  |  | Shape2 | Shape1 | $N_{J J(P N P)}$ |
|  | P+NP |  |  | Shape1 | Shape2 |  |
|  | NP+NP |  |  | Shape2 | Shape2 | $N_{J(N P N P)}$ |
| $J / \psi_{1} \mu^{+} \mu^{-}$ |  | Double CB | Shape4 | Shape5 | Shape6 | $N_{J \mu \mu}$ |
| $\mu^{+} \mu^{-} J / \psi_{2}$ |  | Shape4 | Double CB | Shape6 | Shape5 |  |
| $\mu^{+} \mu^{-} \mu^{+} \mu^{-}$ |  | Shape4 | Shape4 | Shape6 | Shape6 | $N_{\mu \mu \mu \mu}$ |

- The functions that share the same name listed in the table also share the same set of parameters (because of the smearing between two $J / \psi \mathrm{s}$ )
- The parameters for the shape1/2/4/5/6 are fixed from the previous fitting
- The parameters for the double CB are float
- All the heights are float

