

MC Correction Part1

Search for Four top in Tau Final States

Anshul Kapoor Huiling Hua¹ Hongbo Liao¹

¹IHEP

February 22, 2023

Outline

- 1 Prefiring reweighting
- 2 Pileup reweighting
- **3** JEC
- 4 TES
- 5 Tau ID Efficiency SF
- 6 Lepton ID SF

1tau1l control region definition

• Switch to the tight lepton definition from SS with top lepton MVA

Huiling Hua

SF and corrections

- Corrections we have considered
 - Prefiring
 - Pileup
 - Tau: both TES and ID SF
 - Jet: JES and JER
 - Lepton efficiency SF
- Have not considered
 - B jet: b tag efficiency correction
 - HLT SF : need to remeasure

Section 1

Prefiring reweighting

Prefiring reweighting

• Prefiring issue

- 2016 and 2017, gradual timing shift of the ECAL, events can self veto if a significant amount of ECAL energy is found in the region 2 < eta< 3
- effect is not described genuinely by the simulation but taken into account using event weights.
- Final SF, which is applied to all events before any selection
- Probability for a given Monte Carlo event not to prefire
- Implementation
 - Event weight already available in NanoAOD

Prefiring reweighting before and after(CR0)

huahl@ihep.ac.cn

Prefiring reweighting before and after(CR0)

CMS Preiminary

16.8 fb⁻¹(13TeV)

Prefiring reweighting before and after(CR2)

CMS Preiminary

16.8 fb⁻¹(13TeV)

huahl@ihep.ac.cn

Prefiring reweighting before and after(CR2)

CMS Preiminary

16.8 fb⁻¹(13TeV)

50 100 150 200 250 300 350 400 450 invariant mass of taus and leptons

Section 2

Pileup reweighting

Pileup reweighting

- reweighting simulated events to match the PU distribution in data •
- Implementation •
 - Pileup distribution (number of events as a function of pileup vertex per bunch crossing in the whole Run2)
 - Scale both data and MC pileup distribution to 1
 For each event, w = data(nTrueInt)/MC(nTrueInt)

Pileup reweighting before and after(CR0 and CR2)

- Up prefiring reweighting, down: prefiring*pileup
- Left: CR0; right CR2

huahl@ihep.ac.cn

Huiling Huc

Pileup reweighting before and after(CR0)

CMS Preiminary

16.8 fb 113TeV

16.8 fb⁻¹(13TeV)

aingleTop W.Mts

Pileup reweighting before and after(CR0)

CMS Preiminary

Pileup reweighting before and after(CR2)

Pileup reweighting before and after(CR2)

huahl@ihep.ac.cn

JER before and after

- JES(jet energy scale) already corrected in NanoAOD
- JER using POG json file to correct

JER reweighting before and after(CR0)

• From now on CR0 updated(include CR3)

huahl@ihep.ac.cn

Huiling Huc

JER reweighting before and after(CR0)

CMS Preiminary

16.8 fb⁻¹(13TeV)

- Tau energy scale correction
- Using Tau POG json file

TES before and after(CR0)

1200 1400

180

HT of lets

600

800 1000

Huiling Hu

huahl@ihep.ac.cn

TES before and after(CR0)

16.8 fb⁻¹(13TeV)

0 120 14 elesTopMVAT_1pt

16.8 fb (13TeV)

10 aingleTop W.Arts

aingisTop WAtts

• Gate

invariant mass of taus and leptons

TES before and after(CR2)

huahl@ihep.ac.cn

TES before and after(CR2)

Section 5

Tau ID Efficiency SF

Tau ID SF before and after(CR0)

600 800

1000 1200 1400

180

HT of lets

CMS Preferinary

16.8 fb⁻¹(13TeV

huahl@ihep.ac.cn

Tau ID SF before and after(CR0)

Tau ID SF before and after(CR2)

CMS Preferinary

16.8 fb⁻¹(13TeV

• Gate

Tau ID SF before and after(CR2)

invariant mass of taus and leptons

Section 6

Lepton ID SF

- Same as the SS lepton definition
 - Tight electron MVA working points; medium muon MVA working points
- All SF need to consider is the Top Lepton MVA SF
- SF provided by Kirill

Back up

Section 8

B tag efficiency SF

B tag efficiency SF(yield)

•
$$SF = \frac{\varepsilon_{data}}{\varepsilon_{MC}}$$

• Only using working points

•
$$P(MC) = \prod_{i=tagged} \epsilon_i \prod_{j=nottagged} \epsilon_j$$
?
• $P(Data) = \prod_{i=tagged} SF_i \epsilon_i \prod_{j=nottagged} SF_j \epsilon_j$?

$$w = \frac{P_{MQ}}{P_{MQ}}$$

- If we ask 2 b tagged jets
 - the probability for jets to have such configuration is as above
- https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagSFMethods

B tag uncertainty(shape)

- Need to correct for both shape and yield
 - For both 1tau11 and 1tau01, we are using the shape of the b tag score
 - >= 2 b jets(medium working points) for baseline selection
- BTV 1d) Event reweighting using discriminator-dependent scale factors from BTV
 - https://twiki.cern.ch/twiki/bin/viewauth/CMS/BTagShapeCalibration
 - $w_{event} = \prod_{i}^{N_{jets}} SF(D_i, pt_i, \eta_i, flavor_i)$
 - D_i: b tag discriminant
 - The difference between working points weight is that SF here is more bins with regard to D_i
 - Effect on event yields
 - the number of events (i.e. the sum of event weights) before and after applying b-tag weights should be identical
 - Measure the sum of event weights before and after applying b-tag event weights, without requiring any b-tag selection in both cases
 - $r = \sum_{i=1}^{n} w_{before} / \sum_{i=1}^{n} w_{after}$ represents a phase space extrapolation and should be multiplied to the b-tag event weight
 - this extrapolation could in general depend on further variables, most notably the jet multiplicity.
 Especially in analyses with a large number of jets (e.g. tt or ttH) one should consider to measure and apply the ratio r per jet multiplicity bin
 - Measure R in region without b jet requirement

Huiling Huo

R dependance on jet multiplicity

- r can vary on jet multiplicity
 - I think due to the fact that jet multiplicity impact SF, and it's not taken into account when measuring b tag SF
- No b tag selection when measuring r
- Measurement region: baseline region without b jet requirement

Distribution without considering r(no btag weight Vs b tag weight)

Distribution without considering r(no btag weight Vs b tag weight)

204

1.02

144

36.3 fb [13TeV

Exts
 S
 SingleTup
 VV
 Rubin

36.3 fb 113TeV

a KX singlef sp VV R.beis

0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.3 0.4 0.5 0.6 0.7 0.8 0.9 source root of the multiplicity of 4 longest into a score

nource root of the multiplicity of 4 learnest lefts b score

CMS Preticipat

0.1 0.2

5110A

180

150

0.8

36.3 fb⁻¹13TeV

A field A f

R dependence on jet multiplicity

- $r = \sum w_{before} / \sum w_{after}$
- Measured in region: >=6 jets; >=1 tau; no b jet number requirement

huahl@ihep.ac.cr

Btag weighting with Vs without R correction(CRO)

Btag weighting with Vs without R correction(CR0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nource root of the multiplicity of 4 learnest lefts b score

0.3 0.4 0.5 0.6 0.7 0.8

square root of the multiplicity of 4 lorgest into b score

36.3 fb [13TeV

East
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A</li

36.3 fb 113TeV

Data
 S.X
 Schopbell rap
 VV
 Rubotic

CMS Preticipat

5110A

180

160 140

100

200

CMS Nelizioar

36.3 fb⁻¹13TeV

36.3 fb [13TeV

204 1.02

How to consider up and down uncertainty?

Questions

- How is our btag sf different than object SF?
 - object efficiency SF
 - electron efficiency means the probability of true electron? passing selection criteria
 - the efficiency means passing or not efficiency. Correct for event yield, after the electron selection
 - Does the event weight impact the shape of other variables?
 - efficiency means the probality of true lepton passing selection, how about non-true object passing selection criteria?
 - For electron and muon, the efficiency is high and close to 1, the 1-efficiency is close to 0 so we don't need to consider the arrangement of true leptons not passing but non-true passing

Event yield in CRs

regions	tttt	uncert	tt	uncert	qcd	uncert	ttX	uncert	vv	uncert	singleTop	uncert	WJets	uncert	total MC
1tau1ISR	1.857	0.024	218.046	3.113	0.244	0.244	11.864	1.176	0.000	0.000	5.416	1.143	1.938	0.922	239.365
1tau1ICR0	0.156	0.007	110.365	2.231	16.199	11.968	6.471	0.903	0.036	0.033	1.597	0.620	3.590	0.855	138.414
1tau1ICR2	0.269	0.008	116.342	2.243	0.000	0.000	5.591	1.008	0.000	0.000	3.101	0.878	0.533	0.171	125.837
1tau1ICR3	0.039	0.003	67.639	1.728	7.536	7.536	3.133	0.484	0.010	0.010	3.930	1.061	2.616	0.901	84.904

Table 1: 2016postVFP

• MC correction: pileup* prefiring

h	uah	lai	he	no	IC.	cn	
				0.0			