Highlights of recent $\left|\mathrm{V}_{\mathrm{xb}}\right|$ measurements from Belle (II)

Content

Measurements covered in this talk:

Exclusive $\left|\mathbf{V}_{\mathrm{cb}}\right|$:

- Had. tagged $B^{0} \rightarrow D^{*} \ell \nu$
- Had. tagged $B \rightarrow D^{*} \ell \nu$ and shapes of key kinematic variables

Exclusive $\left|\mathrm{V}_{\mathrm{ub}}\right|$:

- Untagged $B^{0} \rightarrow \pi^{-} \ell \nu$

Inclusive |Vub|:

- Partial \& differential branching fractions of $B \rightarrow X_{u} \ell \nu$

Combined measurements:

- Excl. |Vub| / incl. |Vub|
- Incl. |Vub| / incl. |Vcb|

Branching Fraction of $B^{0} \rightarrow D^{*} \ell \nu$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Preliminary

- Untagged strategy (higher efficiency than tagged)
- Select energetic signal lepton $\mathrm{p}^{\mathrm{CM}}>1.2 \mathrm{GeV}$
- $M\left(D^{0}\right)=m_{P D G} \pm 15 \mathrm{MeV}, M\left(D^{\star}\right)-M\left(D^{0}\right)=[0.141,0.156] \mathrm{GeV}$, $\cos \theta_{\mathrm{BY}}=[-4,2]$
- 2D binned linkelihood fit on $\left(\cos \theta_{\mathrm{m}}, \Delta \mathrm{M}\right)$ for each bin of kinematic variables: recoil parameter w, and angles $\cos \theta_{\ell}, \cos \theta_{\mathrm{v}}, \chi$
- Systematic shape variations incorporated as bin-wise Nuisance para. for each fit template

$$
\cos \theta_{B Y}=\frac{2 E_{B}^{\mathrm{CM}} E_{Y}^{\mathrm{CM}}-m_{B}^{2}-m_{Y}^{2}}{2\left|\vec{p}_{B}^{\mathrm{CM}}\right|\left|\vec{p}_{Y}^{\mathrm{CM}}\right|}
$$

integral projection

Branching Fraction of $B^{0} \rightarrow D^{*} \ell \nu$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Preliminary

- Unfold signal yields using singular-value-decomposition (SVD) method within pyRooUnfold, regularization para. optimised for low bias \& stable result
- Full post-unfolding stat. \& syst. covariance propagated into partial decay rate

Belle II Preliminary
$\mathcal{L} d t=189 \mathrm{fb}^{-1}$
Belle II Preliminary

Belle II Preliminary $\quad \int \mathcal{L} d t=189 \mathrm{fb}^{-1}$

 $\Gamma=\left(\sum_{i=1}^{10} \Delta \Gamma_{i}^{w}+\sum_{i=1}^{8} \Delta \Gamma_{i}^{\cos \theta_{\ell}}+\sum_{i=1}^{10} \Delta \Gamma_{i}^{\cos \theta_{V}}+\sum_{i=1}^{10} \Delta \Gamma_{i}^{\chi}\right) / 4$

Branching Fraction of $B^{0} \rightarrow D^{*} \ell \nu$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Preliminary

- Unfold signal yields using singular-value-decomposition (SVD) method within pyRooUnfold, regularization para. optimised for low bias \& stable result
- Full post-unfolding stat. \& syst. covariance propagated into partial decay rate

Belle II Preliminary
$\mathcal{L} d t=189 \mathrm{fb}^{-1}$

$$
\Gamma=\left(\sum_{i=1}^{10} \Delta \Gamma_{i}^{w}+\sum_{i=1}^{8} \Delta \Gamma_{i}^{\cos \theta_{\ell}}+\sum_{i=1}^{10} \Delta \Gamma_{i}^{\cos \theta_{V}}+\sum_{i=1}^{10} \Delta \Gamma_{i}^{\chi}\right) / 4
$$

Branching fraction extracted by the total rate summing over partial decay rates and averaging all kin. variables
e mode: $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} e^{-} \bar{\nu}_{e}\right)=(4.94 \pm 0.03 \pm 0.22) \%$
mu mode: $\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \mu^{-} \bar{\nu}_{\mu}\right)=(4.94 \pm 0.03 \pm 0.24) \%$
average:

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)=(4.94 \pm 0.02 \pm 0.22) \%
$$

> reco. eff \& acc.
> input of PDG2022

Branching Fraction of $B^{0} \rightarrow D^{*} \ell \nu$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

- Include all measured $\mathrm{w}, \cos \theta_{\ell}, \cos \theta_{\mathrm{v}}, \chi$ to extract form factor \& $\left|\mathrm{V}_{\mathrm{cb}}\right|$

Preliminary

- Fit with form factor expansion based on CLN \& BGL (truncation tested)
- Reredundant degrees of freedom removed by using normalized partial rates on each variable together with the averaged total rate (ndf = 34+1)

$$
\chi^{2}=\sum_{i, j}^{34}\left(\frac{\Delta \Gamma_{i}^{\mathrm{obs}}}{\Gamma^{\mathrm{obs}}}-\frac{\Delta \Gamma_{i}^{\mathrm{pre}}}{\Gamma^{\mathrm{pre}}}\right) C_{i j}^{-1}\left(\frac{\Delta \Gamma_{j}^{\mathrm{obs}}}{\Gamma^{\mathrm{obs}}}-\frac{\Delta \Gamma_{j}^{\mathrm{pre}}}{\Gamma^{\mathrm{pre}}}\right)
$$

Belle II Preliminary $\int \mathcal{L} d t=189 \mathrm{fb}^{-1}$

Belle II Preliminary $\quad \int \mathcal{L} d t=189 \mathrm{fb}^{-1}$ $+\frac{\left(\Gamma^{\mathrm{obs}}-\Gamma^{\mathrm{pre}}\right)^{2}}{\sigma_{\Gamma}^{2}}$

Belle II Preliminary

$$
\left|V_{c b}\right| \eta_{\mathrm{EW}} \mathcal{F}(1)=\frac{1}{\sqrt{m_{B} m_{D^{*}}}}\left(\frac{\left|\tilde{b}_{0}\right|}{P_{f}(0) \phi_{f}(0)}\right)
$$

$$
\left|V_{c b}\right|_{\mathrm{BGL}}=(40.9 \pm 0.3 \pm 1.0 \pm 0.6) \times 10^{-3}
$$

$$
\left|V_{c b}\right|_{\mathrm{CLN}}=(40.4 \pm 0.3 \pm \underset{\uparrow}{1.0} \pm \underset{\uparrow}{0.6}) \times 10^{-3}
$$

Slow pion eff. plays Input from LQCD at

$$
\text { leading role in syst. zero-recoil } F(1)
$$

Branching Fraction of $B^{0} \rightarrow D^{*} \ell \nu$ and $\left|\mathbf{V}_{\mathrm{cb}}\right|$

- Include all measured $w, \cos \theta_{\ell}, \cos \theta_{v}, \chi$ to extract form factor $\&\left|V_{c b}\right|$

Preliminary

- Fit with form factor expansion based on CLN \& BGL (truncation tested)
- Reredundant degrees of freedom removed by using normalized partial rates on each variable together with the averaged total rate (ndf = 34+1)

$$
\chi^{2}=\sum_{i, j}^{34}\left(\frac{\Delta \Gamma_{i}^{\mathrm{obs}}}{\Gamma^{\mathrm{obs}}}-\frac{\Delta \Gamma_{i}^{\mathrm{pre}}}{\Gamma^{\mathrm{pre}}}\right) C_{i j}^{-1}\left(\frac{\Delta \Gamma_{j}^{\mathrm{obs}}}{\Gamma^{\mathrm{obs}}}-\frac{\Delta \Gamma_{j}^{\mathrm{pre}}}{\Gamma^{\mathrm{pre}}}\right)
$$

- Inclusion of LQCD constraint [arxiv:2105.14019] at beyond zero-recoil (w = [1.03, 1.10, 1.17]) in two scenarios

BGL	Constraints on $h_{A_{1}}(w)$	$\begin{gathered} \text { Constraints on } \\ h_{A_{A_{1}}}(w), R_{1}(w), R_{2}(w) \end{gathered}$
$a_{0} \times 10^{3}$	21.7 ± 1.4	25.7 ± 0.8
$b_{0} \times 10^{3}$	13.20 ± 0.24	13.58 ± 0.23
$b_{1} \times 10^{3}$	$-7 \quad \pm 7$	2 ± 6
$c_{1} \times 10^{3}$	-1.1 ± 0.8	-0.5 ± 0.8
$\left\|V_{c b}\right\| \times 10^{3}$	40.5 ± 1.2	38.6 ± 1.1
χ^{2} / ndf	40/33	74/39
p-value	0.18	0.001
$\left\|\mathrm{V}_{\text {cb }}\right\|$ shifts when include LQCD		
full con	traints	

Consistent with recent Belle (2023) measurement [arXiv:2301.07529] \Rightarrow Both found large disagreements wrt LQCD results on R_{2}

Branching Fraction of $B^{0} \rightarrow D^{*} \ell \nu$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

- Lepton-flavor-universality tested with separate results on e- \& mu-mode
- All in good agreement with SM expectations

Test on branching fraction ratio: $\quad R_{e / \mu}=1.001 \pm 0.009 \pm 0.021$

Test on forward-backward asymmetry:

$$
\begin{gathered}
\mathcal{A}_{\mathrm{FB}}=\frac{\int_{0}^{1} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}-\int_{-1}^{0} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}}{\int_{0}^{1} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}+\int_{-1}^{0} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}} \\
\Delta \mathcal{A}_{\mathrm{FB}}=\mathcal{A}_{\mathrm{FB}}^{\mu}-\mathcal{A}_{\mathrm{FB}}^{e} \\
\mathcal{A}_{\mathrm{FB}}^{e}=0.219 \pm 0.011 \pm 0.020 \\
\mathcal{A}_{\mathrm{FB}}^{\mu}=0.215 \pm 0.011 \pm 0.022, \\
\Delta \mathcal{A}_{\mathrm{FB}}=(-4 \pm 16 \pm 18) \times 10^{-3}
\end{gathered}
$$

Test on D* longitudinal polarization fraction:

$$
\begin{aligned}
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{V}}= & \frac{3}{2}\left(F_{L} \cos ^{2} \theta_{V}+\frac{1-F_{L}}{2} \sin ^{2} \theta_{V}\right) \\
& \Delta F_{L}=F_{L}^{\mu}-F_{L}^{e} \\
F_{L}^{e}= & 0.521 \pm 0.005 \pm 0.007 \\
F_{L}^{\mu}= & 0.534 \pm 0.005 \pm 0.006 \\
\Delta F_{L}= & 0.013 \pm 0.007 \pm 0.007
\end{aligned}
$$

Branching Fraction of $B^{0} \rightarrow D^{*} \ell \nu$ and $\left|\mathrm{V}_{\mathrm{cb}}\right|$

- Lepton-flavor-universality tested with separate results on e- \& mu-mode
- All in good agreement with SM expectations

Test on branching fraction ratio: $\quad R_{e / \mu}=1.001 \pm 0.009 \pm 0.021$

Test on forward-backward asymmetry:

$$
\begin{gathered}
\mathcal{A}_{\mathrm{FB}}=\frac{\int_{0}^{1} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}-\int_{-1}^{0} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}}{\int_{0}^{1} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}+\int_{-1}^{0} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos \theta_{\ell}} \\
\Delta \mathcal{A}_{\mathrm{FB}}=\mathcal{A}_{\mathrm{FB}}^{\mu}-\mathcal{A}_{\mathrm{FB}}^{e} \\
\mathcal{A}_{\mathrm{FB}}^{e}=0.219 \pm 0.011 \pm 0.020 \\
\mathcal{A}_{\mathrm{FB}}^{\mu}=0.215 \pm 0.011 \pm 0.022 \\
\Delta \mathcal{A}_{\mathrm{FB}}=(-4 \pm 16 \pm 18) \times 10^{-3}
\end{gathered}
$$

Test on D^{*} longitudinal polarization fraction:

$$
\begin{gathered}
\frac{1}{\Gamma} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} \cos \theta_{V}}=\frac{3}{2}\left(F_{L} \cos ^{2} \theta_{V}+\frac{1-F_{L}}{2} \sin ^{2} \theta_{V}\right) \\
\Delta F_{L}=F_{L}^{\mu}-F_{L}^{e}
\end{gathered}
$$

coming soon...

arXiv version of Untagged / Had. tagged

$$
B^{0} \rightarrow D^{*} \ell \nu
$$

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ \& Differential Shapes of $B \rightarrow D^{*} \ell_{\nu}$

- Full Belle data set of $711 \mathrm{fb}^{-1}$ for $B^{ \pm, 0}, \ell=e, \mu$
- Hadronic tagging using Belle II tool (Full Event Interpretation)
- Background subtracted via fitting $M_{\text {miss }}^{2}$ for bins of $w, \cos \theta_{\ell}, \cos \theta_{\mathrm{v}}, \chi$ in each decay mode independently

ends up to 160 fits
fit stability \& consistency were fully checked and compatible with expected uniform behavior

$\left|\mathrm{V}_{\mathrm{cb}}\right| \&$ Differential Shapes of $B \rightarrow D * \ell \nu$

- Signal shapes corrected for resolution, reco. efficiency and acceptance effects
- Combined all kinematic shapes to extract $\left|\mathbf{V}_{\mathbf{c b}}\right|$ in BGL/CLN with external constraints on branching fractions (HFLAV and LQCD results (FNALMILC)

$$
\begin{aligned}
\chi^{2}= & \left(\frac{\Delta \vec{\Gamma}^{\mathrm{m}}}{\Gamma^{\mathrm{m}}}-\frac{\Delta \vec{\Gamma}^{\mathrm{p}}(\vec{x})}{\Gamma^{\mathrm{p}}(\vec{x})}\right) C_{\exp }^{-1}\left(\frac{\Delta \vec{\Gamma}^{\mathrm{m}}}{\Gamma^{\mathrm{m}}}-\frac{\Delta \vec{\Gamma}^{\mathrm{p}}(\vec{x})}{\Gamma^{\mathrm{p}}(\vec{x})}\right)^{T} \\
& +\left(\Gamma^{\mathrm{ext}}-\Gamma^{\mathrm{p}}(\vec{x})\right)^{2} / \sigma\left(\Gamma^{\mathrm{ext}}\right)^{2} \\
& +\left(h_{X}-h_{X}^{\mathrm{LQCD}}\right) C_{\mathrm{LQCD}}^{-1}\left(h_{X}-h_{X}^{\mathrm{LQCD}}\right)
\end{aligned}
$$

Corrected Shapes

Fitted Shapes

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ \& Differential Shapes of $B \rightarrow D^{*} \ell_{\nu}$

- In $\left|V_{c b}\right|$ extraction, tested different BGL truncations, LQCD constraining scenario (at or beyond zero-recoil)

$\left|V_{\mathrm{cb}}\right| \&$ Differential Shapes of $B \rightarrow D^{*} \ell_{\nu}$

- In $\left|\mathrm{V}_{\mathrm{cb}}\right|$ extraction, tested different BGL truncations, LQCD constraining scenario (at or beyond zero-recoil)
- Forward-backward asymmetry \mathbf{A}_{FB} and \mathbb{D}^{*} longitudinal polarization fraction $\mathbb{F}_{\mathbb{L}}^{\mathbb{D}^{*}}$ and their differences between e, μ also derived. No significant LFUV found.

$$
A_{\mathrm{FB}}=\frac{\int_{0}^{1} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}-\int_{-1}^{0} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}}{\int_{0}^{1} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}+\int_{-1}^{0} \mathrm{~d} \cos _{\ell} \mathrm{d} \Gamma / \mathrm{d} \cos _{\ell}}
$$

Exclusive

Exclusive
$\left|\mathbf{V u b}_{\text {ub }}\right|$

Inclusive

Inclusive

$\left|\mathrm{V}_{\mathrm{ub}}\right|$ in $B^{0} \rightarrow \pi^{-} \ell^{+} \nu$ with Belle II data

arXiv: 2210.04224

- Data set of $189.3 \mathrm{fb}^{-1}$ with untagged analysis strategy
- Extract signal in beam-constrained mass $M_{b c}$ and energy difference ΔE for each bin of q^{2}
- $\quad\left|\mathbf{V}_{\mathbf{u b}}\right|$ fitted with BCL expansion including LQCD constraints (FNAL/MILC)

ΔE in GeV
$\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}=E_{B}^{*}-\frac{\sqrt{s}}{2}$

$M_{b c}$ in GeV
$M_{b c}=\sqrt{E_{\text {beam }}^{* 2}-\left|\vec{p}_{B}^{*}\right|^{2}}=\sqrt{\left(\frac{\sqrt{s}}{2}\right)^{2}-\left|\vec{p}_{B}^{*}\right|^{2}}$

Belle II Preliminary

$$
\mathscr{B}=\left(1.426 \pm 0.12_{\text {stat }} \pm 0.056_{\text {syst }} \pm 0.125_{\text {theo }}\right) \times 10^{-4}
$$

$$
\left|V_{u b}\right|=\left(3.55 \pm 0.12_{\text {stat }} \pm 0.13_{\text {syst }} \pm 0.17_{\text {theo }}\right) \times 10^{-3}
$$

$\left|V_{\mathrm{ub}}\right|$ in $B^{0} \rightarrow \pi^{-} \ell^{+} \nu$ with Belle II data

- Data set of $189.3 \mathrm{fb}-1$ with untagged analysis strategy
- Extract signal in beam-constrained mass $M_{b c}$ and energy difference ΔE for eac
- $\quad\left|\mathbf{V}_{\mathbf{u b}}\right|$ fitted with BCL expansion including LQCD constraints (FNAL/MILC)

ΔE in GeV

$$
\Delta E=E_{B}^{*}-E_{\text {beam }}^{*}=E_{B}^{*}-\frac{\sqrt{s}}{2}
$$

$M_{b c}$ in GeV
$M_{b c}=\sqrt{E_{\mathrm{beam}}^{* 2}-\left|\vec{p}_{B}^{*}\right|^{2}}=\sqrt{\left(\frac{\sqrt{s}}{2}\right)^{2}-\left|\vec{p}_{B}^{*}\right|^{2}}$

coming soon...

Untagged / Had. tagged $B \rightarrow(\pi, \rho) \ell \nu$

$$
\mathscr{B}=\left(1.426 \pm 0.12_{\text {stat }} \pm 0.056_{\text {syst }} \pm 0.125_{\text {theo }}\right) \times 10^{-4}
$$

Partial Branching Fractions of Inclusive $B \rightarrow X_{u} \ell \nu$

- Full Belle dataset with Hadronic tagging
- Use machine learning (BDT) to suppress backgrounds with 11 training features, e.g. $\mathrm{MM}^{2}, \# \mathrm{~K}^{ \pm}, \# \mathrm{~K}_{\mathrm{s}}$, etc.
- Extract signal using binned likelihood in 3 phase space (PS) regions:

$$
\left|V_{u b}\right|=\sqrt{\frac{\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)}{\tau_{B} \cdot \Delta \Gamma\left(B \rightarrow X_{u} \ell \nu\right)}}
$$

Arithmetic avr. IV ubl based on various theo. decay rate:
$\left(4.10 \pm 0.09_{\text {stat }} \pm 0.22_{\text {sys }} \pm 0.15_{\text {theo }}\right) \times 10^{-3}$
compatible with excl. and CKM expectation within 1.3σ and 1.6σ, respectively
$q^{2}\left[\mathrm{GeV}^{2}\right.$

- $\mathrm{E}_{e}{ }^{\mathrm{B}}>1 \mathrm{GeV}$ (covers 86% of available signal PS)
$0 \quad E_{e}{ }^{B}>1 \mathrm{GeV}_{,}, \mathrm{M}_{\mathrm{X}}<1.7 \mathrm{GeV}(56 \%) \quad \rightarrow$ Fit either $\mathrm{E}_{\ell}{ }^{\mathrm{B}}, \mathrm{M}_{\mathrm{x}}, \mathbf{q}^{2}$ or $2 \mathrm{D}\left(\mathbf{M}_{\mathrm{x}}: \mathbf{q}^{2}\right)$
○ $\quad \mathrm{E}_{\mathrm{e}}{ }^{\mathrm{B}}>1 \mathrm{GeV}, \mathrm{M}_{\mathrm{X}}<1.7 \mathrm{GeV}, \mathrm{q}^{2}>8 \mathrm{GeV}^{2}(31 \%)$
- Partial BF and inclusive IVubl derived in each PS

$$
\Delta \mathscr{B}\left(E_{\ell}^{B}>1 \mathrm{GeV}\right)=(1.59 \pm 0.07 \pm 0.16) \times 10^{-3}
$$

First Measurement of Differential Spectra of $B \rightarrow X_{u} \ell_{\nu}$

- Inherit same analysis strategy in the partial BF measurement [PRD 104 , 012008 (2021)]
- Additional selections on $\left|E_{\text {miss }}-P_{\text {miss }}\right|<0.1 \mathrm{GeV} \& M x<2.4 \mathrm{GeV}$ to improve resolution and reduce background shape uncertainty
- Background subtraction done via Mx fit, further corrected for efficiency \& acceptance effects (phase space: $E_{f}^{B}>1 \mathrm{GeV}$)
- Full experimental covariance, spectra moments, migration matrices etc. available on HepData

[^0]
What can we gain for incl. $\left|\mathrm{Vub}_{\mathrm{u}}\right|$?

Direct \& more model-independent extraction

Normalization \Rightarrow Kin. shapes + Normalization

- Allows direct extraction of coefficients for nonperturbative shape functions in a global fit and $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- Uncertainty can be further shrinked by including other inclusive B decays, e.g $B \rightarrow X_{s} \gamma, B \rightarrow X_{d} \ell v$ as the shape function in LO is universal
- Methods proposed by NNVub, SIMBA

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Inherit same analysis strategy in the partial BF measurement [PRD 104, 012008 (2021)]
- Additional selections on thrust of X in c.m.s to increase significance of $B \rightarrow \pi \ell \nu$
- Extract signal in $\mathrm{q}^{2}: \mathbf{N}_{\pi^{ \pm}}$for $B \rightarrow \pi \ell \nu$ and $B \rightarrow X_{u} \ell \nu$ simultaneously

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Inherit same analysis strategy in the partial BF measurement [PRD 104, 012008 (2021)]
- Additional selections on thrust of X in c.m.s to increase significance of $B \rightarrow \pi \ell \nu$
- Extract signal in $\mathrm{q}^{2}: \mathbf{N}_{\pi^{ \pm}}$for $B \rightarrow \pi \ell \nu$ and $B \rightarrow X_{u} \ell \nu$ simultaneously

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Inherit same analysis strategy in the partial BF measurement [PRD 104, 012008 (2021)]
- Additional selections on thrust of X in c.m.s to increase significance of $B \rightarrow \pi \ell \nu$
- Extract signal in $\mathrm{q}^{2}: \mathbf{N}_{\pi^{ \pm}}$for $B \rightarrow \pi \ell \nu$ and $B \rightarrow X_{u} \ell \nu$ simultaneously

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Inherit same analysis strategy in the partial BF measurement [PRD 104, 012008 (2021)]
- Additional selections on thrust of X in c.m.s to increase significance of $B \rightarrow \pi \ell \nu$
- Extract signal in $\mathrm{q}^{2}: \mathbf{N}_{\pi^{ \pm}}$for $B \rightarrow \pi \ell \nu$ and $B \rightarrow X_{u} \ell \nu$ simultaneously

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Fitter corporates experimental observation of templates' normalisations and $B \rightarrow \pi \ell \nu$ form factor
arXiv: 2303.17309
- Systematic uncertainties included via Nuisance parameters for both of additives and multiplicative impacts
- Dominant syst. are non-resonant $B \rightarrow X_{u} \ell \nu$ modelling, fragmentation and reconstruction efficiency (stat. limits $B \rightarrow \pi \ell \nu$)

$$
-2 \log \mathscr{L}=-2 \log \prod_{i} \text { Poisson }\left(\eta_{\text {obs }}, \eta_{\text {pred }} \cdot(1+\epsilon \cdot \theta)\right)+\theta \rho_{\theta}^{-1} \theta^{T}+\chi_{\mathrm{FF}}^{2}
$$

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Fitter corporates experimental observation of templates' normalisations and $B \rightarrow \pi \ell \nu$ form factor
arXiv: 2303.17309
- Systematic uncertainties included via Nuisance parameters for both of additives and multiplicative impacts
- Dominant syst. are non-resonant $B \rightarrow X_{u} \ell \nu$ modelling, fragmentation and reconstruction efficiency (stat. limits $B \rightarrow \pi \ell \nu$)

$$
-2 \log \mathscr{L}=-2 \log \prod_{i} \operatorname{Poisson}\left(\eta_{\mathrm{obs}}, \eta_{\mathrm{pred}} \cdot(1+\epsilon \cdot \theta)\right)+\theta \rho_{\theta}^{-1} \theta^{T}+\chi_{\mathrm{FF}}^{2} \quad \begin{aligned}
& \text { Constraints on BCL parameters, input taken from } \\
& \text { LQCD / LQCD+exp fits in } \underbrace{}_{\text {FLAG Review } 2021}
\end{aligned}
$$

Normalizations can be linked with isospin relation, or floating separately (nominal: linked)

Differential decay rates
Acceptance \& reco. efficiency
Forward-folding q^{2}

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Fitter corporates experimental observation of templates' normalisations and $B \rightarrow \pi \ell \nu$ form factor
arXiv: 2303.17309
- Systematic uncertainties included via Nuisance parameters for both of additives and multiplicative impacts
- Dominant syst. are non-resonant $B \rightarrow X_{u} \ell \nu$ modelling, fragmentation and reconstruction efficiency (stat. limits $B \rightarrow \pi \ell \nu$)

$$
-2 \log \mathscr{L}=-2 \log \prod_{i} \text { Poisson }\left(\eta_{\mathrm{obs}}, \eta_{\mathrm{pred}} \cdot(1+\epsilon \cdot \theta)\right)+\theta \rho_{\theta}^{-1} \theta^{T}+\chi_{\mathrm{FF}}^{2} \quad \begin{aligned}
& \text { Constraints on BCL parameters, input taken from } \\
& \text { LQCD / LQCD+exp fits in } \underbrace{}_{\text {FLAG Review } 2021}
\end{aligned}
$$

Normalizations can be linked with isospin relation, or floating separately (nominal: linked)

Differential decay rates
Acceptance \& reco. efficiency
Forward-folding q^{2}
Forward-folding

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Fitter corporates experimental observation of templates' normalisations and $B \rightarrow \pi \ell \nu$ form factor
arXiv: 2303.17309
- Systematic uncertainties included via Nuisance parameters for both of additives and multiplicative impacts
- Dominant syst. are non-resonant $B \rightarrow X_{u} \ell \nu$ modelling, fragmentation and reconstruction efficiency (stat. limits $B \rightarrow \pi \ell \nu$)

$$
-2 \log \mathscr{L}=-2 \log \prod_{i} \text { Poisson }\left(\eta_{\mathrm{obs}}, \eta_{\mathrm{pred}} \cdot(1+\epsilon \cdot \theta)\right)+\theta \rho_{\theta}^{-1} \theta^{T}+\chi_{\mathrm{FF}}^{2} \quad \begin{aligned}
& \text { Constraints on BCL parameters , input taken from } \\
& \text { LQCD / LQCD }+\exp \text { fits in FLAG Review } 2021
\end{aligned}
$$

$$
\left|V_{u b}^{\text {incl. }}\right|=\sqrt{\frac{\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)}{\tau_{B} \cdot \Delta \Gamma_{\mathrm{GGOU}}}} \quad\left|V_{u b}^{\mathrm{excl} .}\right|=\sqrt{\frac{\mathscr{B}(B \rightarrow \pi \ell \nu)}{\tau_{B} \cdot \Gamma_{\mathrm{FF}}}}
$$

Fit results provide all \mathscr{B} and $B \rightarrow \pi \ell \nu$ FF (decay rate)
 and inclusive |Vub|

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Various fit scenarios applied:
arXiv: 2303.17309
- Combined or separate $B \rightarrow \pi^{+} \ell \nu, B \rightarrow \pi^{0} \ell \nu$

Preliminary

- Input BCL constraint: LQCD + exp. or only LQCD

$\left|\mathbf{V u b}_{\mathrm{ub}}\right|$ in combined scenario with LQCD+exp const.:
Excl. $\quad\left(3.78 \pm 0.23_{\text {stat }} \pm 0.16_{\text {syst }} \pm 0.14_{\text {theo }}\right) \times 10^{-3}$ Weighted average of excl. \& incl.

Incl. $\quad\left(3.90 \pm 0.20_{\text {stat }} \pm 0.32_{\text {syst }} \pm 0.09_{\text {theo }}\right) \times 10^{-3}$
Ratio $\quad 0.97 \pm 0.12$
CKM global fit (w/o |Vub|): $(3.64 \pm 0.07) \times 10^{-3}$,
compatible within 0.8σ

Ratio of Inclusive $\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)$ and $\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$

- Full Belle data set with Hadronic tagging using Belle II tool (Full Event Interpretation)

Preliminary

- Modified $B \rightarrow X_{c} \ell \nu$ modeling using sideband data
- $B \rightarrow X_{u} \ell \nu$ yields extracted in $q^{2}: p_{\ell}^{B} ; \quad B \rightarrow X_{c} \ell \nu$ yields obtained by subtracting other contributions in total $B \rightarrow X \ell \nu$
- Measured partial phase space region of $p_{\ell}^{B}>1 \mathrm{GeV}, \epsilon_{\Delta}^{u}=86 \%, \epsilon_{\Delta}^{c}=79 \%$

$$
\frac{\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)}{\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)}=1.95\left(1 \pm 8.4 \%_{\text {stat }} \pm 7.2 \%_{\text {syst }}\right) \times 10^{-2}
$$

Based on this, one could try the following two quick and naive conversions

$$
\left|V_{u b}\right|=\sqrt{\frac{1}{\tau_{B} \Delta \Gamma\left(B \rightarrow X_{u} \ell \nu\right)} \frac{\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)}{\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)} \frac{\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)}{\text { WA: }(8.55 \pm 0.13) \%}}
$$

Consistent with recent Belle result prD 104,012008 (2021)

Ratio of Inclusive $\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)$ and $\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)$

- Full Belle data set with Hadronic tagging using Belle II tool (Full Event Interpretation)

Preliminary

- Modified $B \rightarrow X_{c} \ell \nu$ modeling using sideband data
- $B \rightarrow X_{u} \ell \nu$ yields extracted in $q^{2}: p_{\ell}^{B} ; \quad B \rightarrow X_{c} \ell \nu$ yields obtained by subtracting other contributions in total $B \rightarrow X \ell \nu$
- Measured partial phase space region of $p_{\ell}^{B}>1 \mathrm{GeV}, \epsilon_{\Delta}^{u}=86 \%, \epsilon_{\Delta}^{c}=79 \%$

$$
\frac{\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)}{\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)}=1.95\left(1 \pm 8.4 \%_{\text {stat }} \pm 7.2 \%_{\text {syst }}\right) \times 10^{-2}
$$

Based on this, one could try the following two quick and naive conversions

$$
\left|V_{u b}\right|=\sqrt{\frac{1}{\tau_{B} \Delta \Gamma\left(B \rightarrow X_{u} \ell \nu\right)} \frac{\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)}{\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)} \frac{\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)}{\text { WA: (8.55 } \pm 0.13) \%}}
$$

$$
\frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}=\sqrt{\frac{\Delta \mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)}{\Delta \mathscr{B}\left(B \rightarrow X_{c} \ell \nu\right)} \frac{\Delta \Gamma\left(B \rightarrow X_{c} \ell \nu\right)}{\Delta \Gamma\left(B \rightarrow X_{u} \ell \nu\right)}}
$$

Summary

- Several new results on $\left|\mathbf{V}_{\mathbf{x b}}\right|$ measured recently at Belle and Belle II
- These new results will be very helpful to examine the long-standing $\left|\mathbf{V}_{\mathrm{xb}}\right|$ puzzle
- Continuous efforts from experiment and theory are still needed
- Beyond these important results, the accumulated knowledge on MC modeling, analysis techniques, etc. will be beneficial for future measurements by e.g. Belle II or LHCb

Summary

- Several new results on $\left|\mathbf{V}_{\mathrm{xb}}\right|$ measured recently at Belle and Belle II
- These new results will be very helpful to examine the long-standing $\left|\mathbf{V}_{\mathrm{xb}}\right|$ puzzle
- Continuous efforts from experiment and theory are still needed
- Beyond these important results, the accumulated knowledge on MC modeling, analysis techniques, etc. will be beneficial for future measurements by e.g. Belle II or LHCb

Summary

- Several new results on $\left|\mathbf{V}_{\mathrm{xb}}\right|$ measured recently at Belle and Belle II
- These new results will be very helpful to examine the long-standing $\left|\mathbf{V}_{\mathrm{xb}}\right|$ puzzle
- Continuous efforts from experiment and theory are still needed
- Beyond these important results, the accumulated knowledge on MC modeling, analysis techniques, etc. will be beneficial for future measurements by e.g. Belle II or LHCb

THANK YOU

Backup: First Simultaneous Determination of Incl. \& Excl. |Vub|

Preliminary

- Prefit distributions

Various Inclusive Decay Rates

FIG. 4. The $\left|V_{u b}\right|$ values obtained using the different theoretical inclusive decay rates are compared: GGOU versus BLNP (up) and GGOU versus DGE (low). The left column shows the fit with only LQCD constraints and the results from combined LQCD-experimental constraints are in the right column.

First Simultaneous Determination of Incl. \& Excl. |Vub|

- Various fit scenarios applied:
- Linked or separate $B \rightarrow \pi^{+} \ell \nu, B \rightarrow \pi^{0} \ell \nu$
- Input BCL constraint: LQCD + exp. or only LQCD

$$
\begin{array}{lll}
\left|V_{u b}^{\text {excl. }}\right|=\left(3.78 \pm 0.23_{\text {stat }} \pm 0.16_{\text {syst }} \pm 0.14_{\text {theo }}\right) \times 10^{-3} & (\text { LQCD }+ \text { exp. }) & \\
\left|V_{u b}^{\text {incl. }}\right|=\left(3.90 \pm 0.20_{\text {stat }} \pm 0.32_{\text {syst }} \pm 0.09_{\text {theo }}\right) \times 10^{-3} & (\text { LQCD }+ \text { exp. }) & \text { Ratio }=0.97 \pm 0.12 \\
\left|V_{u b}^{\text {excl. }}\right|=\left(4.12 \pm 0.30_{\text {stat }} \pm 0.18_{\text {syst }} \pm 0.16_{\text {theo }}\right) \times 10^{-3} & (\text { LQCD }) & \text { Correlation: } 0.10 \\
\left|V_{u b}^{\text {incl. }}\right|=\left(3.90 \pm 0.20_{\text {stat }} \pm 0.32_{\text {syst }} \pm 0.09_{\text {theo }}\right) \times 10^{-3} & (\text { LQCD }) & \text { Ratio }=1.06 \pm 0.14
\end{array}
$$

Weighted average of excl. \& incl. :

$$
\begin{aligned}
\left|V_{u b}\right| & =(3.85 \pm 0.26) \times 10^{-3} \quad(\text { LQCD }+ \text { exp. }) \\
\left|V_{u b}\right| & =(4.01 \pm 0.27) \times 10^{-3} \quad(\text { LQCD })
\end{aligned}
$$

Hybrid MC is a combination of resonances (exclusive decays) and non-resonant contribution in the inclusive $B \rightarrow X_{u} \ell \nu$ decays

- EvtGen simulation:
(1) exclusive modes $B \rightarrow\left(\pi, \rho, \omega, \eta^{()}\right) \ell \nu$ with latest WA form factors \& branching fractions
(2) fully inclusive $B \rightarrow X_{u} \ell \nu$ (only non-resonant shapes, e.g. BLNP, GGOU)
- Calculate hybrid weights to mix resonance \& non-res. in 3D binning of $\left(q^{2}, E_{\ell}^{B}, M_{X}\right)$ to recover total $\mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)$ in each bin

$$
H_{i}=R_{i}+\omega_{i} N_{i}
$$

- Systematic uncertainties include the impact from exclusive FFs \& BRs, total $\mathscr{B}\left(B \rightarrow X_{u} \ell \nu\right)$, inclusive models

[^0]: All MC shapes are normalised to 1.59×10^{-3} [Belle, PRD 104 , 012008 (2021)]

