Power Corrections to Two－body Hadronic B Decays in QCD Factorization

李新强

华中师范大学

Work in progress with Guido Bell，Martin Beneke，Tobias Huber

第五届重味物理与量子色动力学研讨会，2023／04／21，武汉

Outline

\square Introduction
－QCD factorization：brief review and NNLO status
\square Data vs SM predictions：some puzzles \＆possible resolutions
\square Summary

Why hadronic B decays

\square direct access to the CKM parameters， especially to the three angles of UT．

\square deep insight into the hadron structures： especially exotic hadronic states．
\square deep our understanding of origin \＆mechanism of CPV．
\square further insight into strong－interaction effects involved in hadronic decays． factorization？strong phase origin？．．．

very difficult but necessary both theoretically and experimentally！

Effective Hamiltonian for hadronic B decays

\square For hadronic B decays：typical multi－scale problem；EFT formalism more suitable！

multi－scale problem with highly hierarchical scales！				
EW interaction scale	\gg	ext．mom＇a in B rest frame	\gg	QCD－bound state effects
$m_{W} \sim 80 \mathrm{GeV}$ $m_{\mathrm{Z}} \sim 91 \mathrm{GeV}$	$\gg \quad m_{b} \sim 5 \mathrm{GeV}$	\gg	$\Lambda_{\mathrm{QCD}} \sim 1 \mathrm{GeV}$	

\square Starting point $\mathcal{H}_{\text {eff }}=-\mathcal{L}_{\text {eff }}$ ：obtained after integrating out heavy d．o．f．（ $\boldsymbol{m}_{W, Z, t} \gg \boldsymbol{m}_{b}$ ）； ［Buras，Buchalla，Lautenbacher＇96；Chetyrkin，Misiak，Munz＇98］
\square Wilson coefficients C_{i} ：all physics above m_{b} ；

$$
\mathcal{L}_{\text {eff }}=-\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p b} V_{p D}^{*}\left(C_{1} \mathcal{O}_{1}+C_{2} \mathcal{O}_{2}+\sum_{i=\mathrm{pen}} C_{i} \mathcal{O}_{i, \mathrm{pen}}\right)
$$ perturbatively calculable \＆NNLL program now complete；

[^0]
Hadronic matrix elements

\square Decay amplitude for a given decay mode：

$$
\mathcal{A}\left(\bar{B} \rightarrow M_{1} M_{2}\right)=\sum_{i}\left[\lambda_{\mathrm{CKM}} \times C_{i} \times\left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|\bar{B}\rangle\right]
$$

$\square\left\langle\boldsymbol{M}_{\mathbf{1}} \boldsymbol{M}_{2}\right| \boldsymbol{\mathcal { O }}_{\boldsymbol{i}}|\overline{\boldsymbol{B}}\rangle$ ：depending on spin \＆parity of $M_{1,2}$ ；final－state rescattering introduces strong phases， and hence non－zero direct CPV； \qquad A quite difficult，multi－scale，strong－interaction problem！
\square Different methods proposed for dealing with $\left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|\bar{B}\rangle$ ：
－Dynamical approaches based on factorization theorems：PQCD，QCDF，SCET，．
［Keum，Li，Sanda，Lui，Yang＇00
Beneke，Buchalla，Neubert，Sachrajda，＇00
Bauer，Flemming，Pirjol，Stewart，＇01；Beneke，Chapovsky，Diehl，Feldmann，＇02］

Symmetries of QCD：Isospin，U－Spin，V－Spin，and flavour SU（3）symmetries，
［ Zeppenfeld，＇81
London，Gronau，Rosner，He，Chiang，Cheng et al．］
\square QCDF：systematic framework to all orders in α_{s} ，but limited by $\Lambda_{\mathrm{QCD}} / m_{b}$ corrections．［BBNs＇99－＇03］

Soft－collinear factorization from SCET

\square QCDF formula：based on diagrammatic factorization（method of regions， combining $1 / m_{b}$ expansion with light－cone expansion for hard processes）；
－For a two－body decay：simple kinematics，but complicated dynamics with several typical modes；
－low－virtuality modes：
\star HQET fields：$p-m_{b} v \sim \mathcal{O}(\Lambda)$
＊soft spectators in B meson：
$p_{s}^{\mu} \sim \Lambda \ll m_{b}, \quad p_{s}^{2} \sim \mathcal{O}\left(\Lambda^{2}\right)$
\star collinear quarks and gluons in pion：

$$
E_{c} \sim m_{b}, \quad p_{c}^{2} \sim \mathcal{O}\left(\Lambda^{2}\right)
$$

－high－virtuality modes：
＊hard modes： （heavy quark + collinear）${ }^{2} \sim \mathcal{O}\left(m_{b}^{2}\right)$
＊hard－collinear modes： （soft + collinear $)^{2} \sim \mathcal{O}\left(m_{b} \Lambda\right)$
－SCET：a very suitable framework for studying factorization and re－summation for processes involving energetic \＆light particles／jets；［Bauer et al．＇00；Beneke et al．＇02］
\square From SCET point of view：introduce different fields／modes for different momentum regions；
achieve soft－collinear factorization via QFT machinery \＆hence QCDF formula［Beneke，1501．07374］

Soft－collinear factorization from SCET

\square SCET diagrams reproduce precisely QCD diagrams in collinear \＆soft momentum regions；

\square For hard kernel $\boldsymbol{T}^{\boldsymbol{I}}$ ：one－step matching from $\mathrm{QCD} \rightarrow \operatorname{SCET}_{\mathrm{I}}(\mathrm{hc}, \mathrm{c}, \mathrm{s})$ ！

\square For hard kernel $\boldsymbol{T}^{I I}$ ：two－step matching from $\operatorname{QCD} \rightarrow \operatorname{SCET}_{\mathrm{I}}(\mathrm{hc}, \mathrm{c}, \mathrm{s}) \rightarrow \operatorname{SCET}_{\mathrm{II}}(\mathrm{c}, \mathrm{s})$ ！

－SCET formalism reproduces exact QCDF result，but more apparent \＆efficient；［Beneke，1501．07374］

Status of the NNLO calculation of $T^{I} \& T^{I I}$

\square For each \mathcal{O}_{i} insertion，both tree \＆penguin topologies，and contribute to both $T^{I} \& \boldsymbol{T}^{I I}$ ．

$\begin{gathered} \left\langle M_{1} M_{2} \mid{O_{i}}_{i} \bar{B}\right\rangle \\ \simeq F^{B \rightarrow M_{1}} T_{i}^{I} \otimes \phi_{M_{2}} \\ +T_{i}^{I I} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}} \end{gathered}$		T_{i}^{l} ，tree	T_{i}^{l} ，penguin	$T_{i}^{I I}$ ，tree	$T_{i}^{I I}$ ，penguin
	LO： $\mathcal{O}(1)$				
$\frac{+\boldsymbol{T}_{i}^{I I} \otimes \boldsymbol{\phi}_{\boldsymbol{B}} \otimes \boldsymbol{\phi}_{M_{1}} \otimes \boldsymbol{\phi}_{M_{2}}}{T^{I}} \text { vertex }$	$\begin{gathered} \mathrm{NLO}: \mathcal{O}\left(\alpha_{\mathrm{s}}\right) \\ \text { BBNS 99-03 } \end{gathered}$				
	NNLO： $\mathcal{O}\left(\alpha_{s}^{2}\right)$	Beneke，Huber，Li＇09 Huber，Krankl，Li＇16	Kim，Yoon＇11 Bell，Beneke，Huber，Li＇15，＇20		

Status of the NNLO calculation of $T^{I} \& T^{I I}$

\square Complete NNLO calculation for $T^{I} \& T^{I I}$ at leading power in QCDF/SCET now complete;
\square Soft-collinear factorization at 2-loop level established via explicit calculations;
\square For tree amplitudes, cancellation between $T^{I} \& T^{I I}$;

$$
\left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|\bar{B}\rangle \simeq F^{B \rightarrow M_{1}} T_{i}^{I} \otimes \phi_{M_{2}}+T_{i}^{I I} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}}
$$

colour-allowed tree α_{1}	colour-suppressed tree α_{2}

$$
\begin{aligned}
\alpha_{1}(\pi \pi)= & 1.009+[0.023+0.010 i]_{\mathrm{NLO}}+[0.026+0.028 i]_{\mathrm{NNLO}} \\
& -\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.014]_{\mathrm{LOsp}}+[0.034+0.027 i]_{\mathrm{NLOsp}}+[0.008]_{\mathrm{tw} 3}\right\} \\
= & 1.000_{-0.069}^{+0.029}+\left(0.011_{-0.050}^{+0.023}\right) i
\end{aligned}
$$

$$
\alpha_{2}(\pi \pi)=0.220-[0.179+0.077 i]_{\mathrm{NLO}}-[0.031+0.050 i]_{\mathrm{NNLO}}
$$

$$
+\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.114]_{\mathrm{LOsp}}+[0.049+0.051 i]_{\mathrm{NLOsp}}+[0.067]_{\mathrm{tw} 3}\right\}
$$

$$
=0.240_{-0.125}^{+0.217}+\left(-0.077_{-0.078}^{+0.115}\right) i
$$

\square For QCD penguin amplitude, cancellation between $Q_{1,2}^{p} \& Q_{3-6,8 g}$;

Scale dependence of $a_{1,2}$ and a_{4}^{p}

－Phen．no too much changes compared to NLO predictions；
\square Scale dependence of $a_{1,2}$ ： only form－factor term；
\square Scale dependence of a_{4}^{p} ： only form－factor term；
＞scale dependence negligible， especially for $\mu>4 \mathrm{GeV}$ ．

\square More precise than NLO results，and hence welcome oriented at precision measurements ＠LHCb \＆Belle II；

Factorization also valid？New sources of strong phases？
\square Main issue in QCDF／SCET：sub－leading power－corrections $\sim{ }^{\Uparrow} \Lambda_{Q C D} / m_{b} \simeq 0.2$ unknown！
$\bar{B}_{q}^{0} \rightarrow D_{q}^{(*)+} L^{-}$decays：class－I
\square At quark－level：mediated by $b \rightarrow c \bar{u} d(s)$
all four flavors different from each other， no penguin operators \＆no penguin topologies！

\square For class－I decays：QCDF formula much simpler；
［Beneke，Buchalla，Neubert，Sachrajda＇00；Bauer，Pirjol，Stewart＇01］

$$
\begin{aligned}
& \mathcal{Q}_{2}=\bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) u \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b \\
& \mathcal{Q}_{1}=\bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) T^{A} u \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) T^{A} b
\end{aligned}
$$

$$
\begin{aligned}
\left\langle D_{q}^{(*)+} L^{-}\right| \mathcal{Q}_{i}\left|\bar{B}_{q}^{0}\right\rangle & =\sum_{j} F_{j}^{\bar{B}_{q} \rightarrow D_{q}^{(*)}}\left(M_{L}^{2}\right) \\
& \times \int_{0}^{1} d u T_{i j}(u) \phi_{L}(u)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
\end{aligned}
$$

i）only color－allowed tree amplitude a_{1} ；
ii）spectator \＆annihilation power－suppressed；
iii）annihilation absent in $\bar{B}_{d(s)}^{0} \rightarrow D_{d(s)}^{+} K(\pi)^{-}$；
\Longrightarrow they are theoretically simpler and cleaner，and used to test factorization theorem
－Hard kernel T：both NLO and NNLO results known；
［Beneke，Buchalla，Neubert，Sachrajda＇00；Huber，Kränkl，Li＇16］

$$
T=T^{(0)}+\alpha_{s} T^{(1)}+\alpha_{s}^{2} T^{(2)}+O\left(\alpha_{s}^{3}\right)
$$

Non－leptonic／semi－leptonic ratios

－Non－leptonic／semi－leptonic ratios ：［Bjorken＇89；Neubert，Stech＇97；Beneke，Buchalla，Neubert，Sachrajda＇01］

$$
R_{(s) L}^{(*)} \equiv \frac{\Gamma\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{(*)+} L^{-}\right)}{d \Gamma\left(\bar{B}_{(s)}^{0} \rightarrow D_{(s)}^{(*)+} \ell^{-} \bar{\nu}_{\ell}\right) /\left.d q^{2}\right|_{q^{2}=m_{L}^{2}}}=6 \pi^{2}\left|V_{u q}\right|^{2} f_{L}^{2}\left|a_{1}\left(D_{(s)}^{(*)+} L^{-}\right)\right|^{2} X_{L}^{(*)}
$$

－Updated predictions vs data：［Huber，Kränkl，Li＇16；Cai，Deng，Li，Yang＇21］
free from uncertainties from $V_{c b} \& B_{d, s} \rightarrow D_{d, s}^{(*)}$ form factors．

$R_{(s) L}^{(*)}$	LO	NLO	NNLO	Exp．	Deviation (σ)
R_{π}	1.01	$1.07_{-0.04}^{+0.04}$	$1.10_{-0.03}^{+0.03}$	0.74 ± 0.06	5.4
R_{π}^{*}	1.00	$1.06{ }_{-0.04}^{+0.04}$	$1.10_{-0.03}^{+0.03}$	0.80 ± 0.06	4.5
R_{ρ}	2.77	$2.94{ }_{-0.19}^{+0.19}$	$3.02{ }_{-0.18}^{+0.17}$	2.23 ± 0.37	1.9
${ }^{*} R_{K}$	0.78	$0.833_{-0.03}^{+0.03}$	＂－＂－4．01	0.62 ± 0.05	＂＂－＂＂＂＇
R_{K}^{*}	0.72	$0.76{ }_{-0.03}^{+0.03}$	$0.79_{-0.02}^{+0.01}$	0.60 ± 0.14	1.3
$R_{K^{*}}$	1.41	$1.50_{-0.11}^{+0.11}$	$1.53_{-0.10}^{+0.10}$	1.38 ± 0.25	0.6
	1.01		＂．＂－7－7＂	0.72 ± 0.08	＂－＂．－＂\％
$R_{s K}$	0.78	$\begin{array}{r} 0.83_{-0.03}^{+0.03} \\ \hline \hline \end{array}$	$0.85_{-0.02}^{+0.01}$	0.46 ± 0.06	6.3

$\left|a_{1}\left(\bar{B} \rightarrow D^{*+} \pi^{-}\right)\right|=0.884 \pm 0.004 \pm 0.003 \pm 0.016\left[1.071_{-0.016}^{+0.020}\right] ;$

$\left|a_{1}\left(\bar{B} \rightarrow D^{*+} K^{-}\right)\right|=0.913 \pm 0.019 \pm 0.008 \pm 0.013\left[1.069_{-0.016}^{+0.020}\right] ;$

Power corrections

\square Sources of sub－leading power corrections：［Beneke，
Buchalla，Neubert，Sachrajda＇01；Bordone，Gubernari，Huber，Jung，van Dyk＇20］

$$
\begin{aligned}
&\left\langle D_{q}^{(*)+} L^{-}\right| \mathcal{Q}_{i}\left|\bar{B}_{q}^{0}\right\rangle=\sum_{j} F_{j}^{\bar{B}_{q} \rightarrow D_{q}^{(*)}}\left(M_{L}^{2}\right) \\
& \times \int_{0}^{1} d u T_{i j}(u) \phi_{L}(u): \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right) \\
& \vdots
\end{aligned}
$$

＞non－factorizable spectator interactions
－Scaling of the leading－power contribution：［BBNS＇01］

＞annihilation topologies

$$
\mathcal{A}\left(\bar{B}_{d} \rightarrow D^{+} \pi^{-}\right) \sim G_{F} m_{b}^{2} F^{B \rightarrow D}(0) f_{\pi} \sim G_{F} m_{b}^{2} \Lambda_{\mathrm{QCD}}
$$

$>$ non－leading higher Fock－state contributions
＞All these ESTIMATED to be power－ suppressed；not even chirality－ enhanced due to（V－A）（V－A）
$>$ Why all measured values of $\left|a_{1}(h)\right|$ several σ smaller than SM？
＞Must consider possible sub－leading power corrections carefully！

Charmless two－body hadronic B decays

\square Long－standing puzzles in $\operatorname{Br}\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)$ and $\Delta A_{C P}(\pi K)=A_{C P}\left(\pi^{0} K^{-}\right)-A_{C P}\left(\pi^{+} K^{-}\right)$：［HFLAV＇23］

$$
\begin{gathered}
\operatorname{Br}\left(B^{0} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{0}\right)=(0.3-0.9) \times 10^{-6} \\
\Delta A_{C P}(\boldsymbol{\pi} K)=(11.5 \pm 1.4) \% \\
\text { differs from } 0 \text { by } \sim \mathbf{8} \sigma
\end{gathered}
$$

\square Decay amplitudes in QCDF：

$$
-\mathcal{A}_{\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}}=A_{\pi \pi}\left[\delta_{p u}\left(\alpha_{2}-\beta_{1}\right)-\hat{\alpha}_{4}^{p}-2 \beta_{4}^{p}\right]
$$

$$
\sqrt{2} \mathcal{A}_{B^{-} \rightarrow \pi^{0} K^{-}}=A_{\pi \bar{K}}\left[\delta_{p u} \alpha_{1}+\hat{\alpha}_{4}^{p}\right]+A_{\bar{K} \pi}\left[\delta_{p u} \alpha_{2}+\delta_{p c} \frac{3}{2} \alpha_{3, \mathrm{EW}}^{c}\right],
$$

\square Dominant topologies：LP NNLO known

$$
\mathcal{A}_{\bar{B}^{0} \rightarrow \pi^{+} K^{-}}=A_{\pi \bar{K}}\left[\delta_{p u} \alpha_{1}+\hat{\alpha}_{4}^{p}\right],
$$

$$
A_{\mathrm{CP}}\left(\pi^{0} K^{ \pm}\right)-A_{\mathrm{CP}}\left(\pi^{\mp} K^{ \pm}\right)=-2 \sin \gamma\left(\operatorname{Im}\left(r_{C}\right)-\operatorname{Im}\left(r_{T} r_{\mathrm{EW}}\right)\right)+\ldots
$$

colour－allowed tree α_{1} colour－suppressed tree α_{2} QCD penguins α_{4}
α_{2} always plays a key role here！
－Find some mechanism to enhance α_{2}, may we explain both puzzles！

$$
>\text { necessary \& urgent to consider sub-leading power corrections! }
$$

Power－suppressed colour－octet contribution

\square Sub－leading power corrections to a_{2} ：spectator scattering or final－state interactions
\square Every four－quark operator in $H_{\text {eff }}$ has a colour－octet piece in QCD：

$$
t_{i k}^{a} a_{j l}^{a}=\frac{1}{2} \delta_{i l} \delta_{j k}-\frac{1}{2 N_{c}} \delta_{i k} \delta_{j l},
$$

$$
\begin{aligned}
& Q_{1}=\left(\bar{u}_{i} b_{i}\right)_{V-A} \otimes\left(\bar{s}_{j} u_{j}\right)_{V-A}=\frac{1}{N_{c}}\left(\bar{s}_{i} b_{i}\right)_{V-A} \otimes\left(\bar{u}_{j} u_{j}\right)_{V-A}+2\left(\bar{s} T^{A} b\right)_{V-A} \otimes\left(\bar{u} T^{A} u\right)_{V-A} \\
& Q_{2}=\left(\bar{u}_{i} b_{j}\right)_{V-A} \otimes\left(\bar{s}_{j} u_{i}\right)_{V-A}=\frac{1}{N_{c}}\left(\bar{u}_{i} b_{i}\right)_{V-A} \otimes\left(\bar{s}_{j} u_{j}\right)_{V-A}+2\left(\bar{u} T^{A} b\right)_{V-A} \otimes\left(\bar{s} T^{A} u\right)_{V-A}
\end{aligned}
$$

－Three－loop correlators with colour－octet operator insertion：

＞The gluon propagator can be in the hard－collinear region；
\Longrightarrow hard－spectator scattering contribution；
＞Can also be in the soft region；expected to be $\mathcal{O}\left(1 / m_{b}\right)$ ；
\Rightarrow can be non－zero at sub－leading power；

Soft－exchange effects from emission topology

\square Real realization of the mechanism requires study of the three－loop correlators；［w．i．p．］
\square Matching from QCD to SCET $_{\mathrm{I}}$ ：
$Q_{1} \rightarrow H_{1}(u) \otimes\left[\bar{u}_{c} h_{v}\right]_{\Gamma_{1}}\left[\bar{s}_{c} u_{\bar{c}}\right]_{\Gamma_{2}}(u)+H_{2}(u) \otimes \frac{1}{N_{c}}\left[\bar{s}_{c} h_{v}\right]_{\tilde{\Gamma}_{1}}\left[\bar{u}_{\bar{c}} u_{\bar{c}}\right]_{\tilde{\Gamma}_{2}}(u)$
$+H_{3}(u) \otimes 2\left[\bar{s}_{c} T^{A} h_{v}\right]_{\bar{\Gamma}_{1}}\left[\bar{u}_{\bar{c}} T^{A} u_{\bar{c}_{\bar{\Gamma}_{2}}}(u) \quad\right.$ colour－octet SCET ${ }_{\text {I }}$ operators
＞$H_{i}(u)$ ：hard matching coefficients；at tree－level，$H_{i}(u)=1$ ；
\square How to implement $\left\langle M_{1} M_{2}\right|\left[\bar{u}_{c} T^{A} h_{v}\right]_{\Gamma_{1}}\left[\bar{s}_{\bar{c}} T^{A} u_{\bar{c}}\right]_{\Gamma_{2}}|\bar{B}\rangle$ ：function of $u_{\text {，depending on }} M_{1,2} \& \bar{B}$
＞For colour－singlet SCET，operators：

$$
\left\langle M_{1} M_{2}\right|\left[\bar{u}_{c} h_{v}\right]_{\Gamma_{1}}\left[\bar{s}_{\bar{c}} u_{\bar{c}}\right]_{\Gamma_{2}}(u)|\bar{B}\rangle=c \hat{A}_{M_{1} M_{2}} \phi_{M_{2}}(u) \text {, with } \hat{A}_{M_{1} M_{2}}=i m_{B}^{2} F^{B \rightarrow M_{1}}(0) f_{M_{2}}
$$

＞For colour－octet SCET，operators：normalized to the naïve factorizable amplitude

$$
\left\langle M_{1} M_{2}\right|\left[\bar{u}_{c} T^{A} h_{v}\right]_{\Gamma_{1}}\left[\bar{s}_{\bar{c}} T^{A} u_{\bar{c}}\right]_{\Gamma_{2}}(u)|\bar{B}\rangle=\hat{A}_{M_{1} M_{2}} \mathfrak{F}_{M_{2}}^{B M_{1}}(u) \text {, with } \mathfrak{F}_{M_{2}}^{B M_{1}}(u) \text { an arbitrary function }
$$

Soft－exchange effects from emission topology

ㅁ To have predictive power，make the following two approximations：
$>$ Working to lowest order in the hard QCD \rightarrow SCET，matching，then $H_{i}(u)=1$

$$
\Rightarrow \mathfrak{F}_{M_{2}}^{B M_{1}}=\int_{0}^{1} d u \mathfrak{F}_{M_{2}}^{B M_{1}}(u)
$$

－When gluon propagator is soft，the propagator 8 is anti－hard－collinear；
\Rightarrow The SCET，operator naively factorizes after matching to SCET ${ }_{\|}$：

$$
\begin{aligned}
& \qquad \begin{aligned}
& \mathfrak{F}_{M_{2}}^{B M_{1}}(u)=\frac{1}{\hat{A}_{M_{1} M_{2}}} \frac{f_{M_{2}} \phi_{M_{2}}(u)}{8 N_{c} u \bar{u}} \times(-1) \int_{0}^{\infty} d s\left\langle M_{1}\right|\left[\bar{u}_{c} T^{A} h_{v}\right]_{\Gamma_{1}} \epsilon_{\mu \nu \alpha \beta} n_{+}^{v} g_{s} G^{A, \alpha \beta}\left(-s n_{+}\right)|\bar{B}\rangle \\
&=\frac{1}{\hat{A}_{M_{1} M_{2}}} \frac{f_{M_{2}} \phi_{M_{2}}(u)}{8 N_{c} u \bar{u}} \times(-i) F^{B \rightarrow M_{1}}(0) g_{\Gamma_{1}}^{B M_{1}}=\frac{\phi_{M_{2}}(u)}{8 N_{c} u \bar{u}} g_{\Gamma_{1}}^{B M_{1}} \\
&>\text { With the asymptotic } \phi_{M_{2}}(u)=6 u \bar{u}, \text { we have: } \mathfrak{F}_{M_{2}}^{B M_{1}}=\int_{0}^{1} d u \mathfrak{F}_{M_{2}}^{B M_{1}}(u)=\frac{1}{4} g_{\Gamma_{1}}^{B M_{1}}
\end{aligned} \text { Indep. of } M_{2}
\end{aligned}
$$

Soft－exchange effects from emission topology

\square The usual colour－allowed \＆colour－suppressed tree amplitudes now changed to：

$$
\alpha_{1}\left(M_{1} M_{2}\right)=C_{1}+C_{2}\left[\frac{1}{N_{c}}+\frac{g_{V-A}^{B M_{1}}}{2}\right]
$$

$g_{V-A}^{B M_{1}}$ can be complex in general ！

$$
g_{V-A}^{B M_{1}}=\rho_{V-A}^{B M_{1}} \mathrm{e}^{i \phi_{V-A}^{B M_{1}}}
$$

$$
\alpha_{2}\left(M_{1} M_{2}\right)=C_{2}+C_{1}\left[\frac{1}{N_{c}}+\frac{g_{V-A}^{B M_{1}}}{2}\right]
$$

\square Taking $g_{V-A}^{B M_{1}}$ as free parameter，we can at least fit it from the current data；

［Cheng，Chu＇09；Lu，Yang＇22；Wang Yang＇22］
＞With only soft－exchange effect from emission topology，it is impossible to explain both Br and ACP data；
＞We need to take into account other power－suppressed contributions！

Pure annihilation B decays

－Two typical pure annihilation decay modes： $\bar{B}_{s}^{0} \rightarrow \pi^{+} \pi^{-}$vs $\bar{B}^{0} \rightarrow K^{+} K^{-}$

$$
\begin{aligned}
\mathcal{A}\left(\bar{B}_{s} \rightarrow \pi^{+} \pi^{-}\right) & =B_{\pi \pi}\left[\delta_{p u} b_{1}+2 b_{4}^{p}+\frac{1}{2} b_{4, \mathrm{EW}}^{p}\right] \\
\mathcal{A}\left(\bar{B}_{d} \rightarrow K^{+} K^{-}\right) & =A_{\bar{K} K}\left[\delta_{p u} \beta_{1}+\beta_{4}^{p}+b_{4, \mathrm{EW}}^{p}\right]+B_{K \bar{K}}\left[b_{4}^{p}-\frac{1}{2} b_{4, \mathrm{EW}}^{p}\right] \\
& =A_{\bar{K} K}\left[\delta_{p u} \beta_{1}+\beta_{4}^{p}\right]+B_{K \bar{K}}\left[b_{4}^{p}\right]
\end{aligned}
$$

Both involve the building blocks $b_{1}=\frac{C_{F}}{N_{c}^{2}} C_{1} A_{1}^{i} \& b_{4}^{p}=\frac{C_{F}}{N_{c}^{2}}\left[C_{4} A_{1}^{i}+C_{6} A_{2}^{i}\right]$ ：

$$
\begin{aligned}
& A_{1}^{i}\left(M_{1} M_{2}\right)=\pi \alpha_{s} \int_{0}^{1} d x d y\left\{\Phi_{M_{2}}(x) \Phi_{M_{1}}(y)\left[\frac{1}{y(1-x \bar{y})}+\frac{1}{\bar{x}^{2} y}\right]+r_{\chi}^{M_{1}} r_{\chi}^{M_{2}} \Phi_{m_{2}}(x) \Phi_{m_{1}}(y) \frac{2}{\bar{x} y}\right\}, \\
& A_{2}^{i}\left(M_{1} M_{2}\right)=\pi \alpha_{s} \int_{0}^{1} d x d y\left\{\Phi_{M_{2}}(x) \Phi_{M_{1}}(y)\left[\frac{1}{\bar{x}(1-x \bar{y})}+\frac{1}{\bar{x} y^{2}}\right]+r_{\chi}^{M_{1}} r_{\chi}^{M_{2}} \Phi_{m_{2}}(x) \Phi_{m_{1}}(y) \frac{2}{\bar{x} y}\right\},
\end{aligned}
$$

\square With the asymptotic LCDAs，we have $A_{1}^{i}=A_{2}^{i}$ ：
［BBNS＇99－＇03］

$$
\begin{array}{ll}
A_{1}^{i}\left(M_{1} M_{2}\right)=\pi \alpha_{s}\left\{18 X_{A}-18-6\left(9-\pi^{2}\right)+r_{\chi}^{M_{1}} r_{\chi}^{M_{2}}\left(2 X_{A}^{2}\right)\right\}, & X_{A}=\left(1+\varrho_{A} e^{i \varphi_{A}}\right) \ln \left(m_{B} / \Lambda_{h}\right), \\
A_{2}^{i}\left(M_{1} M_{2}\right)=\pi \alpha_{s}\left\{18 X_{A}-18-6\left(9-\pi^{2}\right)+r_{\chi}^{M_{1}} r_{\chi}^{M_{2}}\left(2 X_{A}^{2}\right)\right\}, & \Lambda_{h}=0.5 \mathrm{GeV}, \varrho_{A} \leq 1 \text { and an arbitrary phase } \varphi_{A}
\end{array}
$$

Ways to improve the modelling of annihilations

\square With universal X_{A} and different scenarios，we have：［BBNS＇03］

Mode	Theory	S1（large γ ）	S2（large a_{2} ）	$\mathrm{S} 3\left(\varphi_{A}=-45^{\circ}\right)$	S4（ $\varphi_{A}=-55^{\circ}$ ）	Exp．
$\bar{B}_{s}^{0} \rightarrow \pi^{+} \pi^{-}$	$0.024_{-0.003-0.012-0.0000-0.021}^{+0.003+0.029}$	0.027	0.032	0.149	0.155	0.671 ± 0.083
$\bar{B}^{0} \rightarrow K^{-} K^{+}$	$0.013_{-0.005-0.0005-0.000+-0.011}^{+0.005+0.0087}$	0.007	0.014	0.079	0.070	0.0803 ± 0.0147

\square Large SU（3）flavor symmetry breaking or flavor－dependent $A_{1,2}^{i}$ ？
［Wang，Zhu＇03；Bobeth et al．＇14； Chang，Sun et al．＇14－15］

ㅁ How to improve the situation：
＞Including higher Gegenbauer moments to include SU（3）－breaking effects；

$$
\begin{aligned}
& \Phi_{M}(x, \mu)=6 x \bar{x}\left[1+\sum_{n=1}^{\infty} a_{n}^{M}(\mu) C_{n}^{(3 / 2)}(2 x-1)\right] \\
& \text { due to G-parity, } a_{o d d}^{\pi}=0, \text { but } a_{o d d}^{K} \neq 0
\end{aligned}
$$

 FIGURE 5．8： 68% and 95% CRs for the comp
from a branching－ratio fit assuming the SM
＞Including the difference between the chirality factors to include $\mathrm{SU}(3)$－breaking effects；

$$
r_{\chi}^{\pi}(1.5 \mathrm{GeV})=\frac{2 m_{\pi}^{2}}{m_{b}(\mu)\left(m_{u}(\mu)+m_{d}(\mu)\right)} \simeq 0.86, \quad r_{\chi}^{K}(1.5 \mathrm{GeV})=\frac{2 m_{K}^{2}}{m_{b}(\mu)\left(m_{u}(\mu)+m_{s}(\mu)\right)} \simeq 0.91
$$

Ways to improve the modelling of annihilations

\square SU（3）－breaking effects in $A_{1,2}^{i}$ ：due to higher Gengengauber moments and quark masses

$>$ The amplitude ratios $A_{1,2}^{i}(\pi \pi) / A_{1,2}^{i}(K K)$ get enhanced in the BBNS＋model！\Rightarrow what we need！

Ways to improve the modelling of annihilations

\square How to improve：＞Making the parameter X_{A} to be flavour dependent \＆depending on its origins；

$$
\begin{aligned}
& \int_{0}^{1} d y \frac{\Phi_{M_{1}}(y)}{y^{2}}=\Phi_{M_{1}^{\prime}}(0) \int_{0}^{1} d y \frac{1}{y}+\int_{0}^{1} d y \frac{\Phi_{M_{1}}(y)-y \Phi_{M_{1}}^{\prime}(0)}{y^{2}} \rightarrow \quad \rightarrow X_{0}^{M_{1}}-6, \quad A_{1}^{i}\left(M_{1} M_{2}\right)=\pi \alpha_{s}\left\{18 X_{1}^{M_{2}}-18-6\left(9-\pi^{2}\right)+r_{\chi}^{M_{1}} r_{\chi}^{M_{2}}\left(2 X_{0}^{m_{1}} X_{1}^{m_{2}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{1} d y \frac{\Phi_{m^{\prime}}(y)}{y}=\Phi_{m_{1}}(0) \int_{0}^{1} d y \frac{1}{y}+\int_{0}^{1} d y \frac{\Phi_{m_{1}}(y)-\Phi_{m_{1}}(0)}{y} \quad \rightarrow \quad X_{0}^{m_{1}}, \\
& \int_{0}^{1} d x \frac{\Phi_{m_{2}}(x)}{\bar{x}}=\Phi_{m_{2}}(1) \int_{0}^{1} d x \frac{1}{\bar{x}}+\int_{0}^{1} d x \frac{\Phi_{m_{2}}(x)-\Phi_{m_{2}}(1)}{\bar{x}} \quad \rightarrow \quad X_{1}^{m_{2}}, \\
& \Rightarrow A_{1}^{i}\left(M_{1} M_{2}\right) \neq A_{2}^{i}\left(M_{1} M_{2}\right)
\end{aligned}
$$

＞To make it predictive，distinguish whether the endpoint configuration mediated by a soft strange quark（ X_{A}^{s} ）or a soft up or down quark（ $X_{A}^{u d}$ ）．
\square Advantages compared to original BBNS：two free parameters！

$>$ For $\pi \pi$ final states，only $X_{A}^{u d}$ involved；
easily to reproduce the data！
$>$ For $K K$ final states，both $X_{A}^{u d}\left(\right.$ for $\left.M_{1} M_{2}=K^{+} K^{-}\right)$and $X_{A}^{s}\left(\right.$ for $\left.M_{1} M_{2}=K^{-} K^{+}\right)$involved；
\square Other interesting progress：
Lu，Shen，Wang，Wang，Wang 2202．08073；Boer talk＠SCET2023；

Summary

\square With dedicated LHCb \＆Belle II，precision era for B physics expected！
\square NNLO calculation at LP in QCDF／SCET complete；but some puzzles still remain：
$>$ for class－I $B_{q}^{0} \rightarrow D_{q}^{(*)-} L^{+}$decays， $\mathcal{O}(4-5 \sigma)$ discrepancies observed；
$>$ long－standing $\operatorname{Br}\left(\bar{B}^{0} \rightarrow \pi^{0} \pi^{0}\right)$ and $\Delta A_{C P}(\pi K)=A_{C P}\left(\pi^{0} K^{-}\right)-A_{C P}\left(\pi^{+} K^{-}\right)$；
\longrightarrow sub－leading power corrections in QCDF／SCET need to be considered！
Power－suppressed colour－octet matrix elements：

$$
\left\langle M_{1} M_{2}\right|\left[\bar{u}_{c} T^{A} h_{v}\right]_{\Gamma_{1}}\left[\bar{s}_{\bar{c}} T^{A} u_{\bar{c}}\right]_{\Gamma_{2}}(u)|\bar{B}\rangle=\hat{A}_{M_{1} M_{2}} \mathfrak{F}_{M_{2}}^{B M_{1}}(u) \text {, with } \mathfrak{F}_{M_{2}}^{B M_{1}}(u) \text { an arbitrary function }
$$

Improved treatments of annihilation amplitudes：SU（3）－breaking effects \＆flavor－dependence of the building blocks $A_{1,2}^{i} ; \longrightarrow$ correct direction as expected！

[^0]: ［Gorbahn，Haisch＇04；Misiak，Steinhauser＇04］

