Power Corrections to Two-body Hadronic B Decays in QCD Factorization

李新强

华中师范大学

Work in progress with Guido Bell, Martin Beneke, Tobias Huber

第五届重味物理与量子色动力学研讨会,2023/04/21,武汉

Outline

- **□** Introduction
- □ QCD factorization: brief review and NNLO status
- □ Data vs SM predictions: some puzzles & possible resolutions
- □ Summary

Why hadronic B decays

□ direct access to the CKM parameters,especially to the three angles of UT.

- □ deep insight into the hadron structures: especially exotic hadronic states.
- □ deep our understanding of origin& mechanism of CPV.

☐ further insight into strong-interaction effects involved in hadronic decays.

factorization? strong phase origin?...

CP category	Hadronic system										
	K^0	K^{\pm}	Λ	D^0	D^{\pm}	D_s^{\pm}	Λ_c^+	B^0	B^{\pm}	B_s^0	Λ_b^0
decay		8	8	Ø	8	8	8	(©	②	8
mixing				8				8		8	
decay/mixing interf.	Ø			8				%		Ø	

very difficult but necessary both theoretically and experimentally!

Observed

Several observations

Not observed (yet)

Effective Hamiltonian for hadronic B decays

□ For hadronic B decays: typical multi-scale problem; EFT formalism more suitable!

□ Starting point $\mathcal{H}_{eff} = -\mathcal{L}_{eff}$: obtained after integrating out heavy d.o.f. $(m_{W,Z,t} \gg m_b)$;

[Buras, Buchalla, Lautenbacher '96; Chetyrkin, Misiak, Munz '98]

$$\mathcal{L}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{pD}^* \Big(C_1 \mathcal{O}_1 + C_2 \mathcal{O}_2 + \sum_{i=\text{pen}} C_i \mathcal{O}_{i,\text{pen}} \Big)$$

tree

QCD penguin

 \square Wilson coefficients C_i : all physics above m_b ;

perturbatively calculable & NNLL program now complete; [Gorbahn, Haisch '04; Misiak, Steinhauser '04]

2023/04/15

Hadronic matrix elements

□ Decay amplitude for a given decay mode:

$$\mathcal{A}(\overline{B} \to M_1 M_2) = \sum_{i} [\lambda_{\text{CKM}} \times C_i \times \langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle]$$

- \square $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$: depending on spin & parity of $M_{1,2}$; final-state rescattering introduces strong phases, and hence non-zero direct CPV; \longrightarrow *A quite difficult, multi-scale, strong-interaction problem!*
- \square Different methods proposed for dealing with $\langle M_1 M_2 | \mathcal{O}_i | \overline{B} \rangle$:
 - Dynamical approaches based on factorization theorems: PQCD, QCDF, SCET, ...

 [Keum, Li, Sanda, Lü, Yang '00;

 Beneke, Buchalla, Neubert, Sachrajda, '00;

 Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02]
- Symmetries of QCD: Isospin, U-Spin, V-Spin, and flavour SU(3) symmetries, · · · [Zeppenfeld, '81;

London, Gronau, Rosner, He, Chiang, Cheng et al.]

 \square QCDF: systematic framework to all orders in α_s , but limited by $\Lambda_{\rm QCD}/m_b$ corrections. [BBNS '99-'03]

Soft-collinear factorization from SCET

- □ **QCDF formula:** based on diagrammatic factorization (method of regions, [Beneke, Smirnov '97] combining $1/m_h$ expansion with light-cone expansion for hard processes); [Lepage, Brodsky '80]
- ☐ For a two-body decay: simple kinematics, but complicated dynamics with several typical modes;

- low-virtuality modes:
 - * HQET fields: $p m_b v \sim \mathcal{O}(\Lambda)$
 - \star soft spectators in B meson: $p_s^{\mu} \sim \Lambda \ll m_b, \quad p_s^2 \sim \mathcal{O}(\Lambda^2)$
 - * collinear quarks and gluons in pion: $E_c \sim m_b, \quad p_c^2 \sim \mathcal{O}(\Lambda^2)$

- high-virtuality modes:
 - * hard modes: $(\text{heavy quark} + \text{collinear})^2 \sim \mathcal{O}(m_b^2)$
 - * hard-collinear modes: $(soft + collinear)^2 \sim \mathcal{O}(m_b\Lambda)$
- □ SCET: a very suitable framework for studying factorization and re-summation for processes involving energetic & light particles/jets; [Bauer et al. '00; Beneke et al. '02]
- ☐ From SCET point of view: introduce different fields/modes for different momentum regions;

Soft-collinear factorization from SCET

☐ SCET diagrams reproduce precisely QCD diagrams in collinear & soft momentum regions;

QCD - SCET = short-distance coefficients T^{I} & T^{II}

□ For hard kernel T^I : one-step matching from QCD \rightarrow SCET_I(hc, c, s)!

□ For hard kernel T^{II} : two-step matching from QCD \rightarrow SCET_I(hc, c, s) \rightarrow SCET_I(c, s)!

□ SCET formalism reproduces exact QCDF result, but more apparent & efficient; [Beneke, 1501.07374]

Status of the NNLO calculation of T^I & T^{II}

 \square For each \mathcal{O}_i insertion, both tree & penguin topologies, and contribute to both T^I & T^{II} .

Status of the NNLO calculation of T^I & T^{II}

- \square Complete NNLO calculation for T^I & T^{II} at leading power in QCDF/SCET now complete;
- □ Soft-collinear factorization at 2-loop level established via explicit calculations;
- \square For tree amplitudes, cancellation between T^I & T^{II} ;

$$\langle M_1 M_2 | \mathcal{O}_i | \bar{B} \rangle \simeq F^{B \to M_1} T_i^I \otimes \phi_{M_2} + T_i^{II} \otimes \phi_B \otimes \phi_{M_1} \otimes \phi_{M_2}$$

$$\alpha_{1}(\pi\pi) = 1.009 + [0.023 + 0.010 i]_{NLO} + [0.026 + 0.028 i]_{NNLO}$$

$$- \left[\frac{r_{sp}}{0.445}\right] \left\{ [0.014]_{LOsp} + [0.034 + 0.027 i]_{NLOsp} + [0.008]_{tw3} \right\}$$

$$= 1.000^{+0.029}_{-0.069} + (0.011^{+0.023}_{-0.050})i$$

$$= 0.220 - [0.179 + 0.077 i]_{NLO} - [0.031 + 0.050 i]_{NNLO}$$

$$+ \left[\frac{r_{sp}}{0.445}\right] \left\{ [0.114]_{LOsp} + [0.049 + 0.051 i]_{NLOsp} + [0.067]_{tw3} \right\}$$

$$= 0.240^{+0.217}_{-0.078} + (-0.077^{+0.115}_{-0.078})i$$

$$a_4^{u}(\pi \bar{K})/10^{-2} = -2.87 - [0.09 + 0.09i]_{V_1} + [0.49 - 1.32i]_{P_1} - [0.32 + 0.71i]_{P_2, Q_{1,2}} + [0.33 + 0.38i]_{P_2, Q_{3-6,8}}$$

$$+ \left[\frac{r_{sp}}{0.434} \right] \left\{ [0.13]_{LO} + [0.14 + 0.12i]_{HV} - [0.01 - 0.05i]_{HP} + [0.07]_{tw3} \right\}$$

$$= (-2.12^{+0.48}_{-0.29}) + (-1.56^{+0.29}_{-0.15})i,$$

Scale dependence of $a_{1,2}$ and a_4^p

- □ Phen. no too much changes compared to NLO predictions;
- □ Scale dependence of $a_{1,2}$: only form-factor term;
- □ Scale dependence of a_4^p : only form-factor term;
 - > scale dependence negligible, especially for $\mu > 4$ GeV.

- ☐ More precise than NLO results, and hence welcome oriented at precision measurements
 - @ LHCb & Belle II;

Factorization also valid? New sources of strong phases?

lacksquare Main issue in QCDF/SCET: sub-leading power-corrections $\sim \Lambda_{QCD}/m_b \simeq 0.2$ unknown!

 $\overline{B}_q^0 o D_q^{(*)+} L^-$ decays: class-I

 \square At quark-level: mediated by $b \rightarrow c\overline{u}d(s)$

all four flavors different from each other, no penguin operators & no penguin topologies!

☐ For class-I decays: QCDF formula much simpler;

[Beneke, Buchalla, Neubert, Sachrajda '00; Bauer, Pirjol, Stewart '01]

$$\langle D_q^{(*)+}L^-|\mathcal{Q}_i|\bar{B}_q^0\rangle = \sum_j F_j^{\bar{B}_q \to D_q^{(*)}}(M_L^2)$$

$$\times \int_0^1 du \, T_{ij}(u)\phi_L(u) + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{m_b}\right)$$

$$egin{aligned} \mathcal{Q}_2 &= ar{d}\gamma_\mu (1-\gamma_5) u \ ar{c}\gamma^\mu (1-\gamma_5) b \ \mathcal{Q}_1 &= ar{d}\gamma_\mu (1-\gamma_5) \emph{\emph{T}}^{m{A}} u \ ar{c}\gamma^\mu (1-\gamma_5) \emph{\emph{T}}^{m{A}} b \end{aligned}$$

- i) only color-allowed tree amplitude a_1 ;
- ii) spectator & annihilation power-suppressed;
- iii) annihilation absent in $\bar{B}_{d(s)}^{0} \to D_{d(s)}^{+} K(\pi)^{-}$;

they are theoretically simpler and cleaner, and used to test factorization theorem

☐ Hard kernel T: both NLO and NNLO results known;

[Beneke, Buchalla, Neubert, Sachrajda '00; Huber, Kränkl, Li '16]

$$T = T^{(0)} + \alpha_s T^{(1)} + \alpha_s^2 T^{(2)} + O(\alpha_s^3)$$

Non-leptonic/semi-leptonic ratios

Non-leptonic/semi-leptonic ratios: [Bjorken '89; Neubert, Stech '97; Beneke, Buchalla, Neubert, Sachrajda '01]

$$R_{(s)L}^{(*)} \equiv \frac{\Gamma(\bar{B}_{(s)}^0 \to D_{(s)}^{(*)+}L^-)}{d\Gamma(\bar{B}_{(s)}^0 \to D_{(s)}^{(*)+}\ell^-\bar{\nu}_\ell)/dq^2 \mid_{q^2 = m_L^2}} = 6\pi^2 |V_{uq}|^2 f_L^2 |a_1(D_{(s)}^{(*)+}L^-)|^2 X_L^{(*)}$$

free from uncertainties from $V_{cb} \& B_{d,s} \to D_{d,s}^{(*)}$ form factors.

□ Updated predictions vs data: [Huber, Kränkl, Li '16; Cai, Deng, Li, Yang '21]

atest	Bell	e dat	ta:	2207.00134
				LL07.00131

$R_{(s)L}^{(*)}$	LO	NLO	NNLO	Exp.	Deviation (σ)
R_{π}	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.74 ± 0.06	5.4
R_{π}^{*}	1.00	$1.06^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.80 ± 0.06	4.5
$R_{ ho}$	2.77	$2.94^{+0.19}_{-0.19}$	$3.02^{+0.17}_{-0.18}$	2.23 ± 0.37	1.9
R_K	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.62 ± 0.05	4.4
R_K^*	0.72	$0.76^{+0.03}_{-0.03}$	$0.79^{+0.01}_{-0.02}$	0.60 ± 0.14	1.3
R_{K^*}	1.41	$1.50^{+0.11}_{-0.11}$	$1.53_{-0.10}^{+0.10}$	1.38 ± 0.25	0.6
$R_{s\pi}$	1.01	$1.07^{+0.04}_{-0.04}$	$1.10^{+0.03}_{-0.03}$	0.72 ± 0.08	4.4
R_{sK}	0.78	$0.83^{+0.03}_{-0.03}$	$0.85^{+0.01}_{-0.02}$	0.46 ± 0.06	6.3

 $|a_1(\overline{B} \to D^{*+}\pi^-)| = 0.884 \pm 0.004 \pm 0.003 \pm 0.016[1.071^{+0.020}_{-0.016}];$

an SM $|a_1(\overline{B} \to D^{*+}K^-)| = 0.913 \pm 0.019 \pm 0.008 \pm 0.013[1.069^{+0.020}_{-0.016}];$

Power corrections

Buchalla, Neubert, Sachrajda '01; Bordone, Gubernari, Huber, Jung, van Dyk '20]

☐ Scaling of the leading-power contribution: [BBNS '01]

 $\mathcal{A}(\bar{B}_d \to D^+\pi^-) \sim G_F m_b^2 F^{B\to D}(0) f_\pi \sim G_F m_b^2 \Lambda_{\rm QCD}$

non-factorizable spectator interactions

$$\frac{\Lambda_{\rm QCD}}{m_{\rm b}}$$

> annihilation topologies

non-leading higher Fock-state contributions

- Why all measured values of $|a_1(h)|$ several σ smaller than SM?
- Must consider possible sub-leading power corrections carefully!

Charmless two-body hadronic B decays

 \square Long-standing puzzles in $\text{Br}(\overline{B}^0 \to \pi^0 \pi^0)$ and $\Delta A_{CP}(\pi K) = A_{CP}(\pi^0 K^-) - A_{CP}(\pi^+ K^-)$: [HFLAV '23]

$$Br(B^0 \to \pi^0 \pi^0) = (0.3 - 0.9) \times 10^{-6}$$

$$\Delta A_{CP}(\pi K) = (11.5 \pm 1.4)\%$$

differs from 0 by $\sim 8\sigma$

□ Decay amplitudes in QCDF:

$$-\mathcal{A}_{\overline{B}^0 \to \pi^0 \pi^0} = A_{\pi\pi} \left[\delta_{pu} (\alpha_2 - \beta_1) - \hat{\alpha}_4^p - 2\beta_4^p \right]$$

□ Dominant topologies: LP NNLO known

colour-allowed tree α_1

colour-suppressed tree α_2 QCD penguins α_4

$$\sqrt{2} \mathcal{A}_{B^- \to \pi^0 K^-} = A_{\pi \overline{K}} \left[\delta_{pu} \alpha_1 + \hat{\alpha}_4^p \right] + A_{\overline{K}\pi} \left[\delta_{pu} \alpha_2 + \delta_{pc} \frac{3}{2} \alpha_{3, \text{EW}}^c \right],$$

$$\mathcal{A}_{\overline{B}^0 \to \pi^+ K^-} = A_{\pi \overline{K}} \left[\delta_{pu} \alpha_1 + \hat{\alpha}_4^p \right],$$

$$A_{\mathrm{CP}}(\pi^0 K^{\pm}) - A_{\mathrm{CP}}(\pi^{\mp} K^{\pm}) = -2\sin\gamma \left(\mathrm{Im}(r_C) - \mathrm{Im}(r_T r_{\mathrm{EW}})\right) + \dots$$

 α_2 always plays a key role here!

Find some mechanism to enhance α_{2} , may we explain both puzzles!

Power-suppressed colour-octet contribution

- \square Sub-leading power corrections to a_2 : spectator scattering or final-state interactions
- \square Every four-quark operator in $H_{\rm eff}$ has a colour-octet piece in QCD:

$$t_{ik}^a t_{jl}^a = \frac{1}{2} \delta_{il} \delta_{jk} - \frac{1}{2N_c} \delta_{ik} \delta_{jl},$$

$$Q_1 = (\bar{u}_i b_i)_{V-A} \otimes (\bar{s}_j u_j)_{V-A} = \frac{1}{N_c} (\bar{s}_i b_i)_{V-A} \otimes (\bar{u}_j u_j)_{V-A} + 2(\bar{s} T^A b)_{V-A} \otimes (\bar{u} T^A u)_{V-A}$$

$$Q_2 = \left(\bar{u}_i b_j\right)_{V-A} \otimes \left(\bar{s}_j u_i\right)_{V-A} = \frac{1}{N_c} \left(\bar{u}_i b_i\right)_{V-A} \otimes \left(\bar{s}_j u_j\right)_{V-A} + 2\left(\bar{u} T^A b\right)_{V-A} \otimes \left(\bar{s} T^A u\right)_{V-A}$$

■ Three-loop correlators with colour-octet operator insertion:

- The gluon propagator can be in the hard-collinear region;
 - → hard-spectator scattering contribution;
- \triangleright Can also be in the soft region; expected to be $\mathcal{O}(1/m_b)$;
 - can be non-zero at sub-leading power;
- \triangleright Other four regions suppressed by more powers of $1/m_b$;

Soft-exchange effects from emission topology

☐ Real realization of the mechanism requires study of the three-loop correlators; [w.i.p.]

☐ Matching from QCD to SCET_I:

$$Q_{1} \rightarrow H_{1}(u) \otimes [\bar{u}_{c}h_{v}]_{\Gamma_{1}} [\bar{s}_{\bar{c}}u_{\bar{c}}]_{\Gamma_{2}}(u) + H_{2}(u) \otimes \frac{1}{N_{c}} [\bar{s}_{c}h_{v}]_{\tilde{\Gamma}_{1}} [\bar{u}_{\bar{c}}u_{\bar{c}}]_{\tilde{\Gamma}_{2}}(u)$$

$$+ H_{3}(u) \otimes 2 \left[\bar{s}_{c}T^{A}h_{v} \right]_{\tilde{\Gamma}_{1}} [\bar{u}_{\bar{c}}T^{A}u_{\bar{c}}]_{\tilde{\Gamma}_{2}}(u)$$
 colour-octet SCET_| operators

$$Q_{2} = [\bar{u}_{i}b_{j}]_{\Gamma_{1}} [\bar{s}_{j}u_{i}]_{\Gamma_{2}} = [\bar{s}b]_{\tilde{\Gamma}_{1}} [\bar{u}u]_{\tilde{\Gamma}_{2}}$$

$$\to H_{1}(u) \otimes [\bar{s}_{c}h_{v}]_{\tilde{\Gamma}_{1}} [\bar{u}_{\bar{c}}u_{\bar{c}}]_{\tilde{\Gamma}_{2}} (u) + H_{2}(u) \otimes \frac{1}{N_{c}} [\bar{u}_{c}h_{v}]_{\Gamma_{1}} [\bar{s}_{\bar{c}}u_{\bar{c}}]_{\Gamma_{2}} (u)$$

$$+ H_{3}(u) \otimes 2 [\bar{u}_{c}T^{A}h_{v}]_{\Gamma_{1}} [\bar{s}_{\bar{c}}T^{A}u_{\bar{c}}]_{\Gamma_{2}} (u) ,$$

 \succ $H_i(u)$: hard matching coefficients; at tree-level, $H_i(u) = 1$;

\square How to implement $\langle M_1 M_2 \left| \left[\overline{u}_c T^A h_v \right]_{\Gamma_1} \left[\overline{s}_{\overline{c}} T^A u_{\overline{c}} \right]_{\Gamma_2} \right| \overline{B} \rangle$: function of u_r depending on $M_{1,2}$ & \overline{B}

➤ For colour-singlet SCET_I operators:

$$\langle M_1 M_2 | [\bar{u}_c h_v]_{\Gamma_1} [\bar{s}_{\bar{c}} u_{\bar{c}}]_{\Gamma_2}(u) | \bar{B} \rangle = c \, \hat{A}_{M_1 M_2} \phi_{M_2}(u), \text{ with } \hat{A}_{M_1 M_2} = i \, m_B^2 F^{B \to M_1}(0) f_{M_2}$$

For colour-octet SCET_I operators: normalized to the naïve factorizable amplitude

$$\langle M_1 M_2 \big| [\bar{u}_c T^A h_v]_{\Gamma_1} [\bar{s}_{\bar{c}} T^A u_{\bar{c}}]_{\Gamma_2}(u) \big| \bar{B} \rangle = \hat{A}_{M_1 M_2} \mathfrak{F}_{M_2}^{BM_1}(u)$$
, with $\mathfrak{F}_{M_2}^{BM_1}(u)$ an arbitrary function

Soft-exchange effects from emission topology

□ To have predictive power, make the following two approximations:

 \triangleright Working to lowest order in the hard QCD \rightarrow SCET₁ matching, then $H_i(u) = 1$

$$\implies \mathfrak{F}_{M_2}^{BM_1} = \int_0^1 du \, \mathfrak{F}_{M_2}^{BM_1}(u)$$

- ➤ When gluon propagator is soft, the propagator 8 is anti-hard-collinear;
 - The SCET_I operator naively factorizes after matching to SCET_{II}:

$$\mathfrak{F}_{M_2}^{BM_1}(u) = \frac{1}{\hat{A}_{M_1M_2}} \frac{f_{M_2}\phi_{M_2}(u)}{8N_c u \overline{u}} \times (-1) \int_0^\infty ds \left\langle M_1 \left[\left[\overline{u}_c T^A h_v \right]_{\Gamma_1} \epsilon_{\mu\nu\alpha\beta} n_+^{\nu} g_s G^{A,\alpha\beta} \left(-s n_+ \right) \right] \overline{B} \right\rangle$$

$$= \frac{1}{\hat{A}_{M_1 M_2}} \frac{f_{M_2} \phi_{M_2}(u)}{8N_c u \overline{u}} \times (-i) F^{B \to M_1}(0) g_{\Gamma_1}^{B M_1} = \frac{\phi_{M_2}(u)}{8N_c u \overline{u}} g_{\Gamma_1}^{B M_1}$$

Indep. of M_2

With the asymptotic $\phi_{M_2}(u) = 6u\bar{u}$, we have: $\mathcal{F}_{M_2}^{BM_1} = \int_{M_2}^{1} du \, \mathcal{F}_{M_2}^{BM_1}(u) = \frac{1}{4} g_{\Gamma_1}^{BM_1}$

$$\mathfrak{F}_{M_2}^{BM_1} = \int_0^1 du \, \mathfrak{F}_{M_2}^{BM_1}(u) = \frac{1}{4} g_{\Gamma_1}^{BM_1}$$

Soft-exchange effects from emission topology

☐ The usual colour-allowed & colour-suppressed tree amplitudes now changed to:

$$g_{V-A}^{BM_1}$$
 can be complex in general!

$$g_{V-A}^{BM_1} = \rho_{V-A}^{BM_1} e^{i\phi_{V-A}^{BM_2}}$$

$$\alpha_1(M_1M_2) = C_1 + C_2 \left[\frac{1}{N_c} + \frac{g_{V-A}^{BM_1}}{2} \right]$$

$$\boldsymbol{g_{V-A}^{BM_1}}$$
 can be complex in general! $\boldsymbol{g_{V-A}^{BM_1}} = \boldsymbol{\rho_{V-A}^{BM_1}} e^{i\boldsymbol{\phi_{V-A}^{BM_1}}}$ $\alpha_2(M_1M_2) = C_2 + C_1 \left[\frac{1}{N_c} + \frac{g_{V-A}^{BM_1}}{2}\right]$

 \square Taking $g_{V-A}^{BM_1}$ as free parameter, we can at least fit it from the current data;

[Cheng, Chu '09; Lu, Yang '22; Wang Yang '22]

- With only soft-exchange effect from emission topology, it is impossible to explain both Br and ACP data;
- We need to take into account other power-suppressed contributions!

Pure annihilation B decays

$$\mathcal{A}(\bar{B}_{s} \to \pi^{+}\pi^{-}) = B_{\pi\pi} \left[\delta_{pu} b_{1} + 2b_{4}^{p} + \frac{1}{2} b_{4,\text{EW}}^{p} \right]$$

$$\mathcal{A}(\bar{B}_{d} \to K^{+}K^{-}) = A_{\bar{K}K} \left[\delta_{pu} \beta_{1} + \beta_{4}^{p} + b_{4,\text{EW}}^{p} \right] + B_{K\bar{K}} \left[b_{4}^{p} - \frac{1}{2} b_{4,\text{EW}}^{p} \right]$$

$$= A_{\bar{K}K} \left[\delta_{pu} \beta_{1} + \beta_{4}^{p} \right] + B_{K\bar{K}} \left[b_{4}^{p} \right]$$

□ Both involve the building blocks $b_1 = \frac{c_F}{N_c^2} C_1 A_1^i \& b_4^p = \frac{c_F}{N_c^2} [C_4 A_1^i + C_6 A_2^i]$:

$$A_1^i$$
: $(V - A) \otimes (V - A)$
 A_2^i : $(V - A) \otimes (V + A)$

$$A_1^i(M_1M_2) = \pi \alpha_s \int_0^1 dx dy \left\{ \Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{y(1-x\bar{y})} + \frac{1}{\bar{x}^2 y} \right] + r_{\chi}^{M_1} r_{\chi}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{\bar{x}y} \right\},$$

$$A_2^i(M_1M_2) = \pi \alpha_s \int_0^1 dx dy \left\{ \Phi_{M_2}(x) \Phi_{M_1}(y) \left[\frac{1}{\bar{x}(1-x\bar{y})} + \frac{1}{\bar{x}y^2} \right] + r_{\chi}^{M_1} r_{\chi}^{M_2} \Phi_{m_2}(x) \Phi_{m_1}(y) \frac{2}{\bar{x}y} \right\},$$

 \square With the asymptotic LCDAs, we have $A_1^i = A_2^i$: [BBNS '99-'03]

$$A_1^i(M_1M_2) = \pi \alpha_s \left\{ 18X_A - 18 - 6(9 - \pi^2) + r_{\chi}^{M_1} r_{\chi}^{M_2} \left(2X_A^2 \right) \right\},$$

$$A_2^i(M_1M_2) = \pi \alpha_s \left\{ 18X_A - 18 - 6(9 - \pi^2) + r_{\chi}^{M_1} r_{\chi}^{M_2} \left(2X_A^2 \right) \right\},$$

$$X_A = (1 + \varrho_A e^{i\varphi_A}) \ln(m_B / \Lambda_h),$$

 $\Lambda_h = 0.5 \text{GeV}, \, \varrho_A \leq 1 \text{ and an arbitrary phase } \varphi_A$

Ways to improve the modelling of annihilations

 \square With universal X_A and different scenarios, we have: [BBNS '03]

Mode	Theory	S1 (large γ)	S2 (large a ₂)	S3 ($\varphi_A = -45^{\circ}$)	S4 ($\varphi_A = -55^{\circ}$)	Exp.
$ar{B}^0_s o \pi^+\pi^-$	$0.024^{+0.003+0.025+0.000+0.163}_{-0.003-0.012-0.000-0.021}$	0.027	0.032	0.149	0.155	0.671 ± 0.083
$\overline{B}^0 \to K^- K^+$	$0.013^{+0.005+0.008+0.000+0.087}_{-0.005-0.005-0.000-0.011}$	0.007	0.014	0.079	0.070	0.0803 ± 0.0147

\square Large SU(3) flavor symmetry breaking or flavor-dependent $A_{1,2}^i$?

[Wang, Zhu '03; Bobeth *et al.* '14; Chang, Sun *et al.* '14-15]

□ How to improve the situation:

Including higher Gegenbauer moments to include SU(3)-breaking effects;

$$\Phi_M(x,\mu) = 6x\bar{x} \left[1 + \sum_{n=1}^{\infty} a_n^M(\mu) C_n^{(3/2)}(2x - 1) \right]$$

due to G-parity, $a_{odd}^{\pi} = 0$, but $a_{odd}^{K} \neq 0$

FIGURE 5.8: 68% and 95% CRs for the complex parameter $\rho_A^{\pi^+\pi^-}$ and $\rho_A^{K^+K^-}$ obtained from a branching-ratio fit assuming the SM.

Including the difference between the chirality factors to include SU(3)-breaking effects;

$$r_{\chi}^{\pi}(1.5\text{GeV}) = \frac{2m_{\pi}^2}{m_b(\mu) \left(m_u(\mu) + m_d(\mu)\right)} \simeq 0.86, \qquad r_{\chi}^{K}(1.5\text{GeV}) = \frac{2m_K^2}{m_b(\mu) \left(m_u(\mu) + m_s(\mu)\right)} \simeq 0.91$$

Ways to improve the modelling of annihilations

 \square SU(3)-breaking effects in $A_{1,2}^i$: due to higher Gengengauber moments and quark masses

$$A_{1}^{i}(M_{1}M_{2}) = \pi\alpha_{s} \left\{ 18(1 - a_{1}^{M_{1}} + a_{2}^{M_{1}}) \left[(1 + 3a_{1}^{M_{2}} + 6a_{2}^{M_{2}})X_{A} - (1 + 6a_{1}^{M_{2}} + 16a_{2}^{M_{2}}) \right] \right. \\ \left. + 54(69 - 7\pi^{2})a_{1}^{M_{1}}a_{1}^{M_{2}} - 36(385 - 39\pi^{2})(a_{1}^{M_{1}}a_{2}^{M_{2}} - 2a_{2}^{M_{1}}a_{1}^{M_{2}}) \right. \\ \left. - 6(9 - \pi^{2}) - 18(10 - \pi^{2})(3a_{1}^{M_{1}} - a_{1}^{M_{2}}) - 6(59 - 6\pi^{2})(6a_{2}^{M_{1}} + a_{2}^{M_{2}}) - 18(9593 - 972\pi^{2})a_{2}^{M_{1}}a_{2}^{M_{2}} + r_{\chi}^{M_{1}}r_{\chi}^{M_{2}}\left(2X_{A}^{2}\right) \right\}, \\ \left. X_{A} = \ln\left(\frac{m_{B}}{A_{h}}\right)(1 + \rho_{A}e^{i\phi_{A}}) \right. \\ \left. A_{2}^{i}(M_{1}M_{2}) = \pi\alpha_{s} \left\{ 18(1 + a_{1}^{M_{2}} + a_{2}^{M_{2}}) \left[(1 - 3a_{1}^{M_{1}} + 6a_{2}^{M_{1}})X_{A} - (1 - 6a_{1}^{M_{1}} + 16a_{2}^{M_{1}}) \right] \right. \\ \left. - 6(9 - \pi^{2}) - 18(10 - \pi^{2})(a_{1}^{M_{1}} - 3a_{1}^{M_{2}}) - 6(59 - 6\pi^{2})(a_{2}^{M_{1}} + 6a_{2}^{M_{2}}) \right. \\ \left. + 54(69 - 7\pi^{2})a_{1}^{M_{1}}a_{1}^{M_{2}} - 36(385 - 39\pi^{2})(2a_{1}^{M_{1}} - 3a_{1}^{M_{2}}) - 6(59 - 6\pi^{2})(a_{2}^{M_{1}} + 6a_{2}^{M_{2}}) \right. \\ \left. + 54(69 - 7\pi^{2})a_{1}^{M_{1}}a_{1}^{M_{2}} - 36(385 - 39\pi^{2})(2a_{1}^{M_{1}} - 3a_{1}^{M_{2}}) - 6(59 - 6\pi^{2})(a_{2}^{M_{1}} + 6a_{2}^{M_{2}}) \right. \\ \left. + 54(69 - 7\pi^{2})a_{1}^{M_{1}}a_{1}^{M_{2}} - 36(385 - 39\pi^{2})(2a_{1}^{M_{1}}a_{2}^{M_{2}} - a_{2}^{M_{1}}a_{1}^{M_{2}}) - 6(59 - 6\pi^{2})(a_{2}^{M_{1}} + 6a_{2}^{M_{2}}) \right. \\ \left. + 54(69 - 7\pi^{2})a_{1}^{M_{1}}a_{1}^{M_{2}} - 36(385 - 39\pi^{2})(2a_{1}^{M_{1}}a_{2}^{M_{2}} - a_{2}^{M_{1}}a_{1}^{M_{2}}) - 6(59 - 6\pi^{2})(a_{2}^{M_{1}} + 6a_{2}^{M_{2}}) \right. \\ \left. + 54(69 - 7\pi^{2})a_{1}^{M_{1}}a_{1}^{M_{2}} - 36(385 - 39\pi^{2})(2a_{1}^{M_{1}}a_{2}^{M_{2}} - a_{2}^{M_{1}}a_{1}^{M_{2}}) - 6(59 - 6\pi^{2})(a_{2}^{M_{1}}a_{2}^{M_{2}} - a_{2}^{M_{1}}a_{2}^{M_{2}} - \pi K \right. \\ \left. + 64(69 - 7\pi^{2})a_{1}^{M_{1}}a_{1}^{M_{2}} - 36(385 - 39\pi^{2})(2a_{1}^{M_{1}}a_{2}^{M_{2}} - a_{2}^{M_{1}}a_{2}^{M_{2}} - a_{2}^{M_{$$

	$\pi\pi$	$\pi ar{K}$	$ar{K}K$
A_1^i	$31.7X_A - 51.5 + 6.2 + 1.5X_A^2$	$37.6X_A - 63.4 + 6.5 + 1.6X_A^2$	$23.4X_A - 36.0 + 5.2 + 1.7X_A^2$
	$[18X_A - 18 + 5.2 + 1.5X_A^2]$	$[18X_A - 18 + 5.2 + 1.6X_A^2]$	$[18X_A - 18 + 5.2 + 1.7X_A^2]$
A_2^i	$31.7X_A - 51.5 + 6.2 + 1.5X_A^2$	$34.6X_A - 56.2 + 6.9 + 1.6X_A^2$	$23.4X_A - 36.0 + 5.2 + 1.7X_A^2$
	$[18X_A - 18 + 5.2 + 1.5X_A^2]$	$[18X_A - 18 + 5.2 + 1.6X_A^2]$	$[18X_A - 18 + 5.2 + 1.7X_A^2]$

- $> |A_{1,2}^i|$ can differ by more than 20% in the BBNS+ model!
- \succ The amplitude ratios $A_{1,2}^i(\pi\pi)/A_{1,2}^i(KK)$ get enhanced in the BBNS+ model! \Longrightarrow what we need!

Ways to improve the modelling of annihilations

 \square How to improve: \triangleright Making the parameter X_A to be flavour dependent & depending on its origins;

$$\int_{0}^{1} dy \, \frac{\Phi_{M_{1}}(y)}{y^{2}} = \Phi'_{M_{1}}(0) \int_{0}^{1} dy \, \frac{1}{y} + \int_{0}^{1} dy \, \frac{\Phi_{M_{1}}(y) - y \, \Phi'_{M_{1}}(0)}{y^{2}} \qquad \to \qquad 6X_{0}^{M_{1}} - 6, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}^{2}} = \Phi'_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \bar{x} \, \Phi'_{M_{2}}(1)}{\bar{x}^{2}} \qquad \to \qquad 6X_{1}^{M_{2}} - 6, \\
\int_{0}^{1} dy \, \frac{\Phi_{M_{1}}(y)}{y} = \Phi_{M_{1}}(0) \int_{0}^{1} dy \, \frac{1}{y} + \int_{0}^{1} dy \, \frac{\Phi_{M_{1}}(y) - \Phi_{M_{1}}(0)}{y} \qquad \to \qquad X_{0}^{M_{1}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}, \\
\int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x)}{\bar{x}} = \Phi_{M_{2}}(1) \int_{0}^{1} dx \, \frac{1}{\bar{x}} + \int_{0}^{1} dx \, \frac{\Phi_{M_{2}}(x) - \Phi_{M_{2}}(1)}{\bar{x}} \qquad \to \qquad X_{1}^{M_{2}}(1)$$

 \succ To make it predictive, distinguish whether the endpoint configuration mediated by a soft strange quark (X_A^s) or a soft up or down quark (X_A^{ud}) .

- □ Advantages compared to original BBNS: two free parameters!
 - \succ For $\pi\pi$ final states, only X_A^{ud} involved;
 - easily to reproduce the data!
 - \succ For KK final states, both X_A^{ud} (for $M_1M_2=K^+K^-$) and X_A^s (for $M_1M_2=K^-K^+$) involved;
- □ Other interesting progress:

Lu, Shen, Wang, Wang 2202.08073; Boer talk @ SCET2023;

Neubert talk @ Neutrinos, Flavour and Beyond 2022

Summary

- ☐ With dedicated LHCb & Belle II, precision era for B physics expected!
- NNLO calculation at LP in QCDF/SCET complete; but some puzzles still remain:
 - ightharpoonup for class-I $B_q^0 o D_q^{(*)-}L^+$ decays, $\mathcal{O}(4-5\sigma)$ discrepancies observed;
 - ightharpoonup long-standing $\operatorname{Br}(\overline{B}{}^0 \to \pi^0 \pi^0)$ and $\Delta A_{CP}(\pi K) = A_{CP}(\pi^0 K^-) A_{CP}(\pi^+ K^-)$;
 - sub-leading power corrections in QCDF/SCET need to be considered!
- **□** Power-suppressed colour-octet matrix elements:

$$\langle M_1 M_2 \big| [\bar{u}_c T^A h_v]_{\Gamma_1} [\bar{s}_{\bar{c}} T^A u_{\bar{c}}]_{\Gamma_2}(u) \big| \bar{B} \rangle = \hat{A}_{M_1 M_2} \mathfrak{F}_{M_2}^{BM_1}(u), \text{ with } \mathfrak{F}_{M_2}^{BM_1}(u) \text{ an arbitrary function}$$

- ☐ Improved treatments of annihilation amplitudes: SU(3)-breaking effects & flavor-dependence
 - of the building blocks $A_{1,2}^i$; **correct direction as expected!**

Thank You for your attention!