Charmless two-body *B* decays in perturbative QCD factorization approach

Shan Cheng

Hunan University

Chinese Physics C Vol. 46, No. 12 (2022) 123103

Jian Chai, SC, Yao-hui Ju, Da-cheng Yan, Cai-dian Lü and Zhen-jun Xiao

Motivation

- 2 Introduction of the PQCD approach
 - Three scale factorization frame
- **3** PQCD updates of $B \rightarrow PP, PV, VV$ decays

4 Conclusion

5 Back slides: Progresses towards to NLO

- In the post Higgs Era, the precise testing of SM and searching of NP are the core tasks of particle physics.
- HFP plays am important role in both two targets, *B* meson hadronic decays provides many processes with CPV.

• Timeline of **B** physics

- $\dagger\,$ 1973, Kaboyashi & Maskawa proposed a 3 \times 3 unitary matrix (4 parameters) of quark mixing to accommodate CPV,
- † 1977, CFS-E288 at FermiLab discovered Υ meson ($b\bar{b}$), Lederman,
- \dagger 1981, *Bigi & Santa* pointed out the expectation of large CPV in B^0 decay according to CKM theory,
- \dagger 1987, Oddone proposed the construction of B factories to study CPV,
- † 1999, BABAR and Belle started running; 2001(04), $A_{CP}(t, f)(A_{CP})$ in B^0 decays,
- † 2009, LHCb played in to the game; 2013(20), $A_{CP}(A_{CP}(t, f))$ in B_s decays,

2012, A_{CP} in B^+ decays; 2019, δA_{CP} in D decays,

† Anomalies: $R_{K^{(*)}}$, R_D , P'_5 , $B_s \rightarrow \mu\mu$, $|V_{ub}|$, $|V_{cb}|$

Motivation: Experiment promotions

- SuperKEKB(2018-2026) \triangle The first measurements of $B^+ \rightarrow \rho^+ \rho^0, B^0 \rightarrow K^0 \pi^0$ have been released [Belle-II, 2021], $\triangle A_{cp}, S_{cp}$ in $B^0 \rightarrow J/\psi K_s, \phi K_s, K_s \pi^0$ and $K \pi$ isospin sum rules [Belle-II, 2023]
- HL-LHC(2027-2033) $\triangle \mathcal{L} = 23(300) fb^{-1}$ in phase 1(2), 2 order larger than LHC
- More precise study of B decays from the theoretical side is imperative

Shan Cheng (HNU)

Motivation: Theoretical progresses

- High precision calculation of two-body charmless B decays
 - † NF: $\sim F_{B \rightarrow M_2} \otimes f_{M_1}$ [Bauer&Stech&Wirbel 1985,87]

GF: pQCD corrections from $O_{i=1,2}$ and $O_{i=3,10}$ [Ali&Kramer&Lü 1998,99]

QCDF: VC to $\mathcal{M}_{t,p}$ + correction to spectator scattering, full NNLO ($\mathcal{O}(\alpha_s^2)$) [Benele 2010, Bell 15, 20, Huber 16, Beneke 06,07, Jain 07]

- SCET: introduces different fields in different energy regions, simple kinematics but complicated dynamics [Bauer 2001, Chay 04, Becher 15], QCDF/SCET [Beneke 2015]
- † $B \rightarrow \pi\pi$ decay is studied from LCSRs [Khodjamirian 2001,03,05] the high order & power corrections of $B \rightarrow P, V$ form factors [Bharucha 2016, Wang 15,16,20, Lü 19, Beneke 17, Gubernari 19, Cheng 17,19]
- To eliminate the end-point singularity emerged in collinear factorization, the PQCD approach is proposed by picking up the k_T of valence quarks.
 - † $B \rightarrow M$ FFs and the annihilation amp. are both calculable [Keum 2001, Lü 01]
 - † LO $(\mathcal{O}(\alpha_s))$ $B \rightarrow PP, PV, VV$ decays [Xiao 2007; Lü 02; Li 05, Li 06, Zou 15], [Hua 2021]
 - † partially NLO (O(α_s²)): △ factorizable amplitudes [Cheng 2021], △ effective operators [Mishima 2003, Li 05], △ hard scattering [Li 2012, Cheng 14], [Li 13, Cheng 15,15, Hua 18], [Li 14, Liu 15,16], △ TMD wave function [Li-Wang 2014, 15]
- A timely update of two-body hadronic B decays is urgent.

Shan Cheng (HNU)

- Derive the effective Hamiltonian by integrating over m_W [Buchalla 1996]
 - [†] Product of two charged currents is expanded by a series of local operators *O_i* with the weighted coefficients *C_i*
- Dynamics at the scale $\mathcal{O}(m_W)$ is absorbed into Wilson coefficients $C_i(\mu)$
 - [†] C_i is obtained by matching the \mathcal{L}_{eff} with the full theory of weak decays [Ma 80, Inami&Lim 81, Clements 83]
- The rest go into the four fermion effective operators $O_i(\mu)$
- The key is to calculate the hadron matrix element $\langle M_1 M_2 | O_i | B
 angle$

Shan Cheng (HNU)

- Diagrams at scales $O(\Lambda_{QCD}) O(m_b)$: Hadron matrix element $\langle M_1 M_2 | O_i | B \rangle$
- Factorization: detach the hard kernel *H* O_i at scale O(m_b)
 from the hadron wave function Φ B, M₁, M₂ mesons at scale O(Λ_{QCD})
- Prediction power: \mathcal{H} is calculated perturbatively order by order, Φ s are universal

End-point singularities appear in diagrams (a,b,e,f)

- End-point singularities appear in diagrams (a,b,e,f)
 - † *B* rest frame, p_2 and p_3 are collinear with large momenta, $m_{2,3} \ll m_B$ † put on light cone: $p_2 = (\frac{m_B}{\sqrt{2}}, 0, \mathbf{0}_T)$, $p_3 = (0, \frac{m_B}{\sqrt{2}}, \mathbf{0}_T)$ valence (anti-)quark: $k_2 = x_2 p_2$, $\bar{k}_2 = \bar{x}_2 p_2$

• Picking up the transversal momentum, parton momentum is off-shell by k_T^2

$$\mathcal{M}_a \propto \sum_{t=2,3} \int dx_1 dx_3 d\mathbf{k}_{1T} d\mathbf{k}_{3T} \kappa_t(x_i) \frac{\alpha_s(\mu)\phi_B(x_1, \mathbf{k}_{1T})\phi_3^t(x_3, \mathbf{k}_{3T})}{x_1 \bar{x}_3 m_B^2 - \mathbf{k}_T^2}$$

• End-point singularity at leading and subleading powers

$$\mathcal{H}_{a} \propto \frac{\alpha_{s}(\mu)}{x_{1}\bar{x}_{3}m_{B}^{2} - \mathbf{k}_{T}^{2}} \sim \frac{\alpha_{s}(\mu)}{x_{1}\bar{x}_{3}m_{B}^{2}} - \frac{\alpha_{s}(\mu)\mathbf{k}_{T}^{2}}{(x_{1}\bar{x}_{3}m_{B}^{2})^{2}} + \cdots$$

• At the end-points, the power suppressed TMD terms are nonnegligible

- Introduce **k**_T to regularize the end-point singularity [Huang 1991]
- Enriches the study of hadron DAs, TMD definition with Wilson link, observables
- Scales of transversal momentum and the large logarithms [borrowed from H.N Li]

† Multiple scales and hence large single logarithms in \mathcal{H} and Φ from QCD correction † Double logs in the soft-collinear regions $\alpha_s(\mu) \ln^2(\mathbf{k}_T^2/m_B^2)$

Shan Cheng (HNU)

5th-HF&QCD@HUST

April 21, 2023 10 / 38

- In order to repair the perturbative expansion, do resummation by using RGE
- k_T resummation for \mathcal{H} and obtain $S(x_i, b_i, Q)$ [Botts 1989, Li 92]
 - † decreases the inverse power of the momentum transfer in the divergence amplitude
 - \dagger exhibits high suppression for large transversal distances (small k_T) interactions
- Integrating over k_T , large log $\ln^2(x_i)$ when intermediate gluon is on shell
- threshold resummation for Φ and obtain $S_t(x_i, Q)$ [Li 1999]
 - suppresses the small x_i regions
 - repairs the self-consistency between $lpha_s(t)$ and hard log $\ln(x_1x_3Q^2/t^2)$
- ‡ dynamics with $k_T < \sqrt{Q\Lambda}$ is organized into S(x, b, Q)
- ‡ dynamics in small x is suppressed by $S_t(x, Q)$

 $\mathcal{M}(B \to M_1 M_2) = \sum_i C_i(m_W, t) \otimes \mathcal{H}_i(t, b) \otimes \phi(x, b) \operatorname{Exp} \left[-s(p^+, b) - \int_{1/b}^t \frac{d\bar{\mu}}{\bar{u}} \gamma_{\phi}(\alpha_s(\bar{\mu})) \right]$

• Different topologies: emission (real, $\delta_1 = 0$) and annihilation (plural, $\delta_2 \neq 0$)

$$\frac{1}{k_T^2 - xm_B^2 - i\epsilon} = \mathcal{P}\left(\frac{1}{k_T^2 - xm_B^2}\right) + i\delta(k_T^2 - xm_B^2).$$

- Sudakov expanent (NLO)
 - t center of mass scattering angle and angular distribution of scattering hadrons
 - important in baryon decays but not in B meson decays
- NLO corrections to spectator emission amplitude from Glauber gluon
 - only supplies a sizable phase to the pion final state
 - † modifies the interactions between different topological amplitudes
- on shell charm quark loop correction (NLO)

• General decomposition of Wilson coefficients for each certain effective weak vertex

	Weak vertex	Typical amplitudes	Wilson coefficients
	[s,s,s],[d,d,d]	$\mathcal{E}^{ extsf{LL}}/\mathcal{R}^{ extsf{LL}}, \mathcal{E}^{ extsf{LL}}_{NF}/\mathcal{R}^{ extsf{LL}}_{NF}$	$a_3 + a_4 - \frac{a_9 + a_{10}}{2}, C_3 + C_4 - \frac{C_9 + C_{10}}{2}$
spectator	meson M ₃	$\mathcal{E}^{\mathbf{LR}}/\mathcal{R}^{\mathbf{LR}}, \mathcal{E}^{\mathbf{LR}}_{NF}/\mathcal{R}^{\mathbf{LR}}_{NF}$	$a_5 - \frac{a_7}{2}, C_5 - \frac{C_7}{2}$
†		$\mathcal{E}^{\mathbf{SP}}/\mathcal{R}^{\mathbf{SP}}, \mathcal{E}_{NF}^{\mathbf{SP}}/\mathcal{R}_{NF}^{\mathbf{SP}}$	$a_6 - \frac{a_8}{2}, C_6 - \frac{C_8}{2}$
- f.a	[d, s, s], [s, d, d]	$\mathcal{E}^{ extsf{LL}}/\mathcal{R}^{ extsf{LL}}, \mathcal{E}^{ extsf{LL}}_{NF}/\mathcal{R}^{ extsf{LL}}_{NF}$	$a_4 - \frac{a_{10}}{2}, C_3 - \frac{C_9}{2}$
$[\underline{q_1, q_2}, q_3]$		$\mathcal{E}^{\mathbf{LR}}/\mathcal{R}^{\mathbf{LR}}, \mathcal{E}^{\mathbf{LR}}_{NF}/\mathcal{R}^{\mathbf{LR}}_{NF}$	$a_6 - \frac{a_8}{2}$, $C_5 - \frac{C_7}{2}$
Ļ	[s,s,d], [d,d,s]	$\mathcal{E}^{\mathrm{LL}}/\mathcal{R}^{\mathrm{LL}}, \mathcal{E}^{\mathrm{LL}}_{NF}/\mathcal{R}^{\mathrm{LL}}_{NF}$	$a_3 - \frac{a_9}{2}$, $C_4 - \frac{C_{10}}{2}$
emission meso	on <i>M</i> ₂	$\mathcal{E}^{\mathbf{LR}}/\mathcal{R}^{\mathbf{LR}}, \mathcal{E}^{\mathbf{LR}}_{NF}/\mathcal{R}^{\mathbf{LR}}_{NF}$	$a_5 - \frac{a_7}{2}, C_6 - \frac{C_8}{2}$
	[u,u,s], [u,u,d]	$\mathcal{E}^{ extsf{LL}}/\mathcal{R}^{ extsf{LL}}, \mathcal{E}^{ extsf{LL}}_{NF}/\mathcal{R}^{ extsf{LL}}_{NF}$	a_2, C_2
		$\mathcal{E}^{\mathbf{LR}}/\mathcal{R}^{\mathbf{LR}}, \mathcal{E}^{\mathbf{LR}}_{NF}/\mathcal{R}^{\mathbf{LR}}_{NF}$	$a_3 + a_9, C_4 + C_{10}$
		$\mathcal{E}^{\mathbf{SP}}/\mathcal{A}^{\mathbf{SP}}, \mathcal{E}^{\mathbf{SP}}_{NF}/\mathcal{A}^{\mathbf{SP}}_{NF}$	$a_5 + a_7, C_6 + C_8$
	[s,u,u], [d,u,u]	$\mathcal{E}^{ extsf{LL}}/\mathcal{R}^{ extsf{LL}}, \mathcal{E}^{ extsf{LL}}_{NF}/\mathcal{R}^{ extsf{LL}}_{NF}$	a_1, C_1
		$\mathcal{E}^{\mathbf{LR}}/\mathcal{R}^{\mathbf{LR}}, \mathcal{E}^{\mathbf{LR}}_{NF}/\mathcal{R}^{\mathbf{LR}}_{NF}$	$a_4 + a_{10}, C_3 + C_9$
		$\mathcal{E}^{SP}/\mathcal{R}^{SP}, \mathcal{E}^{SP}_{NF}/\mathcal{R}^{SP}_{NF}$	$a_6 + a_8$, $C_5 + C_7$

• ie. Decay amplitude of $B^+ o \pi^+ K^0$ at NLO

$$\begin{split} \mathcal{M}(B^{+} \to \pi^{+} K^{0}) &= \frac{G_{F}}{\sqrt{2}} V_{ub}^{*} V_{uc} \Big[a_{1} \mathcal{A}_{\pi}^{\mathrm{LL}} + C_{1} \mathcal{A}_{NF,\pi}^{\mathrm{LL}} + \mathcal{M}_{B-K^{*}\pi^{-}}^{\mathrm{(q]}, u} \Big] + \frac{G_{F}}{\sqrt{2}} V_{cb}^{*} V_{cs} \mathcal{M}_{B-K^{*}\pi^{-}}^{\mathrm{(q]}, c} - \frac{G_{F}}{\sqrt{2}} V_{cb}^{*} V_{ts} \Big[\left(a_{4} - \frac{a_{10}}{2} \right) \mathcal{E}_{\pi}^{\mathrm{LL}} \\ &+ \left(a_{6} - \frac{a_{8}}{2} \right) \mathcal{E}_{\pi}^{\mathrm{SP}} + \left(C_{3} - \frac{C_{9}}{2} \right) \mathcal{E}_{NF,\pi}^{\mathrm{LL}} + \left(C_{5} - \frac{C_{7}}{2} \right) \mathcal{E}_{NF,\pi}^{\mathrm{LR}} + \left(a_{4} + a_{10} \right) \mathcal{A}_{\pi}^{\mathrm{LL}} + \left(a_{6} + a_{8} \right) \mathcal{A}_{\pi}^{\mathrm{SP}} \\ &+ \left(C_{3} + C_{9} \right) \mathcal{A}_{NF,\pi}^{\mathrm{LL}} + \left(C_{5} + C_{7} \right) \mathcal{A}_{NF,\pi}^{\mathrm{LR}} + \mathcal{M}_{B-K^{*}\pi^{-}}^{\mathrm{(q]},1)} + \mathcal{M}_{B-K^{*}\pi^{-}}^{\mathrm{(mp)}} \Big], \end{split}$$

riangle the glauber gluon corrections and TMD wave functions are not taken into account in this work

Shan Cheng (HNU)

• Operator decomposition of $B \rightarrow PP$ decays

	Topology	Channel	
	$\{\mathbf{P}, T, C, E, P_{ew}\}$	$\pi^0 K^+, \eta_q K^+$	
	$\{\mathbf{T}, \mathbf{P}, \mathbf{C}, \mathbf{E}, \mathbf{P}_{\mathrm{ew}} \}$	$\pi^+\eta_q$	
T ree/color-favoured tree emission	$\{{\bf T}, C, P_{\rm ew}\;\}$	$\pi^+\pi^0$	
QCD Penguin	$\{{\bf P}, E, P_{ew} \}$	$\pi^+ K^0,\eta_s K^+,K^+ ar K^0$	
	$\{\mathbf{P}, \mathbf{P}_{\mathrm{ew}}\}$	$\pi^+\eta_s$	
\mathbf{C} olor-suppressed tree emission	$\{\mathbf{T}, \mathrm{P}, \mathrm{E}, \mathrm{P}_{\mathrm{ew}} \; \}$	$\pi^+\pi^-$	
Pom: Electroweak penguin	$\{\mathbf{P}, \mathrm{T}, \mathrm{P}_{\mathrm{ew}}\}$	$\pi^- K^+$	
em	$\{\mathbf{C}, \mathbf{E}, \mathbf{P}, \mathrm{P}_{\mathrm{ew}} \}$	$\pi^0\pi^0,\pi^0\eta_q,\eta_q\eta_q$	
E: tree annihilation amplitude	$\{{\bf P}, C, P_{\rm ew} \}$	$\pi^0 K^0, \eta_q K^0$	
	$\{{\bf P}, {\rm P_{ew}}\;\}$	$\eta_{s}K^{0}, K^{0}ar{K}^{0}, \pi^{0}\eta_{s}, \eta_{s}\eta_{s}, \eta_{q}\eta_{s}$	
	$\{{\bf E}, {\rm P}, {\rm P}_{\rm ew} \}$	K^+K^-	

- Main uncertainties of PQCD calculation: high order QCD corrections & LCDAs
 - † characterized by the variation in the factorization scale
 - minimized by setting μ_t as the largest virtuality in hard scattering
 - two-loop expression for the strong coupling

Meson	π^{\pm}/π^{0}	K^{\pm}/K^0	η_q	η_s
m/GeV [108]	0.140/0.135	0.494/0.498	0.104	0.705
f/GeV	0.130 [108]	0.156 [108]	0.125 [114]	0.177 [114]
m0/GeV	1.400	1.892 [112]	1.087	1.990
a_1	0	0.076 ± 0.004 [113]	0	0
a_2	0.270 ± 0.047 [14]	0.221±0.082 [113]	0.250 ± 0.150 [115]	0.250 ± 0.150 [115]
Meson	ρ^{\pm}/ρ^{0}	$K^{*\pm}/K^{*0}$	ω	ø
m/GeV [108]	0.775	0.892	0.783	1.019
f /GeV [9]	0.210/0.213	0.204	0.197	0.233
f^{\perp}/GeV	0.144/0.146 [116]	0.159 [9]	0.162 [9]	0.191 [9]
a_1^{\parallel}	0	0.060 ± 0.040 [117]	0	0
a_1^{\perp}	0	0.040 ± 0.030 [117]	0	0
a_2^{\parallel}	0.180 ± 0.037 [116]	0.160 ± 0.090 [117]	0.150 ± 0.120 [117]	0.230 ± 0.080 [117]
a_2^{\perp}	0.137 ± 0.030 [116]	0.100 ± 0.080 [117]	0.140 ± 0.120 [117]	0.140 ± 0.070 [117]

Input parameters of meson LCDAs

default scale $1\,{\rm GeV}$

• Anatomy of NLO corrections to \mathcal{B} and $\mathcal{A}_{\rm CP}$ of $\pi\pi, \pi K$ modes

	100 A.	· · ·				
Mode	LO	+VC	+QL	+MP	$+\mathcal{F}^{NLO}$	PDG [108]
$\mathcal{B}(B^+ \to \pi^+ \pi^0)$	3.58	3.89			$4.18^{+1.32}_{-0.97}$	5.5 ± 0.4
\mathcal{A}_{CP}	-0.05	0.09			$0.08^{+0.09}_{-0.09}$	3±4
$\mathcal{B}(B^0\to\pi^+\pi^-)$	6.97	6.82	6.92	6.76	$7.31^{+2.38}_{-1.72}$	5.12 ± 0.19
$C_{\pi^{+}\pi^{-}}$	-23.4	-27.6	-13.8	-13.3	$-12.8^{+3.5}_{-3.3}$	-32 ± 4
$S_{\pi^{+}\pi^{-}}$	-31.1	-35.5	-46.4	-37.0	$-36.4^{+1.5}_{-1.5}$	-65 ± 4
$\mathcal{B}(B^0\to\pi^0\pi^0)$	0.14	0.29	0.30	0.22	$0.23^{+0.07}_{-0.05}$	1.59 ± 0.26
$C_{\pi^{0}\pi^{0}}$	-3.1	60.1	73.6	77.6	$80.2^{+5.2}_{-6.7}$	33 ± 22
$\mathcal{B}(B^+ \to \pi^+ K^0)$	17.0	20.8	28.0	19.4	20.3+6.3	23.7 ± 0.8
\mathcal{A}_{CP}	-1.19	-0.95	-0.06	-0.08	$-0.08^{+0.08}_{-0.09}$	-1.7 ± 1.6
$\mathcal{B}(B^+ \to \pi^0 K^+)$	10.0	12.75	16.76	11.92	12.3+3.8 -2.7	12.9 ± 0.5
\mathcal{A}_{CP}	-10.9	-5.20	2.26	2.48	$2.28^{+1.61}_{-1.74}$	3.7 ± 2.1
$\mathcal{B}(B^0 \to \pi^- K^+)$	14.3	18.0	23.9	16.4	$17.1^{+5.2}_{-3.7}$	19.6 ± 0.5
\mathcal{A}_{CP}	-15.2	-14.2	-4.16	-5.42	$-5.43^{+2.24}_{-2.34}$	-8.3 ± 0.4
$\mathcal{B}(B^0 \to \pi^0 K^0)$	5.90	8.12	10.4	6.99	7.38 ^{+2.11} -1.50	9.9 ± 0.5
$C_{\pi^{0}K^{0}}$	-2.62	-7.31	-6.57	-7.97	$-7.70^{+0.21}_{-0.13}$	0 ± 13
$S_{\pi^{0}K^{0}}$	70.1	73.5	71.6	71.9	$71.9^{+0.6}_{-0.6}$	58 ± 17

† B: QL cancels with MP corrections, VC and NLO ffs do not have a significant effect

- † NLO corrections change asymmetry parameters more significantly
- [†] VC (QL) flips the sign of the direct CPV of $\pi^+\pi^0$ and $\pi^0\pi^0$ (π^0K^+) modes $\mathcal{A}_{CP}(B^+ \to K^+\pi^0) - \mathcal{A}_{CP}(B^+ \to K^+\pi^-) = 7.71^{+2.74}_{-2.92}(PQCD)$ VS 12.0 ± 2.4(Data)
- † Color-suppressed modes $(\pi^0\pi^0,\pi^0K^0)$ are more sensitive to NLO corrections.
- † PQCD shows a large direct CPV in π⁻K⁺, π⁺π⁻ modes in 2000 (LO), which are confirmed by BABRA and Belle afterward.

• Updated PQCD results for the branching ratios of $B \rightarrow PP$ decays (in units of 10^{-6})

		-		-		
	Mode	PQCD	SCET1 [125]	SCET2 [125]	QCDF [127]	PDG [108]
	$B^+ \to \pi^+ K^0$	20.3+6.3+0.1 -4.4-0.1			21.7+13.4	23.7 ± 0.8
	$B^+ \rightarrow \pi^0 K^+$	12.3 ^{+3.8+0.1} -2.7-0.1			$12.5_{-4.8}^{+6.8}$	12.9 ± 0.5
	$B^+ \rightarrow \eta' K^+$	52.0 ^{+15.0+2.1} -10.8-0.7	69.5 ± 28.4	69.3 ± 27.7	74.5 ^{+63.6} -31.6	70.4 ± 2.5
	$B^+ \rightarrow \eta K^+$	6.68 ^{+2.26+1.85} -1.60-0.96	2.7 ± 4.8	2.3 ± 4.5	$2.2^{+2.0}_{-1.3}$	2.4 ± 0.4
	$B^+ \rightarrow K^+ R^0$	1.56+0.48+0.02 -0.34-0.02			$1.8^{+1.1}_{-0.7}$	1.31 ± 0.17
	$B^+ \rightarrow \pi^0 \pi^+$	4.18+1.30+0.22 4.45			5.9 ^{+2.6} -1.6	5.5 ± 0.4
riq-ris mixing	$B^+ \rightarrow \pi^+ \eta'$	$2.00^{+0.57+0.36}_{-0.42-0.31}$	2.4 ± 1.3	2.8 ± 1.3	$3.8^{+1.6}_{-0.8}$	2.7 ± 0.9
$\checkmark \eta_q - \eta_s - \eta_g$ mi	$\times ing^+ \rightarrow \pi^+ \eta$	2.62 ^{+0.78+0.45} -0.57-0.40	4.9 ± 2.0	5.0 ± 2.1	5.0 ^{+1.5} -0.9	4.02 ± 0.27
[Fan 2012]	$B^0 \rightarrow \pi^- K^+$	17.1 ^{+5.2+0.1} -3.7-0.1			$19.3^{+11.4}_{-7.8}$	19.6 ± 0.5
	$B^0 \rightarrow \pi^0 K^0$	7.38+2.11+0.03 -1.50-0.04			8.6 ^{+5.4} -3.6	9.9 ± 0.5
	$B^0 \rightarrow \eta' K^0$	52.3 ^{+14.9+2.1} -10.8-0.3	63.2 ± 26.3	62.2 ± 25.4	70.9 ^{+59.1} -29.8	66 ± 4
	$B^0 \rightarrow \eta K^0$	4.63 ^{+1.57+1.51} -1.09-0.79	2.4 ± 4.4	2.3 ± 4.4	$1.5^{+1.7}_{-1.1}$	$1.23^{+0.27}_{-0.24}$
	$B^0 \rightarrow K^0 \bar{K}^0$	1.48+0.47+0.01 -0.33-0.00			$2.1^{+1.3}_{-0.8}$	1.21 ± 0.16
	$B^0 \rightarrow K^+ K^-$	0.046+0.058+0.009 -0.039-0.008			0.1 ± 0.04	0.078 ± 0.015
	$B^0 \to \pi^+\pi^-$	$7.31^{+2.35+0.38}_{-1.68-0.36}$ 5.35			$7.0^{+0.8}_{-1.0}$	5.12 ± 0.19
✓ Glauber gluo	n eßfect ^{,0} π ⁰	$0.23^{+0.07+0.01}_{-0.05-0.01}$ 0.61			$1.1^{+1.2}_{-0.5}$	1.59 ± 0.26
[Liu 2014]	$B^0 \rightarrow \pi^0 \eta'$	$0.20^{+0.05+0.02}_{-0.03-0.01}$	2.3 ± 2.8	1.3 ± 0.6	$0.42^{+0.28}_{-0.15}$	1.2 ± 0.6
	$B^0 \to \pi^0 \eta$	$0.20^{+0.06+0.02}_{-0.04-0.01}$	0.88 ± 0.68	0.68 ± 0.62	$0.36^{+0.13}_{-0.11}$	0.41 ± 0.17
	$B^0 \rightarrow \eta \eta$	0.37+0.09+0.08 -0.07-0.07	0.69 ± 0.71	1.0 ± 1.5	$0.32^{+0.15}_{-0.08}$	< 1
	$B^0 \rightarrow \eta \eta'$	$0.29^{+0.07+0.06}_{-0.05-0.06}$	1.0 ± 1.6	2.2 ± 5.5	$0.36^{+0.27}_{-0.13}$	< 1.2
	$B^0 \rightarrow \eta' \eta'$	$0.42^{+0.09+0.13}_{-0.07-0.11}$	0.57 ± 0.73	1.2 ± 3.7	$0.22^{+0.16}_{-0.08}$	< 1.7

† NLO corrections play an important role in penguin dominated models $\pi K, \eta' K$ and pure annihilation mode $K^0 K^0$

† PQCD predicted ${\cal B}(B_s o \pi^+\pi^-) \sim 6 imes 10^{-6}$ in 2007 (LO), confirmed by CDF in 2011

• Updated PQCD results for the CPV of $B \rightarrow PP$ decays (in units of 10^{-2})

					 • 	
	Mode	PQCD	SCET1 [125]	SCET2 [125]	QCDF [127]	PDG [108]
	$B^+ \rightarrow \pi^+ K_S^0$	$-0.08^{+0.08+0.02}_{-0.09-0.02}$			$0.28^{+0.09}_{-0.10}$	-1.7 ± 1.6
	$B^+ \to \pi^0 K^+$	$2.28^{+1.53+0.50}_{-1.65-0.57}$			4.9+6.3	3.0 ± 2.1
	$B^+ \rightarrow \eta' K^+$	$-1.83^{+0.40+0.77}_{-0.40-1.03}$	-1 ± 1	7 ± 1	$0.45^{+1.4}_{-1.1}$	0.4 ± 1.1
	$B^+ \to \eta K^+$	$-7.75^{+1.06+0.81}_{-0.99-0.43}$	33 ± 31	-33 ± 40	$-14.5^{+18.6}_{-28.1}$	-37 ± 8
	$B^+ \rightarrow K^+ K_S^0$	$1.83^{+1.93+0.14}_{-1.87-0.18}$			-6.4 ± 2.0	14
	$B^+ \to \pi^0 \pi^+$	$0.08^{+0.06+0.07}_{-0.06-0.04}$			$-0.11^{+0.06}_{-0.03}$	3±4
η_q - η_s mixing	$B^+ \to \pi^+ \eta'$	68.9 ^{+2.4+1.0} -2.4-0.9	21 ± 21	2 ± 18	$1.6^{+10.6}_{-13.8}$	6 ± 16
$\sqrt{\eta_q} - \eta_s - \eta_g$ mixin	g $B^+ \rightarrow \pi^+ \eta$	24.8 ^{+3.6+0.8} -3.3-0.7	5 ± 29	37 ± 29	$-5.0^{+8.7}_{-10.8}$	-14 ± 7
[Fan 2012]	$B^0 \rightarrow \pi^- K^+$	$-5.43^{+1.86+1.26}_{-1.92-1.34}$			$-7.4^{+4.6}_{-5.0}$	-8.3 ± 0.4
	$B^0 \rightarrow \pi^0 K_S^0$	$-7.70^{+0.17+0.12}_{-0.09-0.09}$			$-10.6^{+6.2}_{-5.7}$	$C_{\pi^0 K^0} = 0 \pm 13$
		71.9 ^{+0.3+0.5} -0.3-0.5			79.0 ^{+7.2} -5.7	$S_{\pi^0 K^0} = 58 \pm 17$
	$B^0 \rightarrow \eta' K_S^0$	$-2.65^{+0.10+0.07}_{-0.10-0.11}$	1.1 ± 1.4	-2.7 ± 1.2	$3.0^{+1.0}_{-0.9}$	$C_{\eta'K^0}=-6\pm 4$
		69.8 ^{+0.1+0.1} -0.1-0.1	70.6	71.5	67.0 ± 1.4	$S_{\eta' K^0} = 63 \pm 6$
	$B^0 \rightarrow \eta K_S^0$	$-7.88^{+0.14+0.06}_{-0.10-0.02}$	21 ± 21	-18 ± 23.2	$-23.6^{+16.0}_{-29.0}$	
		70.0+0.2+0.2 -0.3-0.1	69	79	79.0 ^{+8.9} -8.5	
	$B^0 \rightarrow K^0_S K^0_S$	$-17.3^{+0.6+0.4}_{-0.4-0.3}$			$-10.0^{+1.2}_{-2.0}$	$C_{K^0_{S}K^0_{S}}=0\pm 40$
		5.34 ^{+1.05+0.53} -1.06-0.49				$S_{K^0_S K^0_S} = -80 \pm 50$
	$B^0 \to \pi^+\pi^-$	$-12.8^{+3.3+1.1}_{-3.1-1.1}$			$17.0^{+4.5}_{-8.8}$	$C_{\pi^+\pi^-}=-32\pm 4$
		$-36.4^{+0.5+1.4}_{-0.4-1.4}$			$-69^{+20.6}_{-13.5}$	$S_{\pi^+\pi^-} = -65 \pm 4$
	$B^0 \to \pi^0 \pi^0$	$-80.2^{+5.2+0.4}_{-6.7-0.2}$			57.2+33.7	$C_{\pi^0\pi^0} = -33 \pm 22$
		53.5 ^{+8.7+3.1} -8.4-3.0				

	Mode	PQCD	SCET1 [128]	SCET2 [128]	QCDF [127]	PDG [108]
	$B^+ \to \pi^+ K^{*0}$	5.52 ^{+1.93+0.38} -1.36 ^{-0.41}	8.5 ^{+5.0} -3.9	9.9 ^{+3.7} -3.2	10.4+4.5	10.1 ± 0.8
	$B^+ \to \pi^0 K^{*+}$	3.58 ^{+1.19+0.18} -0.82 ^{-0.15}	$4.2^{+2.3}_{-1.8}$	$6.5^{+2.0}_{-1.8}$	6.7 ^{+2.5} -2.3	6.8 ± 0.9
η_q - η_s mixing	$B^+ \rightarrow \eta' K^{*+}$	$1.54^{+0.51+0.17}_{-0.34-0.08}$	$4.5^{+6.7}_{-4.0}$	$4.8^{+5.4}_{-3.7}$	$1.7^{+4.9}_{-1.6}$	$4.8^{+1.8}_{-1.6}$
$\gamma_{q} \eta_{s} \eta_{g}$ mixing	$B^+ \rightarrow \eta K^{*+}$	$6.08^{+0.41+2.02}_{-0.30-1.45}$	$17.9^{+6.5}_{-6.1}$	$18.6^{+5.1}_{-5.3}$	$15.7^{+12.7}_{-8.3}$	19.3 ± 1.6
	$B^+ \to K^+ \omega$	6.17 ^{+1.25+1.59} -0.90 ^{-1.33}	5.1 ^{+2.6} -2.1	$5.9^{+2.2}_{-1.8}$	$4.8^{+5.6}_{-3.0}$	6.5 ± 0.4
	$B^+ \to K^+ \phi$	4.61+1.41+2.29 -0.82-0.63	9.7+5.2	8.6+3.4	8.8+5.5	8.8+0.7
	$B^+ \to K^+ \rho^0$	$3.28^{+0.25+0.50}_{-0.21-0.48}$	$6.7^{+2.9}_{-2.4}$	$4.6^{+1.9}_{-1.6}$	3.5+4.1 -4.5	3.7 ± 0.5
	$B^+ \to K^0 \rho^+$	$6.11_{-0.34-0.86}^{+0.45+0.96}$	9.3 ^{+5.0} -4.0	$10.1^{+4.3}_{-3.5}$	7.8 ^{+9.6} -5.3	$7.3^{+1.0}_{-1.2}$
	$B^+ \to K^+ \bar{K}^{*0}$	$0.47^{+0.15+0.02}_{-0.10-0.03}$	$0.49^{+0.28}_{-0.22}$	$0.51^{+0.2}_{-0.17}$	$0.80^{+0.36}_{-0.33}$	0.59 ± 0.08
	$B^+ \rightarrow \bar{K}^0 K^{*+}$	$0.31^{+0.02+0.10}_{-0.02-0.09}$	$0.54^{+0.28}_{-0.22}$	$0.51^{+0.22}_{-0.18}$	$0.46^{+0.56}_{-0.31}$	
	$B^+ \to \pi^+ \rho^0$	4.96 ^{+1.34+0.13} _1.01 ^{-0.14}	$10.7^{+1.2}_{-1.1}$	$7.9^{+0.8}_{-0.8}$	$8.7^{+3.2}_{-1.9}$	8.3 ± 1.2
	$B^+ \to \pi^0 \rho^+$	$10.9^{+3.4+0.6}_{-2.4-0.6}$	$8.9^{+1.0}_{-1.0}$	$11.4^{+1.3}_{-1.1}$	$11.8^{+2.3}_{-1.8}$	10.9 ± 1.4
	$B^+ \rightarrow \eta' \rho^+$	4.06 ^{+1.22+0.84} -0.89-0.77	$0.37^{+2.5}_{-0.23}$	$0.44^{+3.2}_{-0.20}$	5.6 ^{+1.2} -0.9	9.7 ± 2.2
	$B^+ \to \eta \rho^+$	$5.59^{+1.68+1.17}_{-1.22-1.06}$	$3.9^{+2.0}_{-1.7}$	$3.3^{+1.9}_{-1.6}$	8.3 ^{+1.3} -1.1	7.0 ± 2.9
	$B^+ ightarrow \pi^+ \omega$	5.42 ^{+1.44+0.47} -1.10-0.45	$6.7^{+0.80}_{-0.70}$	$8.5^{+0.9}_{-0.9}$	$6.7^{+2.5}_{-1.5}$	6.9 ± 0.5
	$B^+ ightarrow \pi^+ \phi$	$0.042^{+0.014+0.002}_{-0.010-0.002}$	~ 0.003	~ 0.003	~ 0.043	0.032 ± 0.015

• Updated PQCD results for the branching ratios of $B^+ \rightarrow PV$ decays (in units of 10^{-6})

† NLO corrections play an important role in ϕ, ω involved modes, ω - ϕ mixing ?

• Updated PQCD results for the CPV of $B^+ \rightarrow PV$ decays (in units of 10^{-2})

	Mode	PQCD	SCET1 [128]	SCET2 [128]	QCDF [127]	PDG [108]
	$B^+ \rightarrow \eta' K^{*+}$	$1.54^{+9.05+14.9}_{-8.16-9.74}$	$2.7^{+27.4}_{-19.5}$	$2.6^{+26.7}_{-32.9}$	65.5 ^{+35.7} -63.9	-26 ± 27
	$B^+ \rightarrow \eta K^{*+}$	$-34.5^{+2.5+0.9}_{-2.4-0.8}$	$-2.6^{+5.4}_{-5.5}$	$-1.9^{+3.4}_{-3.6}$	$-9.7^{+7.3}_{-8.0}$	2±6
large CPV predictions	$B^+ \to K^+ \omega$	31.5+0.6+0.1 -1.1-0.7	$11.6^{+18.2}_{-20.4}$	$12.3^{+16.6}_{-17.3}$	$22.1^{+19.6}_{-18.2}$	-2 ± 4
	$B^+ \to \pi^+ K^{*0}$	$-0.94^{+0.26+0.04}_{-0.29-0.03}$	0	0	$0.4^{+4.5}_{-4.2}$	-4 ± 9
	$B^+ \to \pi^0 K^{*+}$	$-0.01^{+4.40+1.12}_{-4.87-1.26}$	$-17.8^{+30.4}_{-24.7}$	$-12.9^{+12.0}_{-12.2}$	$1.6^{+11.5}_{-4.2}$	-39 ± 21
	$B^+ \to K^+ \rho^0$	58.7 ^{+4.3+3.2} -4.0-2.8	$9.2^{+15.2}_{-16.1}$	$16.0^{+20.5}_{-22.5}$	45.4 ^{+36.1} -30.2	37 ± 10
	$B^+ \to K^0 \rho^+$	$0.99^{+0.01+0.13}_{-0.01-0.18}$	0	0	$0.3^{+0.5}_{-0.3}$	-3 ± 15
large CPV in rare deca	$V B^+ \rightarrow K^+ \bar{K}^{*0}$	21.3+6.2+1.2 -5.7-1.4	$-3.6^{+6.1}_{-5.3}$	$-4.4^{+4.1}_{-4.1}$	$-8.9^{+3.0}_{-2.6}$	12 ± 10
	$B^+ \to K^+ \phi$	$-1.93^{+0.66+0.66}_{-0.60-0.42}$	0	0	$0.6^{+0.1}_{-0.1}$	2.4 ± 2.8
	$B^+ \to \pi^+ \phi$	0.0			0.0	1 ± 5
	$B^+ \to \pi^+ \omega$	$-29.8^{+0.5+1.1}_{-0.4-0.8}$	$0.5^{+19.1}_{-19.6}$	$2.3^{+13.4}_{-13.2}$	$-13.2^{+12.4}_{-10.9}$	-4 ± 5
	$B^+ \to \pi^+ \rho^0$	$14.9^{+0.4+0.5}_{-0.4-0.6}$	$-10.8^{+13.1}_{-12.7}$	$-19.2^{+15.6}_{-13.5}$	$-9.8^{+11.9}_{-10.5}$	0.9 ± 1.9
	$B^+ \to \pi^0 \rho^+$	$-7.31^{+0.06+0.07}_{-0.02-0.03}$	$15.5^{+17.0}_{-19.0}$	$12.3^{+9.4}_{-10}$	$9.7^{+8.3}_{-10.8}$	2 ± 11
η_q - η_s mixing	$B^+ \to \eta' \rho^+$	$29.0^{+0.4+0.0}_{-0.4-0.1}$	$-19.8^{+66.6}_{-37.6}$	$-21.7^{+135.9}_{-24.3}$	$1.4^{+14.0}_{-11.9}$	26 ± 17
η_q - η_s - η_g mixing	$B^+ \rightarrow \eta \rho^+$	$-13.0^{+0.1+0.1}_{-0.1-1.5}$	$-6.6^{+21.5}_{-21.3}$	$-9.1^{+16.7}_{-15.8}$	-8.5+6.5	11 ± 11

 \dagger The measured direct CPV in $B \rightarrow PV$ is significantly larger than that in $B \rightarrow PP$

- † It is hard to measure $B \rightarrow PV$ decays precisely \Leftarrow vector meson is not stable
- Three-body B decays along with intermediate $B \rightarrow PV$ decays, but difficult to resolve

?

$B \rightarrow PP, PV, VV$ decays: Numerics

• Updated PQCD results for the branching ratios of $B^+ \rightarrow VV$ decays (in units of 10^{-6})

	Mode	PQCD	SCET [130]	QCDF [127,131]	PDG [108]
	$B^+ \rightarrow \rho^+ K^{*0}$	9.40 ^{+1.43+1.05} -1.34-0.95	8.93 ± 3.18	9.2 ^{+3.8} -5.5	9.2 ± 1.5
	$B^+ \rightarrow \rho^0 K^{*+}$	$6.25^{+1.12+0.59}_{-0.84-0.53}$	4.64 ± 1.37	$5.5^{+1.4}_{-2.5}$	4.6 ± 1.1
	$B^+ \rightarrow \omega K^{*+}$	5.48+1.52+0.81 -1.36-0.66	5.56 ± 1.60	$3.0^{+2.5}_{-1.5}$	< 7.4
	$B^+ \to \phi K^{*+}$	$12.3^{+1.7+1.5}_{-1.4-1.4}$	9.86 ± 3.39	$10.0^{+12.4}_{-3.5}$	10.2 ± 2.0
sospin symmetry	$B^+ \to K^{*+} \bar{K}^{*0}$	$0.66^{+0.12+0.09}_{-0.09-0.08}$	0.52 ± 0.18	$0.6^{+0.3}_{-0.3}$	0.91 ± 0.29
sospin symmetry $\mathcal{B}(a^0 a^0)$	$B^+ \rightarrow \rho^0 \rho^+$	$14.0^{+4.1+0.4}_{-3.0-0.4}$	22.1 ± 3.7	$20.06^{+4.5}_{-2.1}$	24.0 ± 1.9
\downarrow	$B^+ \to \rho^+ \omega$	$10.9^{+2.8+1.0}_{-2.1-0.9}$	19.2 ± 3.1	16.9 ^{+3.6} -1.8	15.9 ± 2.1
$\mathcal{B}(ho^+ ho^-)\sim 2\mathcal{B}(ho^+ ho^0)$	$B^+ \to \rho^+ \phi$	$0.042^{+0.011+0.004}_{-0.008-0.003}$	0.005 ± 0.001		< 3.0
	$B^0 \rightarrow \rho^- K^{*+}$	8.72 ^{+1.27+0.97} -0.96-0.87	10.6 ± 3.2	8.9 ^{+4.9} -5.6	10.3 ± 2.6
VS (no new physics	$Violates QCD B^0 \rightarrow \rho^0 K^{*0}$ isospir	n symmetry 3.37+0.88+0.43 -0.29-0.39	5.87 ± 1.87	$4.6^{+3.6}_{-3.6}$	3.9 ± 1.3
PQCD: ~ 1.6	$B^0 ightarrow \omega K^{*0}$	5.93 ^{+0.89+1.74} -0.73-1.55	3.82 ± 1.39	$2.5^{+2.5}_{-1.5}$	2.0 ± 0.5
Data: ~ 1	$B^0 \to \phi K^{*0}$	$11.8^{+1.6+1.5}_{-1.3-1.5}$	9.14 ± 3.14	10.0 ± 0.5	
	$B^0 \rightarrow K^{*0} \bar{K}^{*0}$	$0.38^{+0.09+0.02}_{-0.06-0.01}$	0.48 ± 0.16	$0.6^{+0.2}_{-0.3}$	0.83 ± 0.24
	$B^0 \to K^{*+} K^{*-}$	$0.17^{+0.02+0.05}_{-0.02-0.03}$		$0.16^{+0.1}_{-0.1}$	< 2.0
	$B^0 \rightarrow \rho^+ \rho^-$	22.7+6.3+0.6	27.7 ± 4.1	25.5 ^{+2.8} -3.0	27.7 ± 1.9
$^{2}QCD:\mathcal{B}(ho^{0} ho^{0})\sim 2\mathcal{B}(au)$	$(\pi^0)_{B^0 \to \rho^0 \rho^0}$	$0.54^{+0.16+0.04}_{-0.11-0.04}$	1.00 ± 0.29	$0.9^{+1.9}_{-0.5}$	0.96 ± 0.15
\mathcal{D} ata : $\mathcal{B}(ho^{\circ} ho^{\circ}) \sim \mathcal{B}(\pi^{\circ}\pi)$	$(0)/2_{B^0 \to \rho^0 \omega}$	0.89 Glauber14gluon	0.59 ± 0.19	inconsistence betw	een two B factor
	$B^0 \rightarrow \rho^0 \phi$	$0.019^{+0.005+0.002}_{-0.004-0.001}$	~ 0.002		< 3.3
	$B^0 \rightarrow \omega \omega$	$1.21^{+0.24+0.31}_{-0.19-0.24}$	0.39 ± 0.13	$0.7^{+1.1}_{-0.4}$	1.2 ± 0.4
	$B^0 \rightarrow \omega \phi$	$0.018^{+0.005+0.005}_{-0.004-0.005}$	~ 0.002		< 0.7
	$B^0 \to \phi \phi$	0.029+0.002+0.006			< 0.027

† NLO corrections play an important role in rare modes $\rho^+\phi, \rho^0\rho^0(\omega, \rho), \omega\omega(\phi)$

Shan Cheng (HNU)

5th-HF&QCD@HUST

April 21, 2023 21 / 38

$B \rightarrow PP, PV, VV$ decays: Numerics

$$\begin{split} \sqrt{2}\mathcal{M}(B^+ \to \pi^+\pi^0) &= \mathcal{M}(B^0 \to \pi^+\pi^-) - \mathcal{M}(B^0 \to \pi^0\pi^0),\\ \sqrt{2}\mathcal{M}(B^+ \to \pi^+\rho^0 + \pi^0\rho^+) &= \mathcal{M}(B^0 \to \pi^+\rho^- + \pi^-\rho^+) - 2\mathcal{M}(B^0 \to \pi^0\rho^0),\\ \sqrt{2}\mathcal{M}(B^+ \to \rho^+\rho^0) &= \mathcal{M}(B^0 \to \rho^+\rho^-) - \mathcal{M}(B^0 \to \rho^0\rho^0). \end{split}$$

• Updated PQCD results for the CPV of $B^+ \rightarrow VV$ decays (in units of 10^{-2})

Mode	PQCD	SCET [130]	QCDF [127,131]	PDG [108]
$B^+ \to \rho^+ K^{*0}$	$0.58^{+0.13+0.16}_{-0.12-0.18}$	-0.56 ± 0.61	-0.3^{+2}_{-1}	-1 ± 16
$B^+ \to \rho^0 K^{*+}$	30.6 ^{+0.5+0.1} -0.7-0.2	29.3 ± 31.0	43^{+13}_{-28}	31 ± 13
$B^+ \to \omega K^{*+}$	43.0 ^{+1.7+3.8} -2.0-3.2	24.3 ± 27.1	29 ± 35	
$B^+ \to \phi K^{*+}$	$2.40^{+0.14+0.13}_{-0.14-0.10}$	-0.39 ± 0.44	0.05	-1 ± 8
$B^+ \to K^{*+} \bar{K}^{*0}$	$-26.8^{+2.3+1.0}_{-2.4-2.0}$	9.5 ± 10.6		
$B^+ \to \rho^0 \rho^+$	$0.03\substack{+0.00+0.00\\-0.01-0.00}$	0.0	0.06	-5 ± 5
$B^+ \to \rho^+ \omega$	$-25.9^{+1.8+1.3}_{-1.9-1.2}$	-13.6 ± 16.1	-8^{+3}_{-4}	-20 ± 9
$B^+ \to \rho^+ \phi$	0.0	0.0		
$B^0 \to \rho^- K^{*+}$	32.4+0.1+0.1 -0.1-0.2	20.6 ± 23.3	32^{+2}_{-14}	21 ± 15
$B^0 \to \rho^0 K^{*0}$	$-14.4^{+1.2+0.9}_{-1.4-1.0}$	-3.30 ± 3.91	-15 ± 16	-6 ± 9
$B^0 \to \omega K^{*0}$	9.89 ^{+0.96+1.59} -0.80 ^{-1.12}	3.66 ± 4.05	23^{+10}_{-18}	45 ± 25
$B^0 \to \phi K^{*0}$	$0.86^{+0.06+0.07}_{-0.06-0.06}$	-0.39 ± 0.44	$0.8^{+0.4}_{-0.5}$	0±4
$B^0 \rightarrow \rho^+ \rho^-$	$-1.85^{+0.20+0.01}_{-0.11-0.00}$	-7.68 ± 9.19	11^{+11}_{-4}	$C_{\rho^+\rho^-}=0\pm 9$
	$-12.7^{+0.1+0.4}_{-0.1-0.3}$		-19^{+9}_{-10}	$S_{\rho^+ \rho^-} = -14 \pm 13$
$B^0 \rightarrow \rho^0 \rho^0$	74.6 ^{+1.3+1.9} -1.9-2.3	19.5 ± 23.5	-53^{+26}_{-54}	$C_{\rho^0 \rho^0} = 20 \pm 90$
	$1.38^{+0.74+2.15}_{-0.03-1.93}$		16^{+50}_{-49}	$S_{\rho^0 \rho^0} = 30 \pm 70$

		_				
~	han		heng		- 11	
				<u>،</u>		

• Updated PQCD results for the f_L of $B^+ \rightarrow VV$ decays (in units of 10^{-2})

Mode	PQCDL0 [51]	PQCD	SCET [130]	QCDF [127,131]	HFLAV [134]
$B^+ \rightarrow \rho^+ K^{*0}$	70.0 ± 5.0	76.6+1.5	45.0 ± 18.0	48.0+52.0	48 ± 8
$B^+ \rightarrow \rho^0 K^{*+}$	75.0+4.0	80.0+1.5	42.0 ± 14.0	67.0 ^{+31.0} -48.0	78 ± 12
$B^+ \rightarrow \omega K^{*+}$	64.0±7.0	77.4+0.5	53.0 ± 14.0	67.0 ^{+32.0} -39.0	41 ± 19
$B^+ \rightarrow \phi K^{*+}$	57.0+6.3	68.7+1.3	51.0 ± 16.4	49.0 ^{+51.0} -43.0	50 ± 5
$B^+ \rightarrow K^{*+} \overline{K}^{*0}$	74.0±7.0	82.4+1.1	50.0 ± 16.0	45.0 ^{+55.0} -38.0	82+15
$B^+ \rightarrow \rho^0 \rho^+$	98.0 ± 1.0	96.9+0.1	~ 100	96.0±2.0	95±1.6
$B^+ \rightarrow \rho^+ \omega$	97.0 ± 1.0	96.3+0.3	97.0 ± 1.0	96.0 ^{+2.0}	90±6
$B^+ \rightarrow \rho^+ \phi$	95.0 ± 1.0	81.3+1.9	~ 100		
$B^0 \rightarrow \rho^- K^{*+}$	68.0 ^{+5.0} -4.0	75.7+1.5	55 ± 14	53.0 ^{+45.0} -32.0	38 ± 13
$B^0 \rightarrow \rho^0 K^{*0}$	65.0 ^{+4.0} -5.0	71.0+1.5	61.0 ± 13.0	39.0 ^{+60.0} -31.0	17.3 ± 2.6
$B^0 \rightarrow \omega K^{*0}$	65.0±5.0	77.7+0.4	40.0 ± 20.0	58.0 ^{+44.0} -17.0	69 ± 11
$B^0 \rightarrow \phi K^{*0}$	56.5+5.8	69.5 ^{+1.2}	51.0 ± 16.4	50.0 ^{+51.0} -44.0	49.7 ± 1.7
$B^0 \rightarrow K^{*0} \overline{K}^{*0}$	58.0 ± 8.0	68.8 ^{+5.3}	50.0 ± 16.0	52.0 ^{+48.0} -49.0	74 ± 5
$B^0 \to K^{*+} K^{*-}$	~ 100.0	~ 100.0		~ 100.0	
$B^0 \rightarrow \rho^+ \rho^-$	95.0 ± 1.0	93.8 ^{+0.1} -0.1	99.1 ± 0.3	92.0 ^{+1.0} -3.0	$99.0^{+2.1}_{-1.9}$
$B^0 \rightarrow \rho^0 \rho^0$	$12.0^{+16.0}_{-2.0}$	$80.9^{+1.9}_{-1.9}$	87.0 ± 5.0	92.0 ^{+7.0} -37.0	71_9
$B^0 \rightarrow \rho^0 \omega$	67.0 ^{+8.0} -9.0	$74.2^{+0.1}_{-0.1}$	58.0 ± 14.0	52.0 ^{+12.0} -44.0	
$B^0 \rightarrow \rho^0 \phi$	95.0 ± 1.0	$81.3^{+1.9}_{-1.8}$	~ 100		
$B^0 \rightarrow \omega \omega$	$66.0^{+10.0}_{-11.0}$	$88.4^{+0.9}_{-0.8}$	64.0 ± 15.0	94.0 ^{+4.0} _20.0	
$B^0 \to \omega \phi$	94.0 ^{+2.0} _3.0	$80.8^{+0.8}_{-1.4}$	~ 100		
$B^0 ightarrow \phi \phi$	97.0 ± 1.0	99.9 ^{+0.0}			

[†] PQCD showed f_L in penguin dominated $B \rightarrow VV$ channels down by annihilation mechanism in 2002 (LO), before the "polarization puzzle" appeared.

- The up-to-date PQCD predictions with including the current well-known NLO and sub-leading power corrections can explain most of the data.
- † $K\pi, K\rho, K\omega, K\phi$ and $K^*\rho, K^*\omega, K^*\phi$ channels $\checkmark \checkmark K^*\pi, K^*K$ channels \checkmark
- † f_L in $K^*\rho$, $K^*\omega$, $K^*\phi$ channels is still larger than the HFLAV result LD effect in $B \to K^*$ transition ? NLO corrections to $B \to V$ form factors ? width effect of the intermediate vector resonant (four-body decays) ?
- † $\eta^{(\prime)}$ involved channels do not consist well with data the large mixing mechanism $\eta_{q}-\eta_{s}-\eta_{g}$ provides a possible solution
- [†] The CPV of charged (neutral) *B* decays is (not) sensitive to the new added two power correction (heavy quark expansion), especially for the channels with at least one $\eta^{(\prime)}$ in the final state.

Opportunities and challenges of PQCD

- Corrections from 3 particle *B* meson DAs and high twist light meson DAs † interaction between largely off-shell gluon with three-particle configurations $O(\Lambda/m_B)$?
- Complete NLO calculation for two-body *B* meson decays
- \dagger vertex corrections, B o
 ho type ff, tensor meson ffs, annihilation spectator amplitude \cdots
- Complete NLO calculation for the radiative and $P_{\rm EW}$ B meson decays
- † B meson distribution amplitude
- TMD wave functions of B and B_c mesons, Λ_b baryon
- Systematic power counting with including k_T
- Sudakov factor of baryon and three particle configuration of meson
- Multibody B decay, more observables, CPV sources, factorization formula
- Input of meson and dimeson DAs, optimal choice of factorization scale

Thanks for your patience.

Back Slides

Table 1 A diagrammic summary of different QCD-based approaches to study $B \rightarrow \pi$ form factor.

[Cheng 2021]

 $\mathcal{M}(B \to M_1 M_2) = \sum_i C_i(m_W, t) \otimes \mathcal{H}_i(t, b) \otimes \phi(x, b) \operatorname{Exp} \left[-s(p^+, b) - \int_{1/b}^t \frac{d\bar{\mu}}{\bar{\mu}} \gamma_{\phi}(\alpha_s(\bar{\mu})) \right]$

The NLO QCD/QED corrections to C_i has been finished [Buchalla, 1996, Rev. Mod. Phys]

$$\begin{split} C_{1}(m_{W}) &= \frac{11}{2} \frac{\alpha_{s}(m_{W})}{4\pi}, \\ C_{2}(m_{W}) &= 1 - \frac{11}{6} \frac{\alpha_{s}(m_{W})}{4\pi}, \\ C_{3}(m_{W}) &= 1 - \frac{11}{6} \frac{\alpha_{s}(m_{W})}{4\pi} - \frac{35}{18} \frac{\alpha_{em}}{4\pi}, \\ C_{3}(m_{W}) &= -\frac{\alpha_{s}(m_{W})}{24\pi} \left[E_{0}(\frac{m_{t}^{2}}{m_{W}^{2}}) - \frac{2}{3} \right] \\ &+ \frac{\alpha_{em}}{6\pi} \frac{1}{\sin^{2}\theta_{W}} \left[2B_{0}(\frac{m_{t}^{2}}{m_{W}^{2}}) + C_{0}(\frac{m_{t}^{2}}{m_{W}^{2}}) \right] \\ C_{4}(m_{W}) &= -\frac{\alpha_{s}(m_{W})}{8\pi} \left[E_{0}(\frac{m_{t}^{2}}{m_{W}^{2}}) - \frac{2}{3} \right], \end{split} \\ \end{split}$$

† Inami-Lim functions B, C, D, E from box, Z, γ, g penguin diagrams, respectively † Scale running from m_W to $\mathcal{O}(m_b)$ by evolution matrix: $C_i(\mu) = U(\mu, m_W)C_i(m_W)$

• The NLO corrections to ME $\langle M_1 M_2 | O_i | B \rangle$

† Vertex of effective operator in $\mathcal{M}_{a,b}$ Completed in collinear factorization

- $\dagger \ B o P$ transition form factors in $\mathcal{M}_{a,b}$ Done up to twist three
- † Electromagnetic form factors in $\mathcal{M}_{e,f}$ Done up to twist three for PP, PV
- † Scalar form factor in $\mathcal{M}_{e,f}$ with helicity flip Done up to twist three
- † Glauber gluon correction to $\mathcal{M}_{c,d}$ Done for $M = \pi$
- NLO correction to spectator annihilation amplitude is still missing

- Vertex of effective operator in $\mathcal{M}_{a,b}$ [Beneke 2001, Mishima 03, Li 05]
- vertex correction: does not involve the end-point singularity in collinear fact.
- [‡] absorbed into the effective Wilson coefficients according to the effective operators, ie. $a_{1,2}(\mu) \rightarrow a_{1,2}(\mu) + \frac{\alpha_s(\mu)}{4\pi} \frac{C_{1,2}(\mu)}{N_C} V_{1,2}(M)$
- \downarrow V_i has imaginary part, embodied into a₂ and a_{3,10}, and hence sensitive in the color-suppressed amplitudes
- $\ddagger\,$ ie., increase the Br of $\pi^0\pi^0$ channel by a factor 1.5 more important is to change the sign of CPV

Completed in collinear factorization

involve the end-point singularity

- the same form as the QCDF
- ‡ another new invariant amplitude

\dagger quark loop: does not involve the end-point singularity/momentum redistribution in ${\cal H}$

- the same form as the QCDF, ie., $C^{(u,c)}(\mu, l^2) = \left[\mathcal{G}^{(u,c)}(\mu, l^2) \frac{2}{3}\right]C_2(\mu)$
- \ddagger for the massive charm quark, $\mathcal{G}^{\mathsf{c}}(\mu, l^2)$ has real and imaginary parts
- \ddagger a new invariant amplitude depended on three meson wave functions, the correction is special to the operator O_5

• NLO Form factors in the factorizable amplitudes $\mathcal{M}_{a,b,e,f}$

[†] The IR safety of full amplitudes is one of the prerequisites for perturbative calculation [†] Two types of IR singularities: soft $(I_{\mu} \sim (\Lambda, \lambda, \Lambda_T^2))$ and collinear $(I_{\mu} \sim (Q, \Lambda^2/Q, \Lambda_T^2))$ gluon exchanged between two on-shell quark lines, gluon emission from a massless quark

 \dagger Factorize the QCD IR divergences in sequence of momentum, spin and color spaces \triangle Eikonal approximation, detach the leading soft and collinear divs \triangle Fierz identity, spread out the fermion current into different twist \triangle Ward identity, sum over all color structures to guarantee gauge invariance

Shan Cheng (HNU)

 $\dagger \ B o P$ transition form factors in $\mathcal{M}_{a,b}$ Done up to twist three [Li 2012, Cheng 14]

 $\ddagger~$ IR divs cancel between the QCD quark diagrams and the effective diagrams of Φ

$$\begin{split} \Phi_{B} &= \int \frac{dz^{-}d^{2}z_{T}}{(2\pi)^{3}} e^{-ix_{1}^{\prime}P_{1}^{+}z^{-}+ik_{1}^{\prime}T^{\cdot}z_{T}^{\prime}} < 0 \mid \overline{q}(z)W_{z}(n_{1})^{\dagger}I_{n_{1};z,0}W_{0}(n_{1})\not_{H}+\Gamma h_{\nu}(0) \mid h_{\nu}\overline{d}(k_{1}) >, \\ \Phi_{\pi,P} &= \int \frac{dy^{+}d^{2}y_{T}}{(2\pi)^{3}} e^{-ix_{2}^{\prime}P_{2}^{-}y^{+}+ik_{2}^{\prime}T^{\cdot}y_{T}} < 0 \mid \overline{q}(y)W_{y}(n_{2})^{\dagger}I_{n_{2};y,0}W_{0}(n_{2})\gamma_{5}q(0) \mid u(P_{2}-k_{2})\overline{d}(k_{2}) \\ W_{z}(n) &= Pexp[-ig_{s}\int_{0}^{\infty} d\lambda n \cdot A(z+\lambda n)] \end{split}$$

‡ k_T dependent IR safety NLO hard kernel is obtained

$$\begin{split} H^{(1)}(x_1,\mathbf{k}_{1T};x_2,\mathbf{k}_{2T}) &= G^{(1)}(x_1,\mathbf{k}_{1T};x_2,\mathbf{k}_{2T}) - \int dx_1' d^2 \mathbf{k}_1' \tau \Phi_B^{(1)}(x_1,\mathbf{k}_{1T};x_1',\mathbf{k}_1' \tau) H^{(0)}(x_1',\mathbf{k}_1' \tau;x_2,\mathbf{k}_{2T}) \\ &- \int dx_2' d^2 \mathbf{k}_2' \tau H^{(0)}(x_1,\mathbf{k}_{1T};x_2',\mathbf{k}_2' \tau) \Phi_{\pi,P}^{(1)}(x_2',\mathbf{k}_2' \tau;x_2,\mathbf{k}_{2T}) \end{split}$$

- ‡ NLO correction gives \sim 8% enhancement to LO prediction of $B \rightarrow \pi$ form factors
- ‡ NLO correction to $B \rightarrow \rho$ form factor is still missing

Electromagnetic form factors Done up to twist three [Li 2010, Cheng 14], [Hua 18]

- Soft divs cancel themselves in the quark diagrams
- \ddagger Collinear divs cancel between the QCD quark diagrams and the effective diagrams of Φ
- $\ddagger\,$ NLO correction gives \sim 20% enhancement to LO prediction of pion EM form factors

Shan Cheng (HNU)

Scalar form factors Done up to twist three [Cheng 15]

- $\ddagger\,$ NLO correction gives $\sim\,-10\%$ enhancement to LO prediction
- Timelike form factors in $\mathcal{M}_{e,f}$ [Li 2012, Cheng 14,15]
- [‡] Obtain timelike ffs from spacelike ones by analytical continuation from $-Q^2$ to Q^2 , ie. $\ln(-Q^2 i\epsilon) = \ln(Q^2) i\pi$ [‡] Timelike em ff contributes in $\mathcal{M}_{e,f}^{\text{LL},\text{LR}}$ when the final two mesons are not identical
- ‡ Enhance (reduce) the magnitude (phase) of the LO form factor by 20%-30% ($< 15^{\circ}$)
- \ddagger Its correction to $B^0 o \pi^0 \eta^{(\prime)}$ can be expected as approximately 30% with SU(3) flavor breaking

 \ddagger Timelike scalar ff becomes important in $\mathcal{M}_{e,f}^{SP}$ when the final two mesons are identical (in this case $\mathcal{M}_{e,f}^{LL,LR} = 0$)

[‡] Its correction is very small in size with a large strong phase, main source of large CPV in $B \to \pi^0 \pi^0$

Shan Cheng (HNU)

• Gluon gluon effect in Spectator emission amplitude $\mathcal{M}_{c,d}$

† Glauber gluon
$$I \sim (\Lambda^2/m_B, \Lambda^2/m_B, \Lambda)$$

Glauber gluon from the pseudo-NambuGoldstone bosons brings significant effect

- † Glauber gluon associated with the heavy B meson is not important and can be ignored
- † Glauber effect formulates to an additional phase associated to π meson [Li 2014]

$$\bar{\phi}_M(\mathbf{b}',\mathbf{b}) = \frac{2\beta_M^2}{\pi} \phi_M(x) \exp\left[-2\beta_M^2 x b'^2 - 2\beta_M^2 (1-x)b^2\right]. \qquad \text{phase parameter } \beta_M$$

- enhances the color-suppressed spectator tree amplitude
- ‡ changes the interference mode between it with other tree amplitudes, from destructive to instructive
- provides a possibility to understand the long-standing $\pi^0\pi^0$ puzzle [Liu 2015]
- \ddagger and the $K\pi$ puzzle $riangle A_{K\pi}=A_{
 m CP}^{
 m dir}(K^\pm\pi^0)-A_{
 m CP}^{
 m dir}(K^\pm\pi^\mp)$ [Liu 2016]

TMD wave functions

- [†] Non-normalizable (unintegral) B meson DA $\phi_+(k^+, \mu)$ in the collinear factorization \triangle divergence ($\sim 1/k^+$) does not break the collinear factoriation at LO, only $\lambda_B^{-1}(\mu) = \int dk^+ \phi_+(k^+, \mu)/k^+$ involved \triangle emerges at high orders with more moments interplaying \triangle an ambiguous renormalization of f_B [Li 2004]
- † TMD definition of B meson wave function under HQET

$$\begin{split} & \langle 0 | \, \bar{q}(y) \, W_y(n)^{\dagger} \, I_{n,y,0}(n) \, W_0(n) \, \Gamma h(0) \, | \, \bar{B}(v) \rangle \\ & = \quad \frac{-i f_B m_B}{4} \, \mathrm{Tr} \Big[\frac{1 + \not}{2} \Big(2 \phi_+(v^+ y^-, y_T^2) + \frac{\phi_+(v^+ y^-, y_T^2) - \phi_-(v^+ y^-, y_T^2)}{v^+ y^-} \not \rangle \Big) \gamma_5 \Gamma \Big] \end{split}$$

The light cone singularity in the TMD definition (b parameter) when $I \parallel n$

 \triangle evolution of DA $\phi_+(k^+, b, \mu) = S(k^+, b, \zeta_B) R(b, \mu, \zeta_B) \phi_+(k^+, b, 1/b) \triangle \square R \alpha_s \ln^2(\zeta_B b)$ (resummation), UV ln(μb) (RGE), universal initial condition (soft divs regularized by m_g)

 \triangle the normalization of f_B becomes realized in k_T factorization by $S(k^+, b, \zeta_B)$

$$\int_{0}^{\infty} dk^{+} \lim_{b \to 1/k^{+}} \phi_{+}(k^{+}, b, \mu) = \int_{0}^{\infty} dk^{+} R(1/k^{+}, \mu, \zeta_{B}) \phi_{+}(k^{+}, 1/k^{+}, \mu)$$

Rapidity singularity in the TMD definition with the lightlike Wilson line

$$\begin{split} \phi_{\pi}^{(1)} \otimes H^{(0)} &\supset \int [dl] \frac{1}{[(k+l)^2 + i0)][l_+ + i0][l^2 + i0]} \\ &\times \left[H^{(0)}(x+l_+/p_+, \vec{k}_T + \vec{l}_T) - H^{(0)}(x, \vec{k}_T) \right]. \end{split}$$

generated due to the Eikonal propagator

$$\begin{split} \phi_{\pi}(x, \vec{k}_T, y_u, \mu) \stackrel{?}{=} \int \frac{dz_-}{2\pi} \int \frac{d^2 z_T}{(2\pi)^2} e^{i(xp_+ z_- - \vec{k}_T \cdot \vec{z}_T)} \\ \times \frac{\langle 0 | \vec{q}(0) W_{n_-}^{\dagger}(+\infty, 0) \not \#_- \gamma_S [\text{tr. link}] W_{n_-}(+\infty, z) q(z) | \pi^+(p) \rangle}{\text{soft subtraction} \langle 0 | W_{n_-}^{\dagger}(+\infty, 0) W_u(+\infty, 0) [\text{tr. link}] W_{n_-}(+\infty, z) W_u^{\dagger}(+\infty, z) | 0 \rangle} \end{split}$$

$$\begin{split} \phi_{\pi} &\supset \int [dl] \frac{u^2}{[l+i0)][u \cdot l + i0][u \cdot l - i0]} \\ &\times \delta(x' - x + l_+/p_+) \delta^{(2)}(\vec{k}_T' - \vec{k}_T + \vec{l}_T) \,. \end{split}$$

$$\begin{split} & \Phi_{\pi}^{C}(\mathbf{x}, \vec{k}_{T}, \mathbf{y}_{2}, \mu) &= \lim_{\substack{y_{1} \to \infty \\ y_{1} \to \infty \\ x \to \infty}} \int \frac{d^{2}z_{T}}{(2\pi)^{2}} e^{i(\varphi + z_{-} - \vec{k}_{T} \cdot \vec{z}_{T})} \\ & \times \langle 0 | \vec{q}(0) W_{u}^{i}(+\infty, 0) \not_{\mu} - \gamma_{5} [\mathbf{r}, \text{ link}] W_{u}(+\infty, z) q(z) | \pi^{+}(p) \rangle \\ & \times \sqrt{\frac{S(z_{T}; y_{1}, y_{2})}{S(z_{T}; y_{1}, y_{2}) S(z_{T}; y_{2}, y_{u})}} . \end{split}$$

$$\begin{split} S(z_T;y_A,y_B) &= \frac{i}{N_c} (0|W_{n_B}^{\dagger}(\infty,\vec{z}_T)_{ca} \, W_{n_A}(\infty,\vec{z}_T)_{ad} \, W_{n_B}(\infty,0)_{bc} \, W_{n_A}^{\dagger}(\infty,0)_{db} |0\rangle. \\ \text{new soft function} \end{split}$$

 \triangle regularized by rotating the Wilson line away from light cone $n = (n^+, n^-, n_T)$ and removed by the Collins soft subtraction [Collines 2003]

 \triangle multiple non-light-like Wilson lines with the price of soft function and another scale parameter ρ [Ji 2004]

△ pinch singularity with $n^2 \neq 0$ [Bacchetta 2008] △ corresponds to the linear divergence in the length of the Wilson line in the coordinate space

 \triangle Collins modification of TMD wave function with out pinch singularity [Collins 2011]

 $\triangle \triangle$ rapidity of the gauge vector $n_2 = (e^{v_2}, e^{-y_2}, \theta_T)$ $\triangle \triangle$ unsubtracted wave function only involves light cone Wilson lines $\triangle \triangle$ each soft factor has at most one offlight-cone Wilson line $\triangle \triangle$ rapidity safe and pinch safe [Collins 2014]

cancellation mechanism of the new Collins definition $[{\rm borrowed} \ {\rm from} \ {\rm Y.M} \ {\rm Wang}]$

 \triangle Li-Wang definition with non-dipole Wilson line [Li 2015]

$$\phi^{\rm I}_{\pi}(x,\vec{k}_T,y_2,\mu) = \int \frac{dz_-}{2\pi} \int \frac{d^2 z_T}{(2\pi)^2} e^{i(xp_+z_--\vec{k}_T\cdot\vec{z}_T)}$$

$$\begin{split} \times \langle 0 | \bar{q}(0) W_{n_2}^{\dagger}(+\infty,0) \not \!\!\!/ - \gamma_5 [\mathrm{links} @\infty] W_{\nu}(+\infty,z) q(z) | \pi^+(p) \rangle \, . \\ & \text{orthogonal Wilson lines } n_2 \cdot v = 0 \end{split}$$

riangle riangle reproduces the collinear logarithm of QCD diagrams for $\phi^I_\pi \otimes H^{(0)}$

[‡] Exclusive *B* decays at NLO: \triangle ln²(ζ_B^2/m_B^2), ln × ln(ζ_B^2/m_B^2) \triangle resummed to all order by resolving the evolution equation of Φ_B on ζ_B^2 \triangle suppresses the shape of $\phi_+(k^+, b, \mu)$ near the end point $k^+ \rightarrow 0$ [Li 2013]

† Joint singularity in the pion-photon form factor [Li 2014]

 \triangle ln x ln(ζ_{π}^2/k_T^2) \triangle joint resummation \triangle strong suppression for small x and large b \triangle joint resummation improved pion wave function does not bring sizable corrections