Charmless two－body B decays in perturbative QCD factorization approach

Shan Cheng
Hunan University

Chinese Physics C Vol．46，No． 12 （2022） 123103
Jian Chai，SC，Yao－hui Ju，Da－cheng Yan，Cai－dian Lü and Zhen－jun Xiao

2 中図种等院高能物理研聜所

Overview

(1) Motivation
(2) Introduction of the PQCD approach

- Three scale factorization frame
(3) PQCD updates of $B \rightarrow P P, P V, V V$ decays

4) Conclusion
(5) Back slides: Progresses towards to NLO

Motivation: Significiance of B physics

- In the post Higgs Era, the precise testing of SM and searching of NP are the core tasks of particle physics.
- HFP plays am important role in both two targets, B meson hadronic decays provides many processes with CPV.
- Timeline of B physics
\dagger 1973, Kaboyashi \& Maskawa proposed a 3×3 unitary matrix (4 parameters) of quark mixing to accommodate CPV,
\dagger 1977, CFS-E288 at FermiLab discovered Υ meson ($b \bar{b}$), Lederman,
\dagger 1981, Bigi \& Santa pointed out the expectation of large CPV in B^{0} decay according to CKM theory,
\dagger 1987, Oddone proposed the construction of B factories to study CPV,
\dagger 1999, BABAR and Belle started running; 2001(04), $A_{C P}(t, f)\left(A_{C P}\right)$ in B^{0} decays,
\dagger 2009, LHCb played in to the game; 2013(20), $A_{C P}\left(A_{C P}(t, f)\right)$ in B_{s} decays, 2012, $A_{C P}$ in B^{+}decays; 2019, $\delta A_{C P}$ in D decays,
\dagger Anomalies: $R_{K^{(*)}}, R_{D}, P_{5}^{\prime}, B_{s} \rightarrow \mu \mu,\left|V_{u b}\right|,\left|V_{c b}\right|$

Motivation: Experiment promotions

- SuperKEKB(2018-2026) \triangle The first measurements of $B^{+} \rightarrow \rho^{+} \rho^{0}, B^{0} \rightarrow K^{0} \pi^{0}$ have been released [Belle-II, 2021], $\quad \triangle A_{c p}, S_{c p}$ in $B^{0} \rightarrow J / \psi K_{s}, \phi K_{s}, K_{s} \pi^{0}$ and $K \pi$ isospin sum rules [Belle-II, 2023]
- HL-LHC(2027-2033) $\triangle \mathcal{L}=23(300) \mathrm{fb}^{-1}$ in phase 1 (2), 2 order larger than LHC
- More precise study of B decays from the theoretical side is imperative

Motivation: Theoretical progresses

- High precision calculation of two-body charmless B decays
\dagger NF: $\sim F_{B \rightarrow M_{2}} \otimes f_{M_{1}}$ [Bauer\&Stech\&Wirbel 1985,87]
GF: pQCD corrections from $O_{i=1,2}$ and $O_{i=3,10} \quad$ [Ali\&Kramer\&Lü 1998,99]
QCDF: VC to $\mathcal{M}_{t, p}+$ correction to spectator scattering, full NNLO $\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right)$
[Benele 2010, Bell 15, 20, Huber 16, Beneke 06,07, Jain 07]
\dagger SCET: introduces different fields in different energy regions, simple kinematics but complicated dynamics [Bauer 2001, Chay 04, Becher 15], QCDF/SCET [Beneke 2015]
$\dagger B \rightarrow \pi \pi$ decay is studied from LCSRs [Khodjamirian 2001,03,05] the high order \& power corrections of $B \rightarrow P, V$ form factors LQCD [HPQCD 2013] [Bharucha 2016, Wang 15,16,20, Lü 19, Beneke 17, Gubernari 19, Cheng 17,19]
- To eliminate the end-point singularity emerged in collinear factorization, the PQCD approach is proposed by picking up the k_{T} of valence quarks.
$\dagger B \rightarrow M$ FFs and the annihilation amp. are both calculable [Keum 2001, Lü 01]
\dagger LO $\left(\mathcal{O}\left(\alpha_{s}\right)\right) B \rightarrow P P, P V, V V$ decays [Xiao 2007; Lü 02; Li 05, Li 06, Zou 15], [Hua 2021]
\dagger partially $\operatorname{NLO}\left(\mathcal{O}\left(\alpha_{s}^{2}\right)\right): \triangle$ factorizable amplitudes [Cheng 2021], $\quad \triangle$ effective operators [Mishima 2003, Li 05], $\quad \triangle$ hard scattering [Li 2012, Cheng 14], [Li 13, Cheng 15,15, Hua 18], [Li 14, Liu 15,16], \triangle TMD wave function [Li-Wang 2014, 15]
- A timely update of two-body hadronic B decays is urgent.

PQCD: Three scale factorization frame

New physics: $\mathcal{L}_{N P}$

Electroweak scale $\left(m_{W}\right): \mathcal{L}_{E W}+\mathcal{L}_{D>4}$
Heavy quark scale $\left(m_{b}\right): \mathcal{L}_{\text {eff }}=-\frac{\downarrow}{\sqrt{\sqrt{2}}} \begin{aligned} & \downarrow \\ & \downarrow\end{aligned} V_{\mathrm{CKM}} \sum_{i} C_{i}(\mu) O_{i}(\mu)+\mathcal{L}_{\text {eff }, D>6}$
Hadron scale $\left(\Lambda_{\mathrm{QCD}}\right)$: LCDAs, PDF, PDA

- Derive the effective Hamiltonian by integrating over m_{W} [Buchalla 1996]
\dagger Product of two charged currents is expanded by a series of local operators O_{i} with the weighted coefficients C_{i}
- Dynamics at the scale $\mathcal{O}\left(m_{W}\right)$ is absorbed into Wilson coefficients $C_{i}(\mu)$
$\dagger C_{i}$ is obtained by matching the $\mathcal{L}_{\text {eff }}$ with the full theory of weak decays [Ma 80, Inami\&Lim 81, Clements 83]
- The rest go into the four fermion effective operators $O_{i}(\mu)$
- The key is to calculate the hadron matrix element $\left\langle M_{1} M_{2}\right| O_{i}|B\rangle$

PQCD: Three scale factorization frame

(a)

Diagrams at scale $\mathcal{O}\left(m_{W}\right)$
lalpha_s
Effective tree, bullent denotes O_{i}

- Integrating over the m_{W}
- Weak phase difference between charged and FCNC of b decays

PQCD: Three scale factorization frame

- Diagrams at scales $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)-\mathcal{O}\left(m_{b}\right)$: Hadron matrix element $\left\langle M_{1} M_{2}\right| O_{i}|B\rangle$
- Factorization: detach the hard kernel $\mathcal{H} O_{i}$ at scale $\mathcal{O}\left(m_{b}\right)$ from the hadron wave function $\Phi B, M_{1}, M_{2}$ mesons at scale $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$
- Prediction power: \mathcal{H} is calculated perturbatively order by order, Φ s are universal
different strong phases

- End-point singularities appear in diagrams (a,b,e,f)

PQCD: Three scale factorization frame

- End-point singularities appear in diagrams (a,b,e,f)
$\dagger B$ rest frame, p_{2} and p_{3} are collinear with large momenta, $m_{2,3} \ll m_{B}$
\dagger put on light cone: $p_{2}=\left(\frac{m_{B}}{\sqrt{2}}, 0, \mathbf{0}_{\mathrm{T}}\right), p_{3}=\left(0, \frac{m_{B}}{\sqrt{2}}, \mathbf{0}_{\mathrm{T}}\right)$
valence (anti-)quark: $k_{2}=x_{2} p_{2}, \bar{k}_{2}=\bar{x}_{2} p_{2}$

$\mathcal{M}_{a} \propto \sum_{t=2,3} \int d x_{1} d x_{3} \kappa_{t}\left(x_{i}\right) \frac{\alpha_{s}(\mu) \phi_{B}\left(x_{1}\right) \phi_{3}^{t}\left(x_{3}\right)}{x_{1}\left(1-x_{3}\right)}$
End-point singularity: $x_{1}=0, x_{3}=1$
(a)
- Picking up the transversal momentum, parton momentum is off-shell by k_{T}^{2}

$$
\mathcal{M}_{a} \propto \sum_{t=2,3} \int d x_{1} d x_{3} d \mathbf{k}_{1 T} d \mathbf{k}_{3 T} \kappa_{t}\left(x_{i}\right) \frac{\alpha_{s}(\mu) \phi_{B}\left(x_{1}, \mathbf{k}_{1 T}\right) \phi_{3}^{t}\left(x_{3}, \mathbf{k}_{3 T}\right)}{x_{1} \bar{x}_{3} m_{B}^{2}-\mathbf{k}_{T}^{2}}
$$

- End-point singularity at leading and subleading powers

$$
\mathcal{H}_{a} \propto \frac{\alpha_{s}(\mu)}{x_{1} \bar{x}_{3} m_{B}^{2}-\mathbf{k}_{T}^{2}} \sim \frac{\alpha_{s}(\mu)}{x_{1} \bar{x}_{3} m_{B}^{2}}-\frac{\alpha_{s}(\mu) \mathbf{k}_{T}^{2}}{\left(x_{1} \bar{x}_{3} m_{B}^{2}\right)^{2}}+\cdots
$$

- At the end-points, the power suppressed TMD terms are nonnegligible

PQCD: Three scale factorization frame

- Introduce \mathbf{k}_{T} to regularize the end-point singularity [Huang 1991]
- Enriches the study of hadron DAs, TMD definition with Wilson link, observables
- Scales of transversal momentum and the large logarithms [borrowed from H.N Li]

\dagger Multiple scales and hence large single logarithms in \mathcal{H} and Φ from QCD correction
\dagger Double logs in the soft-collinear regions $\alpha_{s}(\mu) \ln ^{2}\left(\mathrm{k}_{T}^{2} / m_{B}^{2}\right)$

PQCD: Three scale factorization frame

- In order to repair the perturbative expansion, do resummation by using RGE
- k_{T} resummation for \mathcal{H} and obtain $S\left(x_{i}, b_{i}, Q\right)$ [Botts 1989, Li 92]
\dagger decreases the inverse power of the momentum transfer in the divergence amplitude
\dagger exhibits high suppression for large transversal distances (small k_{T}) interactions
- Integrating over k_{T}, large $\log \ln ^{2}\left(x_{i}\right)$ when intermediate gluon is on shell
- threshold resummation for Φ and obtain $S_{t}\left(x_{i}, Q\right)$ [Li 1999]
\dagger suppresses the small x_{i} regions
\dagger repairs the self-consistency between $\alpha_{s}(t)$ and hard $\log \ln \left(x_{1} x_{3} Q^{2} / t^{2}\right)$
\ddagger dynamics with $k_{T}<\sqrt{Q \Lambda}$ is organized into $S(x, b, Q)$
\ddagger dynamics in small x is suppressed by $S_{t}(x, Q)$

$$
\mathcal{M}\left(B \rightarrow M_{1} M_{2}\right)=\sum_{i} C_{i}\left(m_{W}, t\right) \otimes \mathcal{H}_{i}(t, b) \otimes \phi(x, b) \operatorname{Exp}\left[-s\left(p^{+}, b\right)-\int_{1 / b}^{t} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{\phi}\left(\alpha_{s}(\bar{\mu})\right)\right]
$$

PQCD: Three scale factorization frame

Sources of strong phase (differences) $\delta_{1,2}$ to generate $C P$

- Different topologies: emission (real, $\delta_{1}=0$) and annihilation (plural, $\delta_{2} \neq 0$)

$$
\frac{1}{k_{T}^{2}-x m_{B}^{2}-i \epsilon}=\mathcal{P}\left(\frac{1}{k_{T}^{2}-x m_{B}^{2}}\right)+i \delta\left(k_{T}^{2}-x m_{B}^{2}\right)
$$

- Sudakov expanent (NLO)
\dagger center of mass scattering angle and angular distribution of scattering hadrons
\dagger important in baryon decays but not in B meson decays
- NLO corrections to spectator emission amplitude from Glauber gluon
\dagger only supplies a sizable phase to the pion final state
\dagger modifies the interactions between different topological amplitudes
- on shell charm quark loop correction (NLO)

$B \rightarrow P P, P V, V V$ decays: Amplitudes

- General decomposition of Wilson coefficients for each certain effective weak vertex

Weak vertex	Typical amplitudes	Wilson coefficients
$[s, s, s],[d, d, d]$	$\mathcal{E}^{\mathrm{LL}} / \mathcal{A}^{\mathrm{LL}}, \mathcal{E}_{N F}^{\mathrm{LL}} / \mathcal{H}_{N F}^{\mathrm{LL}}$	$a_{3}+a_{4}-\frac{a_{9}+a_{10}}{2}, \quad C_{3}+C_{4}-\frac{C_{9}+C_{10}}{2}$
spectator meson M_{3}	$\mathcal{E}^{\mathrm{LR}} / \mathcal{H}^{\mathrm{LR}}, \quad \mathcal{E}_{N F}^{\mathrm{LR}} / \mathcal{A}_{N F}^{\mathrm{LR}}$	$a_{5}-\frac{a_{7}}{2}, \quad C_{5}-\frac{c_{7}}{2}$
	$\mathcal{E}^{\mathrm{SP}} / \mathcal{A}^{\mathrm{SP}}, \quad \varepsilon_{N F}^{\mathrm{SP}} / \mathcal{A}_{N F}^{\mathrm{SP}}$	$a_{6}-\frac{a_{8}}{2}, \quad C_{6}-\frac{c_{8}}{2}$
$[d, s, s], \quad[s, d, d]$	$\mathcal{E}^{\mathrm{LL}} / \mathcal{H}^{\mathrm{LL}}, \quad \mathcal{E}_{N F}^{\mathrm{LL}} / \mathcal{H}_{N F}^{\mathrm{LL}}$	$a_{4}-\frac{a_{10}}{2}, \quad C_{3}-\frac{c_{9}}{2}$
, q_{2}, q_{3}	$\mathcal{E}^{\mathbf{L R}} / \mathcal{H}^{\mathbf{L R}}, \quad \mathcal{E}_{N F}^{\mathrm{LR}} / \mathcal{H}_{N F}^{\mathrm{LR}}$	$a_{6}-\frac{a_{8}}{2}, \quad C_{5}-\frac{c_{7}}{2}$
$\downarrow \quad[s, s, d], \quad[d, d, s]$	$\mathcal{E}^{\mathrm{LL}} / \mathcal{F}^{\mathrm{LL}}, \quad \mathcal{E}_{N F}^{\mathrm{LL}} / \mathcal{H}_{N F}^{\mathrm{LL}}$	$a_{3}-\frac{a_{9}}{2}, \quad C_{4}-\frac{c_{10}}{2}$
emission meson M_{2}	$\mathcal{E}^{\mathrm{LR}} / \mathcal{H}^{\mathrm{LR}}, \quad \mathcal{E}_{N F}^{\mathrm{LR}} / \mathcal{A}_{N F}^{\mathrm{LR}}$	$a_{5}-\frac{a_{7}}{2}, \quad C_{6}-\frac{C_{8}}{2}$
$[u, u, s], \quad[u, u, d]$	$\mathcal{E}^{\mathrm{LL}} / \mathcal{H}^{\mathrm{LL}}, \quad \mathcal{E}_{N F}^{\mathrm{LL}} / \mathcal{F}_{N F}^{\mathrm{LL}}$	$a_{2}, \quad C_{2}$
	$\mathcal{E}^{\mathrm{LR}} / \mathcal{F}^{\mathrm{LR}}, \quad \mathcal{E}_{N F}^{\mathrm{LR}} / \mathcal{H}_{N F}^{\mathrm{LR}}$	$a_{3}+a_{9}, \quad C_{4}+C_{10}$
	$\mathcal{E}^{\mathrm{SP}} / \mathcal{H}^{\mathrm{SP}}, \quad \mathcal{E}_{N F}^{\mathrm{SP}} / \mathcal{H}_{N F}^{\mathrm{SP}}$	$a_{5}+a_{7}, \quad C_{6}+C_{8}$
$[s, u, u], \quad[d, u, u]$	$\mathcal{E}^{\mathrm{LL}} / \mathcal{F}^{\mathrm{LL}}, \quad \mathcal{E}_{N F}^{\mathrm{LL}} / \mathcal{H}_{N F}^{\mathrm{LL}}$	$a_{1}, \quad C_{1}$
	$\mathcal{E}^{\mathrm{LR}} / \mathcal{F}^{\mathbf{L R}}, \quad \mathcal{E}_{N F}^{\mathrm{LR}} / \mathcal{A}_{N F}^{\mathrm{LR}}$	$a_{4}+a_{10}, \quad C_{3}+C_{9}$
	$\mathcal{E}^{\mathrm{SP}} / \mathcal{A}^{\mathrm{SP}}, \quad \varepsilon_{N F}^{\mathrm{SP}} / \mathcal{H}_{N F}^{\mathrm{SP}}$	$a_{6}+a_{8}, \quad C_{5}+C_{7}$

- ie. Decay amplitude of $B^{+} \rightarrow \pi^{+} K^{0}$ at NLO

$$
\begin{aligned}
& \mathcal{M}\left(B^{+} \rightarrow \pi^{+} K^{0}\right)=\frac{G_{F}}{\sqrt{2}} V_{u b}^{*} V_{u s}\left[a_{1} \mathcal{F}_{\pi}^{\mathrm{LL}}+C_{1} \mathcal{A}_{N F, \pi}^{\mathrm{LL}}+\mathcal{M}_{B \rightarrow K^{n} \pi^{+}}^{(\mathrm{ql}, \mathrm{u})}\right]+\frac{G_{F}}{\sqrt{2}} V_{c b}^{*} V_{c s} \mathcal{M}_{B \rightarrow K^{n} \pi^{+}}^{(\mathrm{ql,c})}-\frac{G_{F}}{\sqrt{2}} V_{t b}^{*} V_{t s}\left[\left(a_{4}-\frac{a_{10}}{2}\right) \mathcal{E}_{\pi}^{\mathrm{LL}}\right. \\
& {[s, d, d]} \\
& +\left(a_{6}-\frac{a_{8}}{2}\right) \mathcal{E}_{\pi}^{\mathrm{SP}}+\left(C_{3}-\frac{C_{9}}{2}\right) \mathcal{E}_{N F, \pi}^{\mathrm{LL}}+\left(C_{5}-\frac{C_{7}}{2}\right) \mathcal{E}_{N F, \pi}^{\mathrm{LR}}+\left(a_{4}+a_{10}\right) \mathcal{A}_{\pi}^{\mathrm{LL}}+\left(a_{6}+a_{8}\right) \mathcal{A}_{\pi}^{\mathrm{SP}} \\
& \left.+\left(C_{3}+C_{9}\right) \mathcal{A}_{N F, \pi}^{\mathrm{LL}}+\left(C_{5}+C_{7}\right) \mathcal{A}_{N F, \pi}^{\mathrm{LR}}+\mathcal{M}_{B \rightarrow K^{\circ} \pi^{+}}^{(\mathrm{q}, \mathrm{t})}+\mathcal{M}_{B \rightarrow K^{\circ} \pi^{*}}^{(\mathrm{mp})}\right],
\end{aligned}
$$

\triangle the glauber gluon corrections and TMD wave functions are not taken into account in this work

$B \rightarrow P P, P V, V V$ decays: Amplitudes

- Operator decomposition of $B \rightarrow P P$ decays

Tree/color-favoured tree emission

QCD Penguin

Color-suppressed tree emission
$\mathbf{P e m}_{\mathrm{em}}$: Electroweak penguin

E: tree annihilation amplitude

Topology	Channel
$\left\{\mathbf{P}, \mathrm{T}, \mathrm{C}, \mathrm{E}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{0} K^{+}, \eta_{q} K^{+}$
$\left\{\mathbf{T}, \mathrm{P}, \mathrm{C}, \mathrm{E}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{+} \eta_{q}$
$\left\{\mathbf{T}, \mathrm{C}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{+} \pi^{0}$
$\left\{\mathbf{P}, \mathrm{E}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{+} K^{0}, \eta_{s} K^{+}, K^{+} K^{0}$
$\left\{\mathbf{P}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{+} \eta_{s}$
$\left\{\mathbf{T}, \mathrm{P}, \mathrm{E}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{+} \pi^{-}$
$\left\{\mathbf{P}, \mathrm{T}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{-} K^{+}$
$\left\{\mathbf{C}, \mathbf{E}, \mathbf{P}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{0} \pi^{0}, \pi^{0} \eta_{q}, \eta_{q} \eta_{q}$
$\left\{\mathbf{P}, \mathrm{C}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\pi^{0} K^{0}, \eta_{q} K^{0}$
$\left\{\mathbf{P}, \mathrm{P}_{\mathrm{ew}}\right\}$	$\eta_{s} K^{0}, K^{0} \bar{K}^{0}, \pi^{0} \eta_{s}, \eta_{s} \eta_{s}, \eta_{q} \eta_{s}$
$\left\{\mathbf{E}, \mathrm{P}, \mathrm{P}_{\mathrm{ew}}\right\}$	$K^{+} K^{-}$

$B \rightarrow P P, P V, V V$ decays: Numerics

- Main uncertainties of PQCD calculation: high order QCD corrections \& LCDAs \downarrow
\dagger characterized by the variation in the factorization scale
\dagger minimized by setting μ_{t} as the largest virtuality in hard scattering
\dagger two-loop expression for the strong coupling
- Input parameters of meson LCDAs

Meson	$\pi^{ \pm} / \pi^{0}$	$K^{ \pm} / K^{0}$	η_{q}	η_{z}	
$m / \mathrm{GeV}[108]$	$0.140 / 0.135$	$0.494 / 0.498$	0.104	0.705	
f / GeV	$0.130[108]$	$0.156[108]$	$0.125[114]$	$0.177[114]$	
m_{0} / GeV	1.400	$1.892[112]$	1.087	1.990	
a_{1}	0	$0.076 \pm 0.004[113]$	0	0	
a_{2}	$0.270 \pm 0.047[14]$	$0.221 \pm 0.082[113]$	$0.250 \pm 0.150[115]$	$0.250 \pm 0.150[115]$	
Meson	$\rho^{ \pm} / \rho^{0}$	$K^{+ \pm} / K^{* 0}$	0	ϕ	
$m / \mathrm{GeV}[108]$	0.775	0.892	0.783	0.019	
$f^{\\| l} / \mathrm{GeV}[9]$	$0.210 / 0.213$	0.204	0.197	0.233	
f^{\perp} / GeV	$0.144 / 0.146[116]$	$0.159[9]$	$0.162[9]$	0	
$a_{1}^{\\| l}$	0	$0.060 \pm 0.040[117]$	0	0	
a_{1}^{\perp}	$0.040 \pm 0.030[117]$	$0.150 \pm 0.120[117]$	$0.230 \pm 0.080[117]$		
$a_{2}^{\\| l}$	$0.180 \pm 0.037[116]$	$0.160 \pm 0.090[117]$	$0.140 \pm 0.120[117]$	$0.140 \pm 0.070[117]$	
a_{2}^{\perp}	$0.137 \pm 0.030[116]$	$0.100 \pm 0.080[117]$		0	

default scale 1 GeV

$B \rightarrow P P, P V, V V$ decays: Numerics

- Anatomy of NLO corrections to \mathcal{B} and $\mathcal{A}_{\mathrm{CP}}$ of $\pi \pi, \pi K$ modes

Mode	LO	+VC	+QL	+MP	$+\mathcal{F}^{\text {NLO }}$	PDG [108]
$\mathcal{B}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)$	3.58	3.89	$4.18_{-0.97}^{+1.32}$	5.5 ± 0.4
$\mathcal{A l}_{C P}$	-0.05	0.09	$0.08_{-0.09}^{+0.09}$	3 ± 4
$\mathcal{B}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)$	6.97	6.82	6.92	6.76	$7.31_{-1.72}^{+2.38}$	5.12 ± 0.19
$C_{\pi^{+} \pi^{-}}$	-23.4	-27.6	-13.8	-13.3	$-12.8_{-3.3}^{+3.5}$	-32 ± 4
$S_{\pi^{+} \pi^{-}}$	-31.1	-35.5	-46.4	-37.0	$-36.4_{-1.5}^{+1.5}$	-65 ± 4
$\mathcal{B}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$	0.14	0.29	0.30	0.22	$0.23_{-0.05}^{+0.07}$	1.59 ± 0.26
$C_{\pi^{0} \pi^{0}}$	-3.1	60.1	73.6	77.6	$80.2_{-6.7}^{+5.2}$	33 ± 22
$\mathcal{B}\left(B^{+} \rightarrow \pi^{+} K^{0}\right)$	17.0	20.8	28.0	19.4	$20.3_{-4.4}^{+6.3}$	23.7 ± 0.8
$\mathcal{A}_{C P}$	-1.19	-0.95	-0.06	-0.08	$-0.08_{-0.09}^{+0.08}$	-1.7 ± 1.6
$\mathcal{B}\left(B^{+} \rightarrow \pi^{0} K^{+}\right)$	10.0	12.75	16.76	11.92	$12.3_{-2.7}^{+3.8}$	12.9 ± 0.5
$\mathcal{A}_{C P}$	-10.9	-5.20	2.26	2.48	$2.28_{-1.74}^{+1.61}$	3.7 ± 2.1
$\mathcal{B}\left(B^{0} \rightarrow \pi^{-} K^{+}\right)$	14.3	18.0	23.9	16.4	$17.1_{-3.7}^{+5.2}$	19.6 ± 0.5
$\mathcal{H c}_{C P}$	-15.2	-14.2	-4.16	-5.42	$-5.43_{-2.34}^{+2.24}$	-8.3 ± 0.4
$\mathcal{B}\left(B^{0} \rightarrow \pi^{0} K^{0}\right)$	5.90	8.12	10.4	6.99	$7.38_{-1.50}^{+2.11}$	9.9 ± 0.5
$C_{x^{0} K^{0}}$	-2.62	-7.31	-6.57	-7.97	$-7.70_{-0.13}^{+0.21}$	0 ± 13
$S_{\pi^{0} K^{0}}$	70.1	73.5	71.6	71.9	$71.9_{-0.6}^{+0.6}$	58 ± 17

$\dagger \mathcal{B}$: QL cancels with MP corrections, VC and NLO ffs do not have a significant effect
\dagger NLO corrections change asymmetry parameters more significantly
\dagger VC (QL) flips the sign of the direct CPV of $\pi^{+} \pi^{0}$ and $\pi^{0} \pi^{0}\left(\pi^{0} K^{+}\right)$modes $\mathcal{A}_{C P}\left(B^{+} \rightarrow K^{+} \pi^{0}\right)-\mathcal{A}_{C P}\left(B^{+} \rightarrow K^{+} \pi^{-}\right)=7.71_{-2.92}^{+2.74}(\mathrm{PQCD})$ vs 12.0 ± 2.4 (Data)
\dagger Color-suppressed modes $\left(\pi^{0} \pi^{0}, \pi^{0} K^{0}\right)$ are more sensitive to NLO corrections.
\dagger PQCD shows a large direct CPV in $\pi^{-} K^{+}, \pi^{+} \pi^{-}$modes in 2000 (LO), which are confirmed by BABRA and Belle afterward.

$B \rightarrow P P, P V, V V$ decays: Numerics

- Updated PQCD results for the branching ratios of $B \rightarrow P P$ decays (in units of 10^{-6})

Mode	PQCD	SCET1 [125]	SCET2 [125]	QCDF [127]	PDG [108]
$B^{+} \rightarrow \pi^{+} K^{0}$	$20.3{ }_{-4.4-0.1}^{+6.0 .1}$...	\cdots	$21.7_{-9.1}^{+13.4}$	23.7 ± 0.8
$B^{+} \rightarrow \pi^{0} K^{+}$	$12.3{ }_{-2.7-0.1}^{+3.8+0.1}$	$12.5{ }_{-4.8}^{+6.8}$	12.9 ± 0.5
$B^{+} \rightarrow \eta^{\prime} K^{+}$	$52.0{ }_{-10.8}^{+15.0+2.7}$	69.5 ± 28.4	69.3 ± 27.7	$74.5{ }_{-31.6}^{+63.6}$	70.4 ± 2.5
$B^{+} \rightarrow \eta K^{+}$	$6.688_{-1.60-0.96}^{+2.26+1.85}$	2.7 ± 4.8	2.3 ± 4.5	$2.2{ }_{-1.3}^{+20}$	2.4 ± 0.4
$B^{+} \rightarrow K^{+} K^{0}$	$1.56{ }_{-0.34-0.02}^{+0.48+0.02}$	$1.8{ }_{-0.7}^{+1.1}$	1.31 ± 0.17
$B^{+} \rightarrow \pi^{0} \pi^{+}$	$4.18_{-0.94-0.22}^{+1.30+0.22} 4.45$...	\cdots	$5.9{ }_{-1.6}^{+2.6}$	5.5 ± 0.4
$\eta_{q^{-}} \eta_{s} \text { mixing } B_{B^{+} \rightarrow \pi^{+} \eta^{\prime}}$	$2.00_{-0.42}^{+0.57}+0.31$	2.4 ± 1.3	2.8 ± 1.3	$3.8{ }_{-0.6}^{1.6}$	2.7 ± 0.9
$\checkmark \eta_{q}-\eta_{s^{-}} \eta_{g} \text { mixingés } \rightarrow \pi^{+} \eta$	$2.62_{-0.57-0.40}^{+0.78+0.45}$	4.9 ± 2.0	5.0 ± 2.1	$5.0{ }_{-0.9}^{+1.5}$	4.02 ± 0.27
[Fan 2012] $B^{0} \rightarrow \pi^{-} K^{+}$	17.1-3.7.7-0.1 \cdot	$19.3+11.4$	19.6 ± 0.5
$B^{0} \rightarrow \pi^{0} K^{0}$	$7.388_{-1.50-0.04}^{+2.11+0.03}$	$8.6{ }_{-3.6}^{+5.4}$	9.9 ± 0.5
$B^{0} \rightarrow \eta^{\prime} K^{0}$	$52.3{ }_{-10.8-0.3}^{+14.9+2.1}$	63.2 ± 26.3	62.2 ± 25.4	$70.9{ }_{-29.8}^{+59.1}$	66 ± 4
$B^{\circ} \rightarrow \eta K^{0}$	$4.63_{-1.09-0.79}^{+1.57+1.51}$	2.4 ± 4.4	2.3 ± 4.4	$1.5{ }_{-1.1}^{+1.7}$	$1.23_{-0.24}^{+0.27}$
$B^{0} \rightarrow K^{0} K^{0}$	$1.48_{-0.33-0.000}^{+0.47+0.01}$ \cdot	$2.1{ }_{-0.8}^{+1.3}$	1.21 ± 0.16
$B^{0} \rightarrow K^{+} K^{-}$	$0.046_{-0.039-0.008}^{+0.058+0.09}$	0.1 ± 0.04	0.078 ± 0.015
$B^{0} \rightarrow \pi^{+} \pi^{-}$	$7.31_{-1.68-0.36}^{+235+0.38} 5.35$...	\ldots	$7.0{ }_{-1.0}^{+0.8}$	5.12 ± 0.19
\checkmark Glauber gluoh effect $\pi^{0} \pi^{0}$		$1.1_{-0.5}^{+1.2}$	1.59 ± 0.26
[Liu 2014] $\quad B^{0} \rightarrow \pi^{0} \eta^{\prime}$	$0.20_{-0.03-0.01}^{+0.05+0.02}$	2.3 ± 2.8	1.3 ± 0.6	$0.42_{-0.15}^{+0.28}$	1.2 ± 0.6
$B^{0} \rightarrow \pi^{0} \eta$	$0.20_{-0.04-0.01}^{+0.05+0.02}$	0.88 ± 0.68	0.68 ± 0.62	$0.36_{-0.11}^{+0.13}$	0.41 ± 0.17
$B^{0} \rightarrow \eta \eta$	$0.37_{-0.07-0.07}^{+0.09+0.08}$	0.69 ± 0.71	1.0 ± 1.5	$0.32_{-0.08}^{+0.15}$	<1
$B^{0} \rightarrow \eta^{\prime}$	$0.29_{-0.05-0.06}^{+0.07}$	1.0 ± 1.6	2.2 ± 5.5	$0.36{ }_{-0.13}^{+0.27}$	<1.2
$B^{0} \rightarrow \eta^{\prime} \eta^{\prime}$	$0.42_{-0.07-0.11}^{+0.09+0.13}$	0.57 ± 0.73	1.2 ± 3.7	$0.22_{-0.08}^{+0.16}$	<1.7

\dagger NLO corrections play an important role in penguin dominated models $\pi K, \eta^{\prime} K$ and pure annihilation mode $K^{0} K^{0}$
\dagger PQCD predicted $\mathcal{B}\left(B_{s} \rightarrow \pi^{+} \pi^{-}\right) \sim 6 \times 10^{-6}$ in 2007 (LO), confirmed by CDF in 2011

$B \rightarrow P P, P V, V V$ decays: Numerics

- Updated PQCD results for the CPV of $B \rightarrow P P$ decays (in units of 10^{-2})

$B \rightarrow P P, P V, V V$ decays: Numerics

- Updated PQCD results for the branching ratios of $B^{+} \rightarrow P V$ decays (in units of 10^{-6})

\dagger NLO corrections play an important role in ϕ, ω involved modes, $\omega-\phi$ mixing ?

$B \rightarrow P P, P V, V V$ decays: Numerics

- Updated PQCD results for the CPV of $B^{+} \rightarrow P V$ decays (in units of 10^{-2})

	Mode	PQCD	SCET1 [128]	SCET2 [128]	QCDF [127]	PDG [108]
	$B^{+} \rightarrow \eta^{\prime} K^{++}$	$1.54{ }_{-8.16-9.74}^{+9.05}$	$2.7{ }_{-19.5}^{\text {27.4 }}$	${ }^{2.6}{ }_{-32.9}^{+26.7}$	$65.5+635.9$	-26 ± 27
	$B^{+} \rightarrow \eta K^{++}$	$-34.5+2.5+0.08$	-2.6 ${ }_{5}^{+5.4}$	-1.9 ${ }^{+3.4}$	-9.7 ${ }_{8.0}^{+7.3}$	2 ± 6
large CPV predictions	$B^{+} \rightarrow K^{+} \omega$	$31.5{ }_{-1.1}^{+0.6+0.7}$	$11.6_{-20.4}^{+18.2}$	$12.3{ }_{-173}^{16.6}$	$22.1{ }_{-18,2}$	-2 ± 4
	$B^{+} \rightarrow \pi^{+} K^{* 0}$	$-0.944_{-0.29}^{+0.26+0.04}$	0	0	$0.4{ }_{-4.2}^{\text {+4. }}$	-4 ± 9
	$B^{+} \rightarrow \pi^{0} K^{+}$	$-0.011_{-4.87-1.26}^{+4.40+12}$	$-17.8{ }_{-24.7}^{+30.4}$	$-12.9{ }_{-12.2}^{+12.0}$	$1.6{ }_{-4.2}^{+11.5}$	-39 ± 21
	$B^{+} \rightarrow K^{+} \rho^{0}$	$58.7{ }_{-4.0-2.8}^{+4.3+3}$	$9.2 .{ }_{-16.1}^{+15.2}$	$16.0{ }_{-225}^{+20.5}$	45.4-36.2	37 ± 10
	$B^{+} \rightarrow K^{0} \rho^{+}$	$0.99_{-0.01-0.18}^{+0.01+0.13}$	0	0	$0.3{ }_{-0.3}^{+0.5}$	-3 ± 15
large CPV in rare deca	$B^{+} \rightarrow K^{+} \bar{K}^{* 0}$	$21.3{ }_{-5.7-1.4}^{+6.1 .2}$	${ }_{-3.6}{ }_{-5.3}^{+6.1}$	$-4.4{ }_{-4.1}^{+4.1}$	$-8.9{ }_{-2,6}^{+3.0}$	12 ± 10
	$B^{+} \rightarrow K^{+} \phi$	$-1.93_{-0.60-0.42}^{+0.66+0.66}$	0	0	$0.6{ }_{-0.1}^{+0.1}$	2.4 ± 2.8
	$B^{+} \rightarrow \pi^{+} \phi$	0.0	\cdots	...	0.0	1 ± 5
	$B^{+} \rightarrow \pi^{+} \omega$	-29.8.0.4.9+0.8	$0.5{ }_{-19.6}^{+19.1}$	$2.3{ }_{-13.2}^{+13.4}$	${ }_{-13.2}{ }_{-10.9}$	-4 ± 5
	$B^{+} \rightarrow \pi^{+} \rho^{0}$	14.9 -0.4+0.6	$-10.8{ }_{-12.7}^{+13.7}$	${ }_{-19.2}+15.6$	$-9.88_{-10.5}^{+11.9}$	0.9 ± 1.9
	$B^{+} \rightarrow \pi^{0} \rho^{+}$	$-7.31_{-0.02}^{+0.06+0.03}$	$15.5{ }_{-19.0}^{+17.0}$	$12.33_{-10}^{+9.4}$	$9.7_{-10.8}^{+8.3}$	2 ± 11
$\eta_{q}-\eta_{s}$ mixing	$B^{+} \rightarrow \eta^{\prime} \rho^{+}$	$29.0{ }_{-0.4-0.1}^{+0.4+0.0}$	$-19.8{ }_{-37.6}^{+66.6}$	$-21.7{ }_{-24.3}^{+1359}$	$1.4{ }_{-11.9}^{+14.0}$	26 ± 17
$? \eta_{q^{-}} \eta_{s^{-}} \eta_{g}$ mixing	$B^{+} \rightarrow \eta \rho^{+}$	-13.0.0.0.1+15	-6.6 ${ }_{2}^{+21.5}$	-9.1+16.78	-8.5 ${ }_{5}^{+6.5}$	11 ± 11

\dagger The measured direct CPV in $B \rightarrow P V$ is significantly larger than that in $B \rightarrow P P$
\dagger It is hard to measure $B \rightarrow P V$ decays precisely \Leftarrow vector meson is not stable
\dagger Three-body B decays along with intermediate $B \rightarrow P V$ decays, but difficult to resolve

$B \rightarrow P P, P V, V V$ decays: Numerics

- Updated PQCD results for the branching ratios of $B^{+} \rightarrow V V$ decays (in units of 10^{-6})
isospin symmetry
smallness of $\mathcal{B}\left(\rho^{0} \rho^{0}\right)$
$\quad \downarrow$
$\mathcal{B}\left(\rho^{+} \rho^{-}\right) \sim 2 \mathcal{B}\left(\rho^{+} \rho^{0}\right)$

Mode	PQCD	SCET [130]	QCDF [127,131]	PDG [108]
$B^{+} \rightarrow \rho^{+} K^{* 0}$	$9.40_{-1.34-0.95}^{+1.43+1.05}$	8.93 ± 3.18	$9.2_{-5.5}^{+3.8}$	9.2 ± 1.5
$B^{+} \rightarrow \rho^{0} K^{++}$	$6.25_{-0.84-0.53}^{+1.12+0.59}$	4.64 ± 1.37	$5.5_{-2.5}^{+1.4}$	4.6 ± 1.1
$B^{+} \rightarrow \omega K^{*+}$	$5.48_{-1.36-0.66}^{+1.52+0.81}$	5.56 ± 1.60	$3.0_{-1.5}^{+2.5}$	<7.4


```
PQCD: ~ 1.6
```

$B^{0} \rightarrow \omega K^{* 0} \quad 5.93_{-0.73-1.55}^{+0.89+1.7}$
$B^{0} \rightarrow \phi K^{* 0} \quad 11.8_{-1.3-1.5}^{+1.6+1}$

$B^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$	$0.38_{-0.06-0.01}^{+0.09+0.02}$	0.48 ± 0.16	$0.6_{-0.3}^{+0.2}$

$B^{0} \rightarrow K^{*+} K^{*-} \quad 0.17_{-0.02-0.03}^{+0.02+0.05}$
$0.16_{-0.1}^{+0.1}<2.0$

\dagger NLO corrections play an important role in rare modes $\rho^{+} \phi, \rho^{0} \rho^{0}(\omega, \rho), \omega \omega(\phi)$

$B \rightarrow P P, P V, V V$ decays: Numerics

$$
\begin{array}{r}
\sqrt{2} \mathcal{M}\left(B^{+} \rightarrow \pi^{+} \pi^{0}\right)=\mathcal{M}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)-\mathcal{M}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right) \\
\sqrt{2} \mathcal{M}\left(B^{+} \rightarrow \pi^{+} \rho^{0}+\pi^{0} \rho^{+}\right)=\mathcal{M}\left(B^{0} \rightarrow \pi^{+} \rho^{-}+\pi^{-} \rho^{+}\right)-2 \mathcal{M}\left(B^{0} \rightarrow \pi^{0} \rho^{0}\right) \\
\sqrt{2} \mathcal{M}\left(B^{+} \rightarrow \rho^{+} \rho^{0}\right)=\mathcal{M}\left(B^{0} \rightarrow \rho^{+} \rho^{-}\right)-\mathcal{M}\left(B^{0} \rightarrow \rho^{0} \rho^{0}\right)
\end{array}
$$

- Updated PQCD results for the CPV of $B^{+} \rightarrow V V$ decays (in units of 10^{-2})

Mode	PQCD	SCET [130]	QCDF [127,131]	PDG [108]
$B^{+} \rightarrow \rho^{+} K^{* 0}$	$0.58_{-0.12-0.18}^{+0.13+0.16}$	-0.56 ± 0.61	$-0.3{ }_{-1}^{+2}$	-1 ± 16
$B^{+} \rightarrow \rho^{0} K^{*+}$	$30.6_{-0.7-0.2}^{+0.5+0.1}$	29.3 ± 31.0	43_{-28}^{+13}	31 ± 13
$B^{+} \rightarrow \omega K^{*+}$	$43.0_{-2.0-3.2}^{+1.7+3.8}$	24.3 ± 27.1	29 ± 35	\cdots
$B^{+} \rightarrow \phi K^{*+}$	$2.40_{-0.14-0.10}^{+0.14+0.13}$	-0.39 ± 0.44	0.05	-1 ± 8
$B^{+} \rightarrow K^{*+} \bar{K}^{* 0}$	$-26.8_{-2.4-2.0}^{+2.3+1.0}$	9.5 ± 10.6	\cdots	\cdots
$B^{+} \rightarrow \rho^{0} \rho^{+}$	$0.03_{-0.01-0.00}^{+0.00+0.00}$	0.0	0.06	-5 ± 5
$B^{+} \rightarrow \rho^{+} \omega$	$-25.9_{-1.9-1.2}^{+1.8+1.3}$	-13.6 ± 16.1	-8_{-4}^{+3}	-20 ± 9
$B^{+} \rightarrow \rho^{+} \phi$	0.0	0.0	\cdots	...
$B^{0} \rightarrow \rho^{-} K^{*+}$	$32.4_{-0.1-0.2}^{+0.1+0.1}$	20.6 ± 23.3	32_{-14}^{+2}	21 ± 15
$B^{0} \rightarrow \rho^{0} K^{* 0}$	$-14.4_{-1.4-1.0}^{+1.2+0.9}$	-3.30 ± 3.91	-15 ± 16	-6 ± 9
$B^{0} \rightarrow \omega K^{* 0}$	$9.89_{-0.80-1.12}^{+0.96+1.59}$	3.66 ± 4.05	23_{-18}^{+10}	45 ± 25
$B^{0} \rightarrow \phi K^{* 0}$	$0.86_{-0.06-0.06}^{+0.06+0.07}$	-0.39 ± 0.44	$0.8{ }_{-0.5}^{+0.4}$	0 ± 4
$B^{0} \rightarrow \rho^{+} \rho^{-}$	$-1.85_{-0.11-0.00}^{+0.20+0.01}$	-7.68 ± 9.19	11_{-4}^{+11}	$C_{\rho^{+} \rho^{-}}=0 \pm 9$
	$-12.7_{-0.1-0.3}^{+0.1+0.4}$	\cdots	-19_{-10}^{+9}	$S_{\rho^{+} \rho^{-}}=-14 \pm 13$
$B^{0} \rightarrow \rho^{0} \rho^{0}$	$74.6_{-1.9-2,3}^{+1.3+1.9}$	19.5 ± 23.5	-53_{-54}^{+26}	$C_{\rho^{0} \rho^{0}}=20 \pm 90$
	$1.38_{-0.03-1.93}^{+0.74+2.15}$...	16_{-49}^{+50}	$S_{\rho^{0} \rho^{0}}=30 \pm 70$

$B \rightarrow P P, P V, V V$ decays: Numerics

- Updated PQCD results for the f_{L} of $B^{+} \rightarrow V V$ decays (in units of 10^{-2})

Mode	$\mathrm{PQCD}_{\text {LO }}$ [51]	PQCD	SCET [130]	QCDF [127,131]	HFLAV [134]
$B^{+} \rightarrow \rho^{+} K^{* 0}$	70.0 ± 5.0	$76.6_{-1.4}^{+1.5}$	45.0 ± 18.0	$48.0_{-40.0}^{+52.0}$	48 ± 8
$B^{+} \rightarrow \rho^{0} K^{++}$	$75.0_{-5.0}^{+4.0}$	$80.0_{-1.5}^{+1.5}$	42.0 ± 14.0	$67.0_{-48.0}^{+11.0}$	78 ± 12
$B^{+} \rightarrow \omega K^{++}$	64.0 ± 7.0	$77.4_{-0.9}^{+0.5}$	53.0 ± 14.0	$67.0_{-39.0}^{+32.0}$	41 ± 19
$B^{+} \rightarrow \phi K^{*+}$	$57.0_{-5.9}^{+6.3}$	$68.7_{-1.5}^{+1.3}$	51.0 ± 16.4	$49.0_{-43.0}^{+51.0}$	50 ± 5
$\boldsymbol{B}^{+} \rightarrow \boldsymbol{K}^{++} \bar{K}^{+0}$	74.0 ± 7.0	$82.4{ }_{-1.1}^{+1.1}$	50.0 ± 16.0	$45.0+38.0$	82_{-21}^{+15}
$B^{+} \rightarrow \rho^{0} \rho^{+}$	98.0 ± 1.0	$96.9_{-0.1}^{+0.1}$	~ 100	96.0 ± 2.0	95 ± 1.6
$B^{+} \rightarrow \rho^{+} \omega$	97.0 ± 1.0	$96.3{ }_{-0.4}^{+0.3}$	97.0 ± 1.0	$96.0{ }_{-3.0}^{+2.0}$	90 ± 6
$B^{+} \rightarrow \rho^{+} \phi$	95.0 ± 1.0	$81.3_{-1.8}^{+1.9}$	~ 100
$B^{0} \rightarrow \rho^{-} K^{++}$	$68.0_{-4.0}^{+5.0}$	$75.7_{-1.4}^{+1.5}$	55 ± 14	$53.0_{-32.0}^{+45.0}$	38 ± 13
$B^{0} \rightarrow \rho^{0} K^{* 0}$	$65.0_{-5.0}^{+4.0}$	$71.0_{-1.3}^{+1.5}$	61.0 ± 13.0	$39.0_{-31.0}^{+60.0}$	17.3 ± 2.6
$B^{0} \rightarrow \omega K^{* 0}$	65.0 ± 5.0	$77.7_{-0.9}^{+0.4}$	40.0 ± 20.0	$58.0_{-17.0}^{+14.0}$	69 ± 11
$B^{0} \rightarrow \phi K^{* 0}$	$56.5_{-5.9}^{+5.8}$	$69.5_{-1.5}^{+1.2}$	51.0 ± 16.4	$50.0_{-44.0}^{+51.0}$	49.7 ± 1.7
$B^{0} \rightarrow K^{* 0} \bar{K}^{* 0}$	58.0 ± 8.0	$68.8_{-5.3}^{+5.3}$	50.0 ± 16.0	$52.0_{-49.0}^{+48.0}$	74 ± 5
$B^{0} \rightarrow K^{*+} K^{*-}$	-100.0	-100.0	\ldots	-100.0	\ldots
$B^{\rho} \rightarrow \rho^{+} \rho^{-}$	95.0 ± 1.0	$93.8_{-0.1}^{+0.1}$	99.1 ± 0.3	$92.0_{-3.0}^{+1.0}$	$99.0_{-1.9}^{+2.1}$
$B^{0} \rightarrow \rho^{0} \rho^{0}$	$12.0_{-2.0}^{+16.0}$	$80.9_{-1.9}^{+1.9}$	87.0 ± 5.0	$92.0_{-37.0}^{+7.0}$	71_{-9}^{+8}
$B^{0} \rightarrow \rho^{0} \omega$	$67.0_{-9.0}^{+8.0}$	$74.2_{-0.1}^{+0.1}$	58.0 ± 14.0	$52.0_{-44.0}^{+12.0}$...
$B^{0} \rightarrow \rho^{0} \phi$	95.0 ± 1.0	$81.3_{-1.8}^{+1.9}$	~ 100	.	\cdots
$B^{0} \rightarrow \omega \omega$	$66.0_{-11.0}^{+10.0}$	$88.4_{-0.8}^{+0.9}$	64.0 ± 15.0	$94.0_{-20.0}^{+4.0}$...
$B^{0} \rightarrow \omega \phi$	$94.0_{-3.0}^{+2.0}$	$80.8_{-1.4}^{+0.8}$	~ 100	...	\ldots
$B^{0} \rightarrow \phi \phi$	97.0 ± 1.0	$99.9_{-0.0}^{+0.0}$

\dagger PQCD showed f_{L} in penguin dominated $B \rightarrow V V$ channels down by annihilation mechanism in 2002 (LO), before the "polarization puzzle" appeared.

Conclusion

- The up-to-date PQCD predictions with including the current well-known NLO and sub-leading power corrections can explain most of the data.
$\dagger K \pi, K \rho, K \omega, K \phi$ and $K^{*} \rho, K^{*} \omega, K^{*} \phi$ channels $\checkmark \checkmark K^{*} \pi, K^{*} K$ channels \checkmark
$\dagger f_{L}$ in $K^{*} \rho, K^{*} \omega, K^{*} \phi$ channels is still larger than the HFLAV result LD effect in $B \rightarrow K^{*}$ transition ? NLO corrections to $B \rightarrow V$ form factors ? width effect of the intermediate vector resonant (four-body decays) ?
$\dagger \eta^{(\prime)}$ involved channels do not consist well with data the large mixing mechanism $\eta_{q}-\eta_{s}-\eta_{g}$ provides a possible solution
\dagger The CPV of charged (neutral) B decays is (not) sensitive to the new added two power correction (heavy quark expansion), especially for the channels with at least one $\eta^{(\prime)}$ in the final state.

Opportunities and challenges of PQCD

- Corrections from 3 particle B meson DAs and high twist light meson DAs
\dagger interaction between largely off-shell gluon with three-particle configurations $\mathcal{O}\left(\Lambda / m_{B}\right)$?
- Complete NLO calculation for two-body B meson decays
\dagger vertex corrections, $B \rightarrow \rho$ type ff , tensor meson ffs , annihilation spectator amplitude \ldots
- Complete NLO calculation for the radiative and $P_{\text {EW }} B$ meson decays
$\dagger B$ meson distribution amplitude
- TMD wave functions of B and B_{c} mesons, Λ_{b} baryon
- Systematic power counting with including k_{T}
- Sudakov factor of baryon and three particle configuration of meson
- Multibody B decay, more observables, CPV sources, factorization formula
- Input of meson and dimeson DAs, optimal choice of factorization scale

Thanks for your patience.

Back Slides

Table 1 A diagrammic summary of different QCD-based approaches to study $B \rightarrow \pi$ form factor.
[Cheng 2021]

PQCD: Progresses towards to NLO

$\mathcal{M}\left(B \rightarrow M_{1} M_{2}\right)=\sum_{i} C_{i}\left(m_{W}, t\right) \otimes \mathcal{H}_{i}(t, b) \otimes \phi(x, b) \operatorname{Exp}\left[-s\left(p^{+}, b\right)-\int_{1 / b}^{t} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{\phi}\left(\alpha_{s}(\bar{\mu})\right)\right]$

- The NLO QCD/QED corrections to C_{i} has been finished [Buchalla, 1996, Rev. Mod. Phys]

$$
\begin{aligned}
C_{1}\left(m_{W}\right) & =\frac{11}{2} \frac{\alpha_{s}\left(m_{W}\right)}{4 \pi}, \\
C_{2}\left(m_{W}\right) & =1-\frac{11}{6} \frac{\alpha_{s}\left(m_{W}\right)}{4 \pi}-\frac{35}{18} \frac{\alpha_{\mathrm{em}}}{4 \pi}, \\
C_{3}\left(m_{W}\right) & =-\frac{\alpha_{s}\left(m_{W}\right)}{24 \pi}\left[E_{0}\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)-\frac{2}{3}\right] \\
& +\frac{\alpha_{\mathrm{em}}}{6 \pi} \frac{1}{\sin ^{2} \theta_{W}}\left[2 B_{0}\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)+C_{0}\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)\right] \\
C_{4}\left(m_{W}\right) & =-\frac{\alpha_{s}\left(m_{W}\right)}{8 \pi}\left[E_{0}\left(\frac{m_{t}^{2}}{m_{W}^{2}}\right)-\frac{2}{3}\right],
\end{aligned}
$$

$\mu(\mathrm{GeV})$	1.0	2.0	3.0	4.0	4.98
$\alpha_{s}(\mu)$	$0.63,0.47$	$0.39,0.30$	$0.32,0.25$	$0.29,0.23$	$0.26,0.21$
$C_{1}(\mu)$	$-0.27,-0.51$	$-0.61,-0.31$	$-0.85,-0.24$	$-1.05,-0.20$	$-0.83,-0.17$
$C_{2}(\mu)$	$1.12,1.28$	$1.33,1.15$	$1.50,1.11$	$1.66,1.09$	$1.48,1.07$
$C_{3}(\mu)$	$0.01,0.04$	$0.03,0.02$	$0.05,0.02$	$0.06,0.01$	$0.05,0.01$
$C_{4}(\mu)$	$-0.03,-0.09$	$-0.06,-0.05$	$-0.08,-0.04$	$-0.10,-0.04$	$-0.07,-0.03$
$C_{5}(\mu)$	$0.01,0.02$	$0.02,0.01$	$0.02,0.01$	$0.02,0.01$	$0.02,0.01$
$C_{6}(\mu)$	$-0.03,-0.13$	$-0.09,-0.07$	$-0.15,-0.05$	$-0.20,-0.04$	$-0.14,-0.04$
$C_{7}(\mu)$	$0.00,-0.00$	$0.00,-0.00$	$0.00,-0.00$	$0.00,-0.00$	$0.00,-0.00$
$C_{8}(\mu)$	$0.00,0.00$	$0.00,0.00$	$0.00,0.00$	$0.00,0.00$	$0.00,0.00$
$C_{8}(\mu)$	$-0.01,-0.01$	$-0.01,-0.01$	$-0.01,-0.01$	$-0.01,-0.01$	$-0.01,-0.01$
$C_{10}(\mu)$	$0.00,0.01$	$0.01,0.00$	$0.01,0.00$	$0.01,0.00$	$0.01,0.00$

\dagger Inami-Lim functions B, C, D, E from box, Z, γ, g penguin diagrams, respectively
\dagger Scale running from m_{W} to $\mathcal{O}\left(m_{b}\right)$ by evolution matrix: $C_{i}(\mu)=U\left(\mu, m_{W}\right) C_{i}\left(m_{W}\right)$

PQCD: Progresses towards to NLO

- The NLO corrections to ME $\left\langle M_{1} M_{2}\right| O_{i}|B\rangle$

(a)
 factorizable

(c)

(g)
nonfactorizable/spectator

(d)

(h)
\dagger Vertex of effective operator in $\mathcal{M}_{a, b}$ Completed in collinear factorization
$\dagger B \rightarrow P$ transition form factors in $\mathcal{M}_{a, b}$ Done up to twist three
\dagger Electromagnetic form factors in $\mathcal{M}_{e, f} \quad$ Done up to twist three for $P P, P V$
\dagger Scalar form factor in $\mathcal{M}_{e, f}$ with helicity flip Done up to twist three
\dagger Glauber gluon correction to $\mathcal{M}_{c, d}$ Done for $M=\pi$
\dagger NLO correction to spectator annihilation amplitude is still missing

PQCD: Progresses towards to NLO

- Vertex of effective operator in $\mathcal{M}_{a, b}$ [Beneke 2001, Mishima 03, Li 05]
\dagger vertex correction: does not involve the end-point singularity in collinear fact.
\ddagger absorbed into the effective Wilson coefficients according to the effective operators, ie.
$a_{1,2}(\mu) \rightarrow a_{1,2}(\mu)+\frac{\alpha_{S}(\mu)}{4 \pi} \frac{C_{1,2}(\mu)}{N_{C}} V_{1,2}(M)$
$\ddagger V_{i}$ has imaginary part, embodied into a_{2} and $a_{3,10}$, and hence sensitive in the color-suppressed amplitudes
\ddagger ie., increase the Br of $\pi^{0} \pi^{0}$ channel by a factor 1.5 more important is to change the sign of CPV

Completed in collinear factorization

(e)

(f)

(g)

(h)
\dagger chromomagnetic penguin: does not involve the end-point singularity
\ddagger the same form as the QCDF
\ddagger another new invariant amplitude
\dagger quark loop: does not involve the end-point singularity/momentum redistribution in \mathcal{H}
\ddagger the same form as the QCDF, ie., $\mathcal{C}^{(u, c)}\left(\mu, I^{2}\right)=\left[\mathcal{G}^{(u, c)}\left(\mu, I^{2}\right)-\frac{2}{3}\right] C_{2}(\mu)$
\ddagger for the massive charm quark, $\mathcal{G}^{c}\left(\mu, I^{2}\right)$ has real and imaginary parts
\ddagger a new invariant amplitude depended on three meson wave functions, the correction is special to the operator O_{5}

PQCD: Progresses towards to NLO

- NLO Form factors in the factorizable amplitudes $\mathcal{M}_{a, b, e, f}$

\dagger The IR safety of full amplitudes is one of the prerequisites for perturbative calculation
\dagger Two types of IR singularities: soft $\left(I_{\mu} \sim\left(\Lambda, \lambda, \Lambda_{T}^{2}\right)\right)$ and collinear $\left(I_{\mu} \sim\left(Q, \Lambda^{2} / Q, \Lambda_{T}^{2}\right)\right)$ gluon exchanged between two on-shell quark lines, gluon emission from a massless quark
\dagger Factorize the QCD IR divergences in sequence of momentum, spin and color spaces
\triangle Eikonal approximation, detach the leading soft and collinear divs \triangle Fierz identity, spread out the fermion current into different twist \triangle Ward identity, sum over all color structures to guarantee gauge invariance

PQCD: Progresses towards to NLO

$\dagger B \rightarrow P$ transition form factors in $\mathcal{M}_{a, b} \quad$ Done up to twist three \quad [Li 2012, Cheng 14]
\ddagger IR divs cancel between the QCD quark diagrams and the effective diagrams of Φ

$$
\begin{aligned}
& \Phi_{B}=\int \frac{d z^{-} d^{2} z_{T}}{(2 \pi)^{3}} e^{-i x_{1}^{\prime} P_{1}^{+} z^{-}+i \mathbf{k}_{1}^{\prime} \cdot z^{\cdot} T}<0\left|\bar{q}(z) W_{z}\left(n_{1}\right)^{\dagger} I_{n_{1} ; z, 0} W_{0}\left(n_{1}\right) \phi_{+} \Gamma h_{\nu}(0)\right| h_{\nu} \bar{d}\left(k_{1}\right)>, \\
& \Phi_{\pi, P}=\int \frac{d y^{+} d^{2} y_{T}}{(2 \pi)^{3}} e^{-i x_{2}^{\prime} P_{2}^{-} y^{+}+i \mathbf{k}_{2}^{\prime} T^{\prime} \cdot \mathbf{y}_{T}}<0\left|\bar{q}(y) W_{y}\left(n_{2}\right)^{\dagger} I_{n_{2} ; y, 0} W_{0}\left(n_{2}\right) \gamma_{5} q(0)\right| u\left(P_{2}-k_{2}\right) \bar{d}\left(k_{2}\right) \\
& W_{z}(n)=P \exp \left[-i g_{s} \int_{0}^{\infty} d \lambda n \cdot A(z+\lambda n)\right]
\end{aligned}
$$

$\ddagger k_{T}$ dependent IR safety NLO hard kernel is obtained

$$
\begin{aligned}
H^{(1)}\left(x_{1}, \mathbf{k}_{1 T} ; x_{2}, \mathbf{k}_{2 T}\right)=G^{(1)}\left(x_{1}, \mathbf{k}_{1 T} ; x_{2}, \mathbf{k}_{2 T}\right) & -\int d x_{1}^{\prime} d^{2} \mathbf{k}_{1 T}^{\prime} \Phi_{B}^{(1)}\left(x_{1}, \mathbf{k}_{1 T} ; x_{1}^{\prime}, \mathbf{k}_{1 T}^{\prime}\right) H^{(0)}\left(x_{1}^{\prime}, \mathbf{k}_{1 T}^{\prime} ; x_{2}, \mathbf{k}_{2 T}\right) \\
& -\int d x_{2}^{\prime} d^{2} \mathbf{k}_{2 T}^{\prime} H^{(0)}\left(x_{1}, \mathbf{k}_{1 T} ; x_{2}^{\prime}, \mathbf{k}_{2 T}^{\prime}\right) \Phi_{\pi, P}^{(1)}\left(x_{2}^{\prime}, \mathbf{k}_{2 T}^{\prime} ; x_{2}, \mathbf{k}_{2 T}\right)
\end{aligned}
$$

\ddagger NLO correction gives $\sim 8 \%$ enhancement to LO prediction of $B \rightarrow \pi$ form factors
\ddagger NLO correction to $B \rightarrow \rho$ form factor is still missing
\dagger Electromagnetic form factors Done up to twist three [Li 2010, Cheng 14], [Hua 18]
\ddagger Soft divs cancel themselves in the quark diagrams
\ddagger Collinear divs cancel between the QCD quark diagrams and the effective diagrams of Φ
\ddagger NLO correction gives $\sim 20 \%$ enhancement to LO prediction of pion EM form factors

PQCD: Progresses towards to NLO

\dagger Scalar form factors Done up to twist three [Cheng 15]

\ddagger NLO correction gives $\sim-10 \%$ enhancement to LO prediction
\dagger Timelike form factors in $\mathcal{M}_{\boldsymbol{e}, f}$ [Li 2012, Cheng 14,15]
\ddagger Obtain timelike ffs from spacelike ones by analytical continuation from $-Q^{2}$ to Q^{2}, ie. $\ln \left(-Q^{2}-i \epsilon\right)=\ln \left(Q^{2}\right)-i \pi$ \ddagger Timelike em ff contributes in $\mathcal{M}_{e, f}^{\mathbf{L L}, \mathbf{L R}}$ when the final two mesons are not identical
\ddagger Enhance (reduce) the magnitude (phase) of the LO form factor by $20 \%-30 \%\left(<15^{\circ}\right)$
\ddagger Its correction to $B^{0} \rightarrow \pi^{0} \eta^{(\prime)}$ can be expected as approximately 30% with $S U(3)$ flavor breaking

Timelike em form factor

Timelike scalar form factor

\ddagger Timelike scalar ff becomes important in $\mathcal{M}_{e, f}^{S P}$ when the final two mesons are identical (in this case $\mathcal{M}_{e, f}^{\mathbf{L L}, \mathbf{L R}}=0$)
\ddagger Its correction is very small in size with a large strong phase, main source of large CPV in $B \rightarrow \pi^{0} \pi^{0}$

PQCD: Progresses towards to NLO

- Gluon gluon effect in Spectator emission amplitude $\mathcal{M}_{c, d}$

\dagger Glauber gluon $I \sim\left(\Lambda^{2} / m_{B}, \Lambda^{2} / m_{B}, \Lambda\right)$
\dagger Glauber gluon from the pseudo-NambuGoldstone bosons brings significant effect
\dagger Glauber gluon associated with the heavy B meson is not important and can be ignored
\dagger Glauber effect formulates to an additional phase associated to π meson [Li 2014]

$$
\bar{\phi}_{M}\left(\mathbf{b}^{\prime}, \mathbf{b}\right)=\frac{2 \beta_{M}^{2}}{\pi} \phi_{M}(x) \exp \left[-2 \beta_{M}^{2} x b^{\prime 2}-2 \beta_{M}^{2}(1-x) b^{2}\right] . \quad \text { phase parameter } \beta_{M}
$$

\ddagger enhances the color-suppressed spectator tree amplitude
\ddagger changes the interference mode between it with other tree amplitudes, from destructive to instructive
\ddagger provides a possibility to understand the long-standing $\pi^{0} \pi^{0}$ puzzle [Liu 2015]
\ddagger and the $K \pi$ puzzle $\triangle A_{K \pi}=A_{\mathrm{CP}}^{\mathrm{dir}}\left(K^{ \pm} \pi^{0}\right)-A_{\mathrm{CP}}^{\mathrm{dir}}\left(K^{ \pm} \pi^{\mp}\right)$ [Liu 2016]

PQCD: Progresses towards to NLO

- TMD wave functions

\dagger Non-normalizable (unintegral) B meson DA $\phi_{+}\left(k^{+}, \mu\right)$ in the collinear factorization \triangle divergence $\left(\sim 1 / k^{+}\right)$does not break the collinear factoriation at LO, only $\lambda_{B}^{-1}(\mu)=\int d k^{+} \phi_{+}\left(k^{+}, \mu\right) / k^{+}$ involved \triangle emerges at high orders with more moments interplaying \triangle an ambiguous renormalization of f_{B} [Li 2004]
\dagger TMD definition of B meson wave function under HQET

$$
\begin{aligned}
& \langle 0| \bar{q}(y) W_{y}(n)^{\dagger} I_{n, y, 0}(n) W_{0}(n)\ulcorner h(0)|\bar{B}(v)\rangle \\
= & \frac{-i f_{B} m_{B}}{4} \operatorname{Tr}\left[\frac{1+\psi}{2}\left(2 \phi_{+}\left(v^{+} y^{-}, y_{T}^{2}\right)+\frac{\phi_{+}\left(v^{+} y^{-}, y_{T}^{2}\right)-\phi_{-}\left(v^{+} y^{-}, y_{T}^{2}\right)}{v^{+} y^{-}} \psi\right) \gamma_{5} \Gamma\right]
\end{aligned}
$$

$\triangle p_{B}=m_{B} v$, the coordinate of field \bar{q} is $y=\left(0, y^{-}, \mathbf{b}\right)$, moving along the light cone $n=n_{-}=\left(0,1,0_{T}\right) \triangle$ $W_{y}(n)=\mathcal{P} \operatorname{Exp}\left[-i g_{s} \int_{0}^{\infty} d \lambda n \cdot A(y+n \lambda)\right] \triangle \phi_{+}\left(\phi_{-}\right)$is the (sub-)leading twist DAs
\dagger The light cone singularity in the TMD definition (b parameter) when $/ \| n$
\triangle rotate the Wilson line away from the light cone \triangle alleviate the factorization-scheme dependence by adhering it to a fixed off-shellness $n^{2} \neq 0$
\triangle scheme dependence $\zeta_{B}^{2}=4\left(n \cdot p_{B}\right)^{2} / n^{2}$

\triangle evolution of DA $\phi_{+}\left(k^{+}, b, \mu\right)=S\left(k^{+}, b, \zeta_{B}\right) R\left(b, \mu, \zeta_{B}\right) \phi_{+}\left(k^{+}, b, 1 / b\right) \triangle \triangle \operatorname{IR} \alpha_{s} \ln ^{2}\left(\zeta_{B} b\right)$ (resummation), UV $\ln (\mu b)$ (RGE), universal initial condition (soft divs regularized by m_{g})
$\Delta \underline{\text { the normalization of } f_{B} \text { becomes realized in } k_{T} \text { factorization by } S\left(k^{+}, b, \zeta_{B}\right)}$

$$
\int_{0}^{\infty} d k^{+} \lim _{b \rightarrow 1 / k^{+}} \phi_{+}\left(k^{+}, b, \mu\right)=\int_{0}^{\infty} d k^{+} R\left(1 / k^{+}, \mu, \zeta_{B}\right) \phi_{+}\left(k^{+}, 1 / k^{+}, \mu\right)
$$

PQCD: Progresses towards to NLO

\dagger Rapidity singularity in the TMD definition with the lightlike Wilson line

$$
\begin{aligned}
\phi_{\pi}^{(1)} \otimes & H^{(0)} \supset \int[d l] \frac{1}{\left.\left[(k+l)^{2}+i 0\right)\right]\left[l_{+}+i 0\right]\left[l^{2}+i 0\right]} \\
& \times\left[H^{(0)}\left(x+l_{+} / p_{+}, \vec{k}_{T}+\vec{l}_{T}\right)-H^{(0)}\left(x, \vec{k}_{T}\right)\right]
\end{aligned}
$$

generated due to the Eikonal propagator

$$
\phi_{\pi}\left(x, \vec{k}_{T}, y_{u}, \mu\right) \stackrel{?}{=} \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+} z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)}
$$

$$
\times \frac{\langle 0| \bar{q}(0) W_{n_{-}}^{\dagger}(+\infty, 0) \not n_{-} \gamma_{5}[\text { tr. link }] W_{n_{-}}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle}{\times \text { ion }\langle 0| W_{n_{-}}^{\dagger}(+\infty, 0) W_{u}(+\infty, 0)[\text { tr. link }] W_{n_{-}}(+\infty, z) W_{u}^{\dagger}(+\infty, z)|0\rangle} .
$$

$$
\begin{aligned}
& \phi_{\pi} \supset \int[d l] \frac{u^{2}}{[l+i 0)][u \cdot l+i 0][u \cdot l-i 0]} \\
& \times \delta\left(x^{\prime}-x+l_{+} / p_{+}\right) \delta^{(2)}\left(\vec{k}_{T}^{\prime}-\vec{k}_{T}+\vec{l}_{T}\right) . \\
& \phi_{\pi}^{\mathrm{C}}\left(x, \vec{k}_{T}, y_{2}, \mu\right)=\lim _{\substack{y_{1} \rightarrow+\infty \\
y_{u} \rightarrow-\infty}} \int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+}+z-\vec{k}_{T} \cdot \vec{z}_{T}\right)} \\
& \times\langle 0| \bar{q}(0) W_{u}^{\dagger}(+\infty, 0) h_{-} \gamma_{-}[\text {tr. link }] W_{u}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle \\
& \times \sqrt{\frac{S\left(z_{T} ; y_{1}, y_{2}\right)}{S\left(z_{T} ; y_{1}, y_{u}\right) S\left(z_{T} ; y_{2}, y_{u}\right)}} . \\
& \begin{array}{l}
S\left(z_{T} ; y_{A}, y_{B}\right)=\frac{1}{N_{c}}\langle 0| W_{n_{B}}^{\dagger}\left(\infty, \vec{z}_{T}\right)_{c a} W_{n_{A}}\left(\infty, \vec{z}_{T}\right)_{a d} W_{n_{B}}(\infty, 0)_{b c} W_{n_{A}}^{\dagger}(\infty, 0)_{d b}|0\rangle . \\
\text { new soft function }
\end{array}
\end{aligned}
$$

\triangle regularized by rotating the Wilson line away from light cone $n=\left(n^{+}, n^{-}, \mathbf{n}_{T}\right)$ and removed by the Collins soft subtraction [Collines 2003]
\triangle multiple non-light-like Wilson lines with the price of soft function and another scale parameter ρ [Ji 2004]

Wilson line self energies
in the TMD wave function
\downarrow
\triangle pinch singularity with $n^{2} \neq 0$ [Bacchetta 2008]
$\triangle \triangle$ corresponds to the linear divergence in the length of the Wilson line in the coordinate space
\triangle Collins modification of TMD wave function with out pinch singularity [Collins 2011]
$\triangle \Delta$ rapidity of the gauge vector $n_{2}=\left(e^{y_{2}}, e^{-y_{2}, 0_{T}}\right)$
$\triangle \Delta$ unsubtracted wave function only involves light cone Wilson lines $\triangle \Delta$ each soft factor has at most one off-light-cone Wilson line $\triangle \Delta$ rapidity safe and pinch safe [Collins 2014]

PQCD: Progresses towards to NLO

cancellation mechanism of the new Collins definition [borrowed from Y.M Wang]
\triangle Li-Wang definition with non-dipole Wilson line [Li 2015]
$\phi_{\pi}^{\mathrm{I}}\left(x, \vec{k}_{T}, y_{2}, \mu\right)=\int \frac{d z_{-}}{2 \pi} \int \frac{d^{2} z_{T}}{(2 \pi)^{2}} e^{i\left(x p_{+}-z_{-}-\vec{k}_{T} \cdot \vec{z}_{T}\right)}$
$\times\langle 0| \bar{q}(0) W_{n_{2}}^{\dagger}(+\infty, 0)$ rit $_{-} \gamma_{5}[$ links@ $@ \infty] W_{v}(+\infty, z) q(z)\left|\pi^{+}(p)\right\rangle$. orthogonal Wilson lines $n_{2} \cdot v=0$
$\Delta \Delta n_{2}=\left(e^{y_{2}}, e^{-y_{2}}, 0_{T}\right)$ and $v=\left(-e^{y_{2}}, e^{-y_{2}}, 0_{T}\right)$ $\triangle \Delta$ the Wilson-line self energies vanishes an hence no pinch singularity in the Feynman gauge
$\triangle \Delta$ reproduces the collinear logarithm of QCD diagrams for $\phi_{\pi}^{\prime} \otimes H^{(0)}$
\ddagger Exclusive B decays at NLO: $\triangle \ln ^{2}\left(\zeta_{B}^{2} / m_{B}^{2}\right), \ln x \ln \left(\zeta_{B}^{2} / m_{B}^{2}\right) \triangle$ resummed to all order by resolving the evolution equation of Φ_{B} on $\zeta_{B}^{2} \triangle$ suppresses the shape of $\phi_{+}\left(k^{+}, b, \mu\right)$ near the end point $k^{+} \rightarrow 0$ [Li 2013]
\dagger Joint singularity in the pion-photon form factor [Li 2014]
$\triangle \ln x \ln \left(\zeta_{\pi}^{2} / k_{T}^{2}\right) \triangle$ joint resummation \triangle strong suppression for small x and large $\mathrm{b} \Delta$ joint resummation improved pion wave function does not bring sizable corrections

