

Decay Constant of Vector Bc Meson and its Experimental Feasibility

Ruilin Zhu

Nanjing Normal University

2209.15521; 2303.02692

In collaboration with Wei Tao and Zhen-Jun Xiao

5th Heavy Flavor and QCD Conf. @Wuhan April 21, 2023

Content

> Research Background

> Decay Constant of Bc* in EFT

Decay Width of Bc* and its non-radiative decay modes

> Summary and Outlook

1. Research Background

ightharpoonup Meson Puzzle: Bc⁺ ($\bar{b}c$) discovered in 1998, CDF @Fermi Lab)

1998, Bc(1S), 0⁻¹

51 years, ground meson

$$E_0 \approx (6227 - m_b - m_c) MeV$$
, $\Delta E_0 \approx 60 MeV$

Nonrelativistic system at femtoscale, similar to Hydrogen

Ground Bc (0⁻) Decays

> LHCb made great progress to detect Bc decay modes

Bottom decay ~20%, charm decay ~70%, both decay ~10%

B_c^+ DECAY MODES \times B($\overline{b} \rightarrow B_c$)

B_ modes are charge conjugates of the modes below.

	Mode	Fraction (Γ_i/Γ)	Confidence leve
Г1	$J/\psi(1S)\ell^+ u_\ell$ anything	seen	
	$J/\psi(1S)\mu^+\nu_\mu$	seen	
	$J/\psi(1S)\tau^+\nu_{\tau}$	seen	
	$J/\psi(1S)\pi^+$	seen	
	$J/\psi(1S)K^+$	seen	
	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{-}$	seen	
Γ ₇	$J/\psi(1S) a_1(1260)$	not seen	
	$J/\psi(1S)K^{+}K^{-}\pi^{+}$	seen	
	$J/\psi(1S)\pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}$	seen	
Γ_{10}	$\psi(2S)\pi^+$	seen	
	$J/\psi(1S) D^0 K^+$	seen	
Γ_{12}	$J/\psi(1S) D^*(2007)^0 K^+$	seen	
Γ ₁₃	$J/\psi(1S)D^*(2010)^+K^{*0}$	seen	
Γ ₁₄	$J/\psi(1S)D^{+}K^{*0}$	seen	
Γ ₁₅	$J/\psi(1S)D_s^+$	seen	
Γ_{16}	$J/\psi(1S)D_s^{*+}$	seen	
Γ ₁₇	$J/\psi(1S) p \overline{p} \pi^+$	seen	

PDG-2022

	_					
$\chi_c^0 \pi^+$	В	+ DECAY MODE	ES × B(b -	$\rightarrow B_c$)		
	B_{c}^{-} modes are charge conjugates of the modes below.					
$D^{0}\pi^{+}$	Mode		Fraction	$n(\Gamma_i/\Gamma)$	Confidence les	ve
$D^{*0}K^{+}$	Citation: J. Beringer et al.	(Particle Data Group), P	R D86 , 010001	(2012) (URL: ht	tp://pdg.lbl.gov)	Ī
$D_{s}^{+}D_{s}^{0}$	$\Gamma_i/\Gamma \times B(\overline{b} \rightarrow$	B_c).	branching ra	tios; rather th	e fraction	
$_{7}^{0}$ $D^{+}D^{0}$	$\Gamma_1 = J/\psi(1S)\ell^+\nu_\ell$ as $I/\psi(1S)\pi^+$	nything		PDG-	2012	
$D_s^+ \overline{D}^* (200)$	$I_4 = J/\psi(15)a_1(1$	π ⁻ 260)		14 14		
$D_{\epsilon}^{+}D^{*}(200)$		< σ.σ	× 10 ·		90%	=
		< 3.8	$\times 10^{-4}$		90%	
$\hat{D}^*(2010)$	$)^{+}\overline{D}{}^{0}$, $D^{*+} o$	not seer				
_		< 6.5	× 10 ⁻⁴		90%	
		-				
. ,		< 3.7	$\times 10^{-4}$		90%	
		< 1.3	$\times 10^{-3}$		90%	
- 3 '	•	< 1.3	$\times 10^{-3}$		90%	
		< 1.0			90%	
		< 7.7	\times 10 ⁻⁴		90%	
- '	,	not seer	n			
$D^+\overline{K}^{*0}$		not seer	n			
$D^{+}K^{*0}$		not seer	n			
$D^{+}\overline{K}^{*0}$		not seer	n			
$D_{\bullet}^{+}\phi$						
$K+K^0$						
	$\bar{b} \rightarrow B_s$)	seen				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 $p\bar{p}\pi^{+}$ 0 $D^{0}K^{+}$ 1 $D^{0}\pi^{+}$ 2 $D^{*0}\pi^{+}$ 3 $D^{*0}K^{+}$ 4 $D_{s}^{+}\bar{D}^{0}$ 5 $D_{s}^{+}D^{0}$ 6 $D^{+}\bar{D}^{0}$ 7 $D^{+}\bar{D}^{0}$ 9 $D_{s}^{+}\bar{D}^{0}$ 1 $D_{s}^{+}D^{0}$ 1 $D_{s}^{+}D^{0}$ 2 $D_{s}^{+}D^{0}$ 3 $D_{s}^{+}D^{0}$ 6 $D^{+}D^{0}$ 6 $D^{+}D^{0}$ 7 $D^{+}D^{0}$ 8 $D_{s}^{+}D^{0}$ 9 $D_{s}^{+}D^{0}$ 1 $D_{s}^{+}D^{0}$ 1 $D_{s}^{+}D^{0}$ 2 $D^{+}D^{0}$ 2 $D^{+}D^{0}$ 3 $D^{+}(200)^{-}D^{0}$ 3 $D^{+}(2010)^{+}D^{0}$ 6 $D^{+}\pi^{0}/\gamma$ 4 $D^{+}D^{+}(2007)^{0}$ 5 $D^{+}(2007)^{+}D^{0}$ 6 $D^{+}(2010)^{+}D^{0}$ 7 $D^{+}D^{+}(2007)^{0}$ 8 $D_{s}^{+}D^{*}(2007)^{0}$ 9 $D_{s}^{+}D^{*}(2007)^{0}$ 1 $D^{*}(2010)^{+}D^{*}(2007)^{0}$ 1 $D^{*}(2010)^{+}D^{*}(2007)^{0}$ 2 $D^{+}K^{*0}$ 3 $D^{+}K^{*0}$ 4 $D^{+}K^{*0}$ 5 $D_{s}^{+}K^{*0}$ 6 $D_{s}^{+}\phi$ 7 $K^{+}K^{0}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Vector Bc*(1⁻)

- > Excited Bc states below BD threshold major decay to ground Bc state
- ➤ Hyperfine splitting between Bc*(1S) and Bc(1S): around 60MeV

➤ Bc* (1S) major (99.99%) electromagnetic decays to Bc(1S)

> However, 60MeV photon is hard to detect at LHC

2. Decay Constant of Bc* in EFT

P. Pietrulewicz

Decay Constant of Bc*

▶ Bc* decay constants in QCD

$$\langle 0 | \bar{b} \gamma^{\mu} c | B_c^*(P, \varepsilon) \rangle = f_{B_c^*}^{\nu} m_{B_c^*} \varepsilon^{\mu},$$

➤ Bc* decay constants in NRQCD

$$f_{B_{c}^{*}}^{v} = \sqrt{\frac{2}{m_{B_{c}^{*}}}} C_{v}(m_{b}, m_{c}, \mu_{f}) \left\langle 0 \left| \chi_{b}^{\dagger} \sigma \right| \mathcal{E} \psi_{c} \right| B_{c}^{*}(\mathbf{P}) \right\rangle (\mu_{f}) + O(v^{2})$$

➤ Matching Formulae

$$Z_J Z_{2,b}^{\frac{1}{2}} Z_{2,c}^{\frac{1}{2}} \Gamma_J = C_J \tilde{Z}_J^{-1} \tilde{Z}_{2,b}^{\frac{1}{2}} \tilde{Z}_{2,c}^{\frac{1}{2}} \tilde{\Gamma}_J$$

 \tilde{Z}_J :NRQCD $\overline{\rm MS}$ current renormalization constants

Calculation procedure

- > Feynman Diagrams & Amplitudes (Packages: FeynArts / QGraf)
- ➤ Feynman Amplitudes Simplification: Trace & Contraction (Packages: FeynCalc / FormCalc / FormLink)
- ➤ Feynman Integrals Reduction (Packages: Apart(Feng) / FIRE/Kira /...)
- ➤ Feynman Master Integrals Calculation: (Packages: AMFlow(Ma et al) / FIESTA /...)

See Prof. Ma Yanqing's talk tomorrow

Two-loop Feynman diagrams

> Feynman diagram up to two-loop order accuracy

> Matching coefficients at two loop

Tao-Zhu-Xiao, 2209.15521

 $\mu_f \in [1.5, 1.2, 1] \text{GeV}, \ \mu \in [6.25, 4.75, 3] \text{GeV}, \ m_b \in [5.25, 4.75, 4.25] \text{GeV}, \ m_c \in [2, 1.5, 1] \text{GeV}$

	LO	NLO	NNLO
C_p	1	$0.9117^{-0+0.0072+0.0061-0.0156}_{+0-0.0160-0.0064+0.0263}$	$0.7897^{-0.0310+0.0206+0.0119+0.0149}_{+0.0253-0.0482-0.0133-0.0141}$
C_v	1	$0.8697^{-0+0.0107+0.0061-0.0156}_{+0-0.0236-0.0064+0.0263}$	$0.7363^{-0.0234+0.0230+0.0106+0.0117}_{+0.0191-0.0526-0.0117-0.0121}$

μ dependence for matching coefficients

Three-loop diagrams

> Typical diagrams up to three-loop

LO:1, NLO:1, NNLO:11, N^3LO:268

Results for vector and pseudoscalar

➤ Matching coefficients for vector current(state-of-art)

$$\mathcal{C} = 1 - 2.29 \left(\frac{\alpha_s^{(n_l)}}{\pi}\right) - 35.44 \left(\frac{\alpha_s^{(n_l)}}{\pi}\right)^2 - 1686.27 \left(\frac{\alpha_s^{(n_l)}}{\pi}\right)^3 + \mathcal{O}(\alpha_s^4),$$
 for $n_l = 3, n_c = 1, n_b = 0$,

Sang-Zhang-Zhou, arXiv:2210.02979

➤ Matching coefficients for pseudoscalar current(state-of-art)

$$C(x_{\text{phys}}) = 1 - 1.62623 \left(\frac{\alpha_s^{(n_l)}(m_r)}{\pi}\right) - 6.51043 \left(\frac{\alpha_s^{(n_l)}(m_r)}{\pi}\right)^2 - 1520.59 \left(\frac{\alpha_s^{(n_l)}(m_r)}{\pi}\right)^3 + \mathcal{O}(\alpha_s^4)$$

Feng-Jia-Mo-Pan-Sang-Zhang, arXiv:2208.04302

Results for axial-vector and scalar

> Matching coefficients for axial-vector and scalar up to three loop

Nonconvergence behaviors also in other two currents

Tao-Xiao-**Zhu**, arXiv: 2303.02692

Sub-leading Contribution

> Relativistic corrections

$$\langle 0 | \overline{Q_1} \gamma^5 Q_2 | Q_2 \overline{Q_1} \rangle_{QCD}$$

$$= \sqrt{2M_H} \left[C_0^P \left\langle 0 \left| \chi_1^{\dagger} \psi_2 \right| Q_2 \overline{Q_1}(\mathbf{p}) \right\rangle_{\text{NRQCD}} + C_2^P \left\langle 0 \left| (\mathbf{D} \chi_1)^{\dagger} \cdot \mathbf{D} \psi_2 \right| Q_2 \overline{Q_1}(\mathbf{p}) \right\rangle_{\text{NRQCD}} + \cdots \right]$$

Employing EOM:

$$\left\langle 0 \left| (\mathbf{D}\chi_1)^{\dagger} \mathbf{D} \psi_2 \right| Q_2 \overline{Q_1}(\mathbf{p}) \right\rangle = -2m_r E \left\langle 0 \left| \chi_1^{\dagger} \psi_2 \right| Q_2 \overline{Q_1}(\mathbf{p}) \right\rangle.$$

$$f_{B_c^*} = 2 \sqrt{\frac{N_c}{m_{B_c^*}}} \left[C_v + \frac{d_v E_{B_c^*}}{12} \left(\frac{8}{M} - \frac{3}{m_r} \right) \right] |\Psi_{B_c^*}(0)|,$$

$$f_{B_c} = 2 \sqrt{\frac{N_c}{m_{B_c}}} \left[C_p - \frac{d_p E_{B_c}}{4m_r} \right] |\Psi_{B_c}(0)|,$$

Wave function scale dependence

➤ Wave function at origin

For Power-law potential

$$V(r) = Ar^a + C$$

Exact solution

$$|\psi_{\mu}^{n}(0)|^{2} = f(n,a)(A\mu)^{3/(2+a)}$$

Scale relation

$$|\Psi_{B_c^*}(0)| = |\Psi_{J/\psi}(0)|^{1-y} |\Psi_{\Upsilon}(0)|^y$$

$$y = y_c = \ln((1 + m_c/m_b)/2)/\ln(m_c/m_b)$$

Collins-Imbo-King-Martell, PLB 393 (1997) 155–160

$$|\psi_1(0)|^2 = |\psi_1^{(0)}(0)|^2 \left(1 + \sum_{k=1}^n f_k a_s^k\right). \qquad \left|\psi_1^{(0)}(0)\right|^2 = \frac{(m_b C_F \alpha_s)^3}{8\pi},$$
$$E_1^{(0)} = -\frac{1}{4} m_b (C_F \alpha_s)^2,$$

Beneke-Kiyo-Marquard-Penin-Piclum-Seide-Steinhauser, PRL. 112, 151801 (2014)

Hyperfine splitting

> Hyperfine splitting for beauty-charm family

$$(\Delta M)_{i\bar{j}} = 32\pi\alpha_s(2\mu_{i\bar{j}})|\Psi_{i\bar{j}}(0)|^2/9m_im_j$$

$$\Delta M_{c\bar{b}} = \alpha_s(2m_r)x^{1-2q} \left(\frac{\Delta M_{c\bar{c}}}{\alpha_s(m_c)}\right)^{1-q} \left(\frac{\Delta M_{b\bar{b}}}{\alpha_s(m_b)}\right)^q.$$

$$\Delta M_{c\bar{b}(1S)} = 63.8^{+5.5}_{-8.4}(q)^{+1.2}_{-1.2}(exp) \text{ MeV},$$

$$\Delta M_{c\bar{b}(2S)} = 26.4^{+2.1}_{-3.3}(q)^{+1.5}_{-1.7}(exp) \text{ MeV},$$

$$\Delta M_{b\bar{b}(1S)} = 62.3 \pm 3.2 \text{ MeV}$$

 $\Delta M_{b\bar{b}(2S)} = 24 \pm 4 \text{ MeV}$

$$\Delta M_{b\bar{b}(2S)} = 24 \pm 4 \text{ MeV}$$

CMS 2019

$$\Delta M_{c\bar{b}(2S)} = 29.1 \pm 1.5 (stat) \pm 0.7 (syst) \,\text{MeV}$$

LHCb 2019

$$\Delta M_{c\bar{b}(2S)} = 31.0 \pm 1.4 (stat) \pm 0.0 (syst) \, {\rm MeV}$$

HPQCD lattice results

$$\Delta M_{c\bar{b}(1S)} = 54 \pm 4 \,\text{MeV}$$

Vector Bc* decay constant

μ (GeV)

Leptonic branching ratios

TABLE I: The N³LO predictions for the pure leptonic branching ratios $\mathcal{B}(B_c^{*+}(B_c^+) \to l^+\nu_l)$ with $l = (e, \mu, \tau)$. The three uncertainties come from $q \in [0.3, 0.4], \mu_f \in [0.4, 7]$ GeV, $\mu \in [2.2, 7]$ GeV, respectively.

Branching ratios	N^3LO
$\mathcal{B}(B_c^{*+} \to e^+ \nu_e)$	$(3.85^{+0.29-0.07-1.35}_{-0.46+0.03+0.37}) \times 10^{-6}$
$\mathcal{B}(B_c^{*+} \to \mu^+ \nu_\mu)$	$(3.85^{+0.29-0.07-1.35}_{-0.46+0.03+0.37}) \times 10^{-6}$
$\mathcal{B}(B_c^{*+} \to \tau^+ \nu_\tau)$	$(3.40^{+0.25-0.06-1.19}_{-0.41+0.03+0.33}) \times 10^{-6}$
$\mathcal{B}(B_c^+ \to e^+ \nu_e)$	$\left(1.91^{+0.15-0.19-0.70}_{-0.23+0.12+0.22}\right) \times 10^{-9}$
$\mathcal{B}(B_c^+ \to \mu^+ \nu_\mu)$	$\left(8.18^{+0.63-0.83-2.99}_{-1.00+0.52+0.94}\right) \times 10^{-5}$
$\mathcal{B}(B_c^+ \to \tau^+ \nu_\tau)$	$\left(1.96^{+0.15-0.20-0.72}_{-0.24+0.12+0.23}\right) \times 10^{-2}$

$$\Gamma_{\rm tot}(B_c^*) = 60 {\rm eV}$$

 $\tau_{B_c} = 0.51 {\rm ps.}$

3. Decay width of Bc* and its non-radiative decay modes

arXiv: 2304.XXXXX

➤ Bc* (1S) major (99.99%) electromagnetic decays to Bc(1S): M1 transition

$$H = (M_H, \mathbf{0})$$

$$P_{H'} = (\sqrt{k_{\gamma}^2 + M_{H'}^2}, -\mathbf{k})$$

$$H'$$

$$\mathcal{L}_{\varphi} = \varphi^{\dagger} \left(iD_{0} + \frac{\mathbf{D}^{2}}{2m} + \frac{\mathbf{D}^{4}}{8m^{3}} \right) \varphi$$

$$+g\varphi^{\dagger} \left(\frac{c_{F}}{2m} \boldsymbol{\sigma} \cdot \mathbf{B} + i \frac{c_{s}}{8m^{2}} \boldsymbol{\sigma} \cdot [\mathbf{D} \times, \mathbf{E}] + \frac{c_{D}}{8m^{2}} [\mathbf{D} \cdot, \mathbf{E}] \right) \varphi$$

$$+ee_{Q}\varphi^{\dagger} \left(\frac{c_{F}^{em}}{2m} \boldsymbol{\sigma} \cdot \mathbf{B}^{em} + i \frac{c_{s}^{em}}{8m^{2}} \boldsymbol{\sigma} \cdot [\mathbf{D} \times, \mathbf{E}^{em}] + \frac{c_{D}^{em}}{8m^{2}} [\mathbf{D} \cdot, \mathbf{E}^{em}] \right) \varphi$$

$$+ee_{Q}\varphi^{\dagger} \left(\frac{c_{W1}^{em}}{8m^{3}} {\{\mathbf{D}^{2}, \boldsymbol{\sigma} \cdot \mathbf{B}^{em}\}} - \frac{c_{W2}^{em}}{4m^{3}} \mathbf{D}^{i} \boldsymbol{\sigma} \cdot \mathbf{B}^{em} \mathbf{D}^{i} \right) \varphi$$

$$+ee_{Q}\varphi^{\dagger} \left(\frac{c_{p'p}^{em}}{8m^{3}} [(\boldsymbol{\sigma} \cdot \mathbf{D})(\mathbf{B}^{em} \cdot \mathbf{D}) + (\mathbf{D} \cdot \mathbf{B}^{em})(\boldsymbol{\sigma} \cdot \mathbf{D})] \right) \varphi$$

$$+ee_{Q}\varphi^{\dagger} \left(i \frac{c_{M}^{em}}{8m^{3}} {\{\mathbf{D} \cdot, {\{\mathbf{D} \times, \mathbf{B}^{em}\}}\}} \right) \varphi,$$

$$|H(\mathbf{P},\lambda)\rangle^{(0)} = \int d^3R \int d^3r \, e^{i\mathbf{P}\cdot\mathbf{R}} \text{Tr} \left\{ \phi_{H(\lambda)}^{(0)}(\mathbf{r}) \mathbf{S}^{\dagger}(\mathbf{r},\mathbf{R}) |\mathbf{U}\mathbf{S}\rangle \right\} ,$$

$$\Gamma(B_c^*(1S)) \approx \Gamma(B_c^*(1S) \to B_c(1S) + \gamma) \sim 54eV$$

However, around 60MeV photon is hard to detect at LHC

Bc* decays to J/psi form factors

Bc* non-radiative modes (selected)

京师 范 才 1902 NNU NNU WORMAL UNIV

 $\ell=e,\mu$ This work Chang-Wang-Zhu-Li(2020) Wang et al(2018) Dai-Zhang-Oset(2018)

 $B_c^{*+} \to J/\psi + \ell^+ + \nu_\ell \quad (2.10 - 3.15) \times 10^{-7} \qquad (5.44^{+4.46}_{-2.49}) \times 10^{-7} \qquad 5.37 \times 10^{-7} \qquad 2.91 \times 10^{-7}$

This work Yang-Wang-Huang-Chang-Sun(2022) Liu-Wan(2022) $B_c^{*+} \to J/\psi + \pi^+ (1.86 - 2.79) \times 10^{-8}$ 5.8×10^{-8} 2.4×10^{-8}

$$\mathcal{B}(B_c^{*+} \to \mu^+ \nu_\mu) = (3.85^{+0.29-0.07-1.35}_{-0.46+0.03+0.37}) \times 10^{-6}$$

- Cross section ~100nb at LHC from single parton scattering Chang-Wu, EPJC 38,267(2004) increased up to ~ μb if consider the double parton scattering
- ➤ around hundreds of Jpsi+pi and thousands of Jpsi+mu+nv events for 10fb⁻¹ data.
 Future LHCb 300fb⁻¹
- See Prof. He Jibo's talk

Summary and Outlook

- ✓ Convergent Bc* decay constant up to three-loop accuracy is obtained;
- ✓ Bc* decay width is studied (~50-60eV) from its radiative decay; $B_c^{*+}(1S) \rightarrow B_c^{+}(1S) + \gamma$
- ✓ Hunting for vector Bc* meson possibly by nonradiative decay modes

Outlook

$$B_c^{*+}(1S) \to \mu^+ + \nu_{\mu} \qquad B_c^{*+}(1S) \to J/\psi + X$$

- ➤ Nontrivial high-order calculation of wave function in un-equal mass cases
- ➤ Rare Decays for Bc meson family at LHC/CEPC/Super-Z

Thank you a lot!