Transverse momentum distributions and jets in SCET

邵鼎暟
复旦大学

QCD and jet physics

QCD: non-abelian Yang-Mills theory

$$
\mathcal{L}=\sum_{q} \bar{\psi}_{q, a}\left(i \gamma^{\mu} \partial_{\mu} \delta_{a b}-g_{s} \gamma^{\mu} t_{a b}^{C} \mathcal{A}_{\mu}^{C}-m_{q} \delta_{a b}\right) \psi_{q, b}-\frac{1}{4} F_{\mu \nu}^{A} F^{A \mu \nu}
$$

Jets: Parton (quark or gluon) fragmentation and hadronization

Jets are emergent property of QCD

- Soft-collinear singularity
- Asymptotic freedom
- Color string breaks

Dynamics of jets formation: from short to long distance in quantum field theory

$$
J\left(\text { scale } \mu_{2}\right) \sim J\left(\text { scale } \mu_{1}\right) \exp \left[\int_{\mu_{1}}^{\mu_{2}} \frac{d \mu^{\prime}}{\mu^{\prime}} \int d x P\left(x, \alpha_{s}\left(\mu^{\prime}\right)\right)\right]
$$

Jets at the LHC

Jets are produced copiously at the LHC

Not jets (QED jets?): e $\mu \gamma$
Tau jets: τ
Light Jets: $u d s g$
Heavy Jets: $c b$
Fat Jets: W Z H t

Jet TMDs and azimuthal decorrelation

- strong coupling measurement
- jet calibration
- spin asymmetry
- TMDPDF, TMDFF, nTMDPDF
- energy loss
- naive factorization violation

(Liu, Ringer, Vogelsang, Yuan '19 PRL)

Jet TMD and its all-order structure

- Large logarithms in jet TMDs

$$
q_{T}=\left|\sum_{i \notin \text { jets }} \vec{k}_{T, i}\right|+\mathcal{O}\left(k_{T}^{2}\right) \ll Q
$$

- sum over all soft and collinear partons not combined with hard jets

- deviation from $\mathrm{q}_{\mathrm{T}}=0$ are only caused by particle flow outside the jet regions
- non-global observables (Dasgupta \& Salam '01)
- Recoil absent for the $\boldsymbol{p}_{\mathbf{T}^{n}}$-weighted recombination scheme (Banfi, Dasgupta \& Delenda '08)

$$
\begin{aligned}
p_{t, r} & =p_{t, i}+p_{t, j}, \\
\phi_{r} & =\left(w_{i} \phi_{i}+w_{j} \phi_{j}\right) /\left(w_{i}+w_{j}\right) \quad w_{i}=p_{t}^{n} \\
y_{r} & =\left(w_{i} y_{i}+w_{j} y_{j}\right) /\left(w_{i}+w_{j}\right)
\end{aligned}
$$

$n \rightarrow \infty \quad$ Winner-take-all scheme (Salam; Bertolini, Chan, Thaler ' 13)

- \mathbf{N}^{3} LL resummation for jet $\mathbf{q}_{\mathbf{T}}$ @ ee and ep (Gutierrez-Reyes, Scimemi, Waalewijn, Zoppi '18' 19)
- NNLL resummation for $\delta \phi$ @ LHC (Chien, Rahn, DYs, Waalewiin \& Wu '22 JHEP + Schrignder '21 PLB)

Recoil-free azimuthal angle for boson-jet correlation

(Chien, Rahn, DYS, Waalewijn \& Wu '22 JHEP + Schrignder '21 PLB)

$$
\pi-\Delta \phi \equiv \delta \phi \approx \sin (\delta \phi)=\left|p_{x, V}\right| / p_{T, V}
$$

Transverse momentum conservation: $\quad \vec{p}_{T, a}+\vec{p}_{T, b}+\vec{p}_{T, S}+\vec{p}_{T, c}+\vec{p}_{T, V}=0$
Transverse momentum imbalance: $\quad \vec{q}_{T} \equiv \vec{p}_{T, V}+\vec{p}_{T, J}=\vec{p}_{T, J}-\vec{p}_{T, c}-\vec{p}_{T, a}-\vec{p}_{T, b}-\vec{p}_{T, S}$

Azimuthal	$q_{x}=p_{x, V}+p_{x, J}$
decorrelation	$=p_{x, V}$
	$-p_{x, a}-p_{x, b}-p_{x, S}$

Radial
decorrelation

$$
\begin{aligned}
q_{y} & =p_{y, V}+p_{y, J} \\
& =p_{y, J}-p_{y, a}-p_{y, b}-p_{y, S}-p_{y, c}
\end{aligned}
$$

Recoil-free azimuthal angle for boson-jet correlation

(Chien, Rahn, DYS, Waalewijn \& Wu '22 JHEP + Schrignder '21 PLB)

Standard SCET2 (CSS ...) $\quad \delta \phi \ll \mathcal{O}(1)$

Effect of soft radiation in jet algorithm is power suppressed

Following the standard steps in SCET2 we obtain the following factorization formula

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma}{\mathrm{~d} p_{x, V} \mathrm{~d} p_{T, J} \mathrm{~d} y_{V} \mathrm{~d} \eta_{J}}=\int \frac{\mathrm{d} b_{x}}{2 \pi} e^{\mathrm{i} p_{x, V} b_{x}} \sum_{i, j, k} B_{i}\left(x_{a}, b_{x}\right) B_{j}\left(x_{b}, b_{x}\right) S_{i j k}\left(b_{x}, \eta_{J}\right) H_{i j \rightarrow V k}\left(p_{T, V}, y_{V}-\eta_{J}\right) J_{k}\left(b_{x}\right) \\
\text { Fourier transformation in 1-dim } \\
\text { Soft function can be obtained by boosted invariance } \\
\text { (also see Gao,Li,Moult,Zhu'19 PRL,...) }
\end{array}
$$

Pythia simulation results

- Non-perturbative effects (hadronization and MPI) are mild

Numerical results

- first \mathbf{N}^{2} LL resummation including full jet dynamics
- good perturbative convergence
- ${ }^{3}$ LL resummation in on progress
- interesting to perform the same measurement at the LHC

Azimuthal decorrelations of jets with the standard jet axis

- All-order resummation of azimuthal decorrelation of QCD jets was first studied by (Banfi, Dasgupta \& Delenda '08)

$$
q_{T}=\left|\sum_{i \notin \text { jets }} \vec{k}_{T, i}\right|+\mathcal{O}\left(k_{T}^{2}\right)
$$

- CSS framework
- dijet (Sun, Yuan \& Yuan '14 \& '15) jet + V (Sun, Yuan \& Yuan '18; Chen, Qin, Wang, Wei, Xiao, Zhang '18) lepton + jet (Liu, Yuan \& Felix '19) jet + top (Cao, Sun, Yan, Yuan \& Yuan '18 \& '19)

Resummation formula: $\quad \frac{d \sigma}{d \Delta \phi}=x_{a} f_{a}\left(x_{a}, \mu_{b}\right) x_{b} f_{b}\left(x_{b}, \mu_{b}\right) \frac{1}{\pi} \frac{d \sigma_{a b \rightarrow c d}}{d \hat{t}} b J_{0}\left(\left|\vec{q}_{\perp}\right| b\right) e^{-S(Q, b)}$

Perturbative Sudakov factor: $S_{P}(Q, b)=\sum_{q, 8} \int_{\mu_{\hbar}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}}\left[A \ln \frac{Q^{2}}{\mu^{2}}+B+D \ln \frac{1}{R^{2}}\right]$

Jet radius and TMD joint resummation for boson-jet correlation

 (Chien, DYS \& Wu '19 JHEP)$$
N_{1}\left(P_{1}\right)+N_{2}\left(P_{2}\right) \rightarrow \underbrace{\operatorname{boson}\left(p_{V}\right)+\operatorname{jet}\left(p_{J}\right)}_{q_{T}}+X
$$

$p_{h} \sim Q(1,1,1)$ $q_{T} \ll Q, R \ll 1$

$$
\begin{aligned}
p_{n_{J}} & \sim p_{T}^{J}\left(R^{2}, 1, R\right)_{n_{J} \bar{n}_{J}} \\
p_{n_{1}} & \sim\left(q_{T}^{2} / Q, Q, q_{T}\right)_{n_{1} \bar{n}_{1}} \\
p_{s} & \sim\left(q_{T}, q_{T}, q_{T}\right) \\
p_{t} & \sim q_{T}\left(R^{2}, 1, R\right)_{n_{J} \bar{n}_{J}}
\end{aligned}
$$

Construction of the theory formalism

- Multiple scales in the problem
- Rely on effective field theory: SCET + Jet Effective Theory (Becher, Neubert, Rothen, DYS '16 PRL)

$$
\begin{aligned}
& \frac{d \sigma}{d^{2} q_{T} d^{2} p_{T} d \eta_{J} d y_{V}}=\sum_{i j k} \int \frac{d^{2} x_{T}}{(2 \pi)^{2}} e^{i \vec{q}_{T} \cdot \vec{x}_{T}} \mathcal{S}_{i j \rightarrow V k}\left(\vec{x}_{T}, \epsilon\right) \mathcal{B}_{i / N_{1}}\left(\xi_{1}, x_{T}, \epsilon\right) \mathcal{B}_{j / N_{2}}\left(\xi_{2}, x_{T}, \epsilon\right) \\
&\left.\left.\times \mathcal{H}_{i j \rightarrow V k}\left(\hat{s}, \hat{t}, m_{V}, \epsilon\right) \sum_{m=1}^{\infty}\left\langle\mathcal{J}_{m}^{k}\left(\underline{\left\{n_{J}\right.}\right\}, R p_{J}, \epsilon\right) \otimes \mathcal{U}_{m}^{k}\left(\underline{n_{J}}\right\}, R \vec{x}_{T}, \epsilon\right)\right\rangle
\end{aligned}
$$

New divergence in the ϕ-integral

The anomalous dimensions of the global soft function and collinear-soft function are given by

$$
\begin{aligned}
\gamma^{S_{\mathrm{global}}} & =\frac{\alpha_{s} C_{F}}{\pi}\left[2 y_{J}+\ln \left(\frac{\mu^{2}}{\mu_{b}^{2}}\right)+\ln \left(4 \cos ^{2} \phi_{x}\right)-i \pi \operatorname{sign}\left(\cos \phi_{x}\right)\right], \\
\gamma^{S_{\mathrm{cs}}} & =-\frac{\alpha_{s} C_{F}}{\pi}\left[\ln \left(\frac{\mu^{2}}{\mu_{b}^{2} R^{2}}\right)+\ln \left(4 \cos ^{2} \phi_{x}\right)-i \pi \operatorname{sign}\left(\cos \phi_{x}\right)\right]
\end{aligned}
$$

- Scale separation introduced by the narrow cone approximation $R \ll 1$
- Both soft and collinear-soft functions are divergent as $\phi_{x}=\pi / 2$
- ϕ dependent term in the RG solution between soft and collinear-soft scales reads

$$
\left|\cos \phi_{x}\right|^{p\left(\mu_{b}, R \mu_{b}\right)}
$$

the ϕ-integral is convergent only if

$$
-1<p\left(\mu_{b}, \mu_{t}\right) \equiv \frac{4 C_{k}}{\beta_{0}} \log \frac{\alpha_{s}\left(\mu_{b}\right)}{\alpha_{s}\left(\mu_{t}\right)} \approx-\frac{2 \alpha_{s}\left(\mu_{t}\right)}{\pi} \log \frac{1}{R}
$$

One encounters such a divergence when the collinear-soft scale approaches to the nonperturbative region

Azimuthal decorrelation of QCD jets in ultra－peripheral collisions

（Zhang，Dai，DYS，＇23 JHEP）

Dijet production with no nuclear breakup

Photon－photon fusion

diffractive photo－production

We apply equivalent photon approximation＋SCET

$$
\frac{\mathrm{d}^{4} \sigma}{\mathrm{~d} q_{x} \mathrm{~d} p_{T} \mathrm{~d} y_{1} \mathrm{~d} y_{2}}=\int_{-\infty}^{+\infty} \frac{\mathrm{d} b_{x}}{2 \pi} e^{i q_{x} b_{x}} \tilde{B}\left(b_{x}, p_{T}, y_{1}, y_{2}\right) H\left(p_{T}, \Delta y, \mu\right) \tilde{S}\left(b_{x}, y_{1}, y_{2}, \mu, \nu\right) \tilde{U}_{1}\left(b_{x}, R, y_{1}, \mu, \nu\right) J_{1}\left(p_{T}, R, \mu\right) \tilde{U}_{2}\left(b_{x}, R, y_{2}, \mu, \nu\right) J_{2}\left(p_{T}, R, \mu\right)
$$

Impact parameter dependent Born cross section

 from EPA（Fermi 1924；Weizsacker 1934；Williams 1935） Also see 《物理学报》＂高能重离子超边缘碰撞中极化光致反应＂浦实，肖博文，周剑，周雅瑾

Collinear anomaly and resummation formula

Refactorization and collinear anomaly in TMD resummation of Drell-Yan process
(Becher, Neubert `10)

$$
\left[\mathcal{B}_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) \overline{\mathcal{G}}_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right)\right]_{q^{2}}=\left(\frac{x_{T}^{2} q^{2}}{b_{0}^{2}}\right)^{-F_{q \bar{q}}\left(x_{T}^{2}, \mu\right)} B_{q / N_{1}}\left(z_{1}, x_{T}^{2}, \mu\right) B_{\bar{q} / N_{2}}\left(z_{2}, x_{T}^{2}, \mu\right)
$$

which is also known as Collins-Soper treatment or rapidity renormalization group
Refactorization and jet radius resummation (Zhang, Dai, DYS, '22)

$$
\tilde{U}_{1}\left(b, R, y_{1}, \mu, \nu\right) \tilde{U}_{2}\left(b, R, y_{2}, \mu, \nu\right) \tilde{S}\left(b, y_{1}, y_{2}, \mu, \nu\right)=R^{2 F_{q \bar{q}}(b, \mu)} W(b, \Delta y, \mu)
$$

Verified at one loop

$$
\tilde{S}\left(b_{x}, y_{1}, y_{2}, \mu, \nu\right) \tilde{U}_{1}\left(b_{x}, y_{1}, \mu, \nu\right) \tilde{U}_{2}\left(b_{x}, y_{2}, \mu, \nu\right)=1+C_{F} \frac{\alpha_{s}}{\pi}\left[\ln R^{2}-\ln (2+2 \cosh \Delta y)\right]\left(\frac{1}{\epsilon}+\ln \frac{b_{x}^{2} \mu^{2}}{b_{0}^{2}}\right)
$$

Resummation formula

$$
\frac{\mathrm{d}^{4} \sigma^{\mathrm{NLL}}}{\mathrm{~d} q_{x} \mathrm{~d} p_{T} \mathrm{~d} y_{1} \mathrm{~d} y_{2}}=\int_{0}^{\infty} \frac{\mathrm{d} b_{x}}{\pi} \cos \left(q_{x} b_{x}\right) \tilde{B}\left(b_{x}, p_{T}, y_{1}, y_{2}\right) \exp \left[\int_{\mu_{h}}^{\mu_{b}} \frac{\mathrm{~d} \mu}{\mu} \Gamma_{H}\left(\alpha_{s}\right)+2 \int_{\mu_{j}}^{\mu_{b}} \frac{\mathrm{~d} \mu}{\mu} \Gamma_{J}\left(\alpha_{s}\right)\right] U_{\mathrm{NG}}^{2}\left(\mu_{b}, \mu_{j}\right)
$$

We choose the intrinsic scales as $\mu_{h}=M, \quad \mu_{j}=p_{T} R, \quad \mu_{b}=\frac{b_{0}}{b_{*}\left(b_{x}\right)}$

Numerical results

(Zhang, Dai, DYS, '23 JHEP)

- A good agreement with the ATLAS data in the nearly back-to-back region
- Photo-productions may enhance the dijet production rate, but should barely change the shape

QCD resummation of the azimuthal decorrelation of dijets in pp and pA

Gao, Kang, DYS, Terry, Zhang in progress

Factorization and resummation formula in SCET

$$
\begin{aligned}
\frac{\mathrm{d}^{4} \sigma}{\mathrm{~d} y_{c} \mathrm{~d} y_{d} \mathrm{~d} p_{T}^{2} \mathrm{~d} \delta \phi}= & \sum_{a b c d} \frac{p_{T}}{16 \pi \hat{s}^{2}} \frac{1}{1+\delta_{c d}} \int \frac{\mathrm{~d} b}{2 \pi} e^{i b p_{T} \delta \phi} x_{a} \tilde{f}_{a / p}^{\text {unsub }}\left(x_{a}, b, \mu, \zeta_{a} / \nu^{2}\right) x_{b} \tilde{f}_{b / p}^{\text {unsub }}\left(x_{b}, b, \mu, \zeta_{b} / \nu^{2}\right) \\
& \times \operatorname{Tr}\left[\boldsymbol{H}_{a b \rightarrow c d}(\hat{s}, \hat{t}, \mu) \tilde{\boldsymbol{S}}_{a b \rightarrow c d}^{\text {unsub }}(b, \mu, \nu)\right] J_{c}\left(p_{T} R, \mu\right) \tilde{S}_{c}^{\mathrm{cs}}(b, R, \mu, \nu) \\
& \times J_{d}\left(p_{T} R, \mu\right) \tilde{S}_{d}^{\mathrm{cs}}(b, R, \mu, \nu)
\end{aligned}
$$

(also see Sun, Yuan, Yuan '14 PRL)

Nuclear modified TMD PDFs (Alrashed, Anderle, Kang, Terry
\& Xing, '22)

Summary

- TMD jets play essential roles in understanding QCD dynamics in many aspects.
- Recoiling-free azimuthal decorrelation achieves first NNLL accuracy with full jet dynamics, and we find the non-perturbative corrections are mild.
- Our result can serve as a baseline for studying naive factorization violation, spin asymmetry and energy loss in QGP.
- We understand why azimuthal decorrealtion is simpler than standard transverse momentum imbalance, and the new divergence in q_{T} corresponds to the rapidity divergence of azimuthal decorrelation.
- We study the dijet azimuthal decorrelation in pp, pA, AA(UPC) processes and find good agreement.

中国科学：物理学力学 天文学

- 接受后实时在线预出版，优秀成果限时免费阅读
- 国内外公众媒体多渠道新闻宣传和精准推送

英文版：Science China Physics，Mechanics \＆Astronomy

- Editor＇s Focus栏目：瞄准PRL录用水平，快审快发
- JCR Q1区，中科院文献情报中心期刊分区表物理大类1区Top期刊

中文版：中国科学：物理学 力学天文学

- 中文核心期刊，并被ESCI，Scopus国际数据库收录
- 2021年度中国百种杰出学术期刊
- 特色专题出版，已组织专题（辑）70余期

Editor＇s Focus

扫描二维码
关注期刊最新动态

Supervised by
（2）中国种学源

Sponsored by
（2）中国科学演
\qquad

UPC physics 2023

26 May - 28 May 2023 Fudan University
indico.ihep.ac.cn/event/18418

Local organizers:
Xu-Guang Huang Guo-Liang Ma Ding-Yu Shao Jie Zhao

Thank you

