

Overview of LHCb results

安刘攀 LHCb中国组

北京大学

第三届LHCb前沿物理研讨会, 2023.04.15@国科大雁栖湖校区

The LHCb experiment

- ➤The LHCb experiment is one of the four large experiments at the LHC, dedicated to heavy flavor physics
 - \checkmark LHC has the largest production cross-sections of b- and c-hadrons ever
 - $\sigma(b\bar{b}) \approx 500 \,\mu b^{-1} @ 13 \,\text{TeV} \& \sigma(c\bar{c}) \approx 20 \times \sigma(b\bar{b}) \text{ in } pp \text{ collisions}$
 - \checkmark A great variety of b and c hadron species are accessible
 - X Too many additional tracks

The LHCb detector in Run 1 & 2

>LHCb is a single-arm forward region spectrometer covering $2 < \eta < 5$, with excellent *vertexing*, *tracking* and *particle identification (PID)* performance

2023/4/15

LHCb data taking

- ≻ Run 1 (2011-2012): $\mathcal{L}_{int} = 1 \text{ fb}^{-1}$ @ 7 TeV & 2 fb⁻¹ @ 8 TeV
- ➢ Run 2 (2015-2018): $L_{int} = 6 \text{ fb}^{-1}$ @ 13 TeV

➢ Run 3: emerging now @ 13.6 TeV

LHCb physics scheme

Outline

 Disclaimer: this talk cannot cover all the recent results; you can refer to <u>https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_all.html</u> for a full list of LHCb publications

CKM matrix

>In the SM, the CKM phase is responsible for CPV in quark sector

> Decays of heavy-flavored hadrons are the best laboratory to

 \checkmark Overconstrain the CKM unitarity triangle as a precision test of the SM

✓ Search for new sources of CPV \Rightarrow New Physics

cluded area has CL > 0.9

Direct measurement of γ

[LHCb-CONF-2022-003]

$$\triangleright \gamma = \arg(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*})$$

✓ Measured in tree-level decays sensitive to interference between $b \rightarrow cW$ and $b \rightarrow uW$ transition amplitudes

≽Golden modes:
$$B^{\pm} \rightarrow DK^{\pm}$$

 $\succ \gamma$ combination at LHCb:

- The most precise determination from a single experiment
- Compatible with indirect determinations (fit from CKM triangle):
- $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$ by CKMfitter

•
$$\gamma = (65.8 \pm 2.2)^{\circ}$$
 by UTFit

2023/4/15

Outline

Rare decays

Rare decays are sensitive to New Physics contributions

LFU test with $b \rightarrow s l^+ l^-$

>b → sl⁺l⁻ was among the major design goals of LHCb
 ✓ Rare (loop suppressed) ⇒ good sensitivity to NP
 ✓ No neutrino involved ⇒ experimentally friendly

$$R_{K,K^*} = \frac{\mathcal{B}(B^{(+,0)} \to K^{(+,*0)}\mu^+\mu^-)}{\mathcal{B}(B^{(+,0)} \to K^{(+,*0)}e^+e^-)}$$

✓ In SM, difference from unity originates solely from lepton mass difference
 ✓ Uncertainty from QED corrections O(1%)
 ✓ Hadronic uncertainties cancel in the ratio

Measurement of R_K and R_{K^*}

➤Strategy: measure double ratio

 $R_{K} = \frac{\mathcal{B}(B^{+,0} \to K^{+,*0}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+,0} \to K^{+,*0}e^{+}e^{-})} \times \frac{\mathcal{B}(B^{+,0} \to K^{+,*0}J/\psi(\to e^{+}e^{-}))}{\mathcal{B}(B^{+,0} \to K^{+,*0}J/\psi(\to \mu^{+}\mu^{-}))}$

✓ to maximize the cancellation of systematic effects in efficiencies

 \blacktriangleright Main challenge: the e/μ differences in detector response

✓ Lower hardware-level trigger efficiency for *e* ✓ Strong bremsstrahlung emission of *e* ✓ Strong brender and elever there *u*

✓ *e* PID harder and slower than μ ⇒ electron mode: lower efficiency & worse resolution & higher bkg. contamination

➤Vast efforts to calibrate efficiencies and model bkg.

LFU test with $b \rightarrow c l v$

 au/μ

 $\overline{\nu}_{\tau}/\overline{\nu}_{\mu}$

W

≻LFU test observable:

$$R_{H_c} = \frac{\mathcal{B}(H_b \to H_c \tau \nu_{\tau})}{\mathcal{B}(H_b \to H_c \mu \nu_{\mu})}$$

 \checkmark Common hadronic form factor uncertainties cancel in ratio

 \checkmark Large statistics thanks to large b-hadron production and BF

X Missing neutrinos

X Large partially reconstructed background

R(D) and $R(D^*)$ with muonic τ decay

$R(D^*)$ with hadronic au decay

$$\mathcal{R}(D^{*-}) = \mathcal{K}(D^{*-}) \frac{\mathcal{B}(B^0 \to D^{*-} 3\pi)}{\mathcal{B}(B^0 \to D^{*-} \mu^+ \nu_{\mu})}$$

measure external input

$$\mathcal{K}(D^{*-}) \equiv \frac{\mathcal{B}(B^0 \to D^{*-} \tau^+ \nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-} 3\pi)}$$

✓ Agreement between World Average

and SM: $3.5\sigma \rightarrow 3.2\sigma$

In preparation

[LHCb-PAPER-2022-052]

- ✓ To combine with Run 1 result gives $R(D^*) = 0.257 \pm 0.012 \pm 0.014 \pm 0.012$ (ext)
- ✓ Compatible with SM expectation

2023/4/15

Outline

New hadrons at LHCb

Hadron spectroscopy provides primary tests and inputs to QCD models

• Following "Exotic hadron naming convention" proposed by LHCb recently

2023/4/15

[[]arXiv: 2206.15233]

 $T^{\theta}_{\psi s1}(4000)^+ \text{ in } B^+ \rightarrow J/\psi \phi K^+$

 $> Z_{cs}(4000)$ (i.e. $T_{\psi s1}^{\theta}(4000)^+$) was observed with significance $> 10 \sigma$ $> J^P$ of $Z_{cs}(4000)$ was firmly determined to be 1⁺

2023/4/15

ightarrow Full 9 fb⁻¹ Run1+Run2 LHCb data

Ruiting Ma, Yinrui Liu

[arXiv: 2212.02716]

- \Rightarrow 4420 $B^0 \rightarrow \overline{D}{}^0 D_s^+ \pi^-$ candidates with signal purity of 90.7%
 - **3940** $B^+ \rightarrow D^- D_s^+ \pi^+$ candidates with signal purity of **95.2%**

✓ Faint horizontal band at $M^2(D_s^+\pi) \approx 8.5 \text{ GeV}^2$ indicating $T_{c\bar{s}}$ candidates

⇒ Joint amplitude analysis where amplitudes of the two decays are related through isospin symmetry

2023/4/15

Observation of $T_{c\bar{s}0}^a(2900)^{0/++}$

[arXiv: 2212.02716]

\succ Fit with two $D_s^+\pi$ states sharing resonance parameters

 $> T^{a}_{c\bar{s}0}(2900)^{0} \rightarrow D^{+}_{s}\pi^{-} \& T^{a}_{c\bar{s}0}(2900)^{++} \rightarrow D^{+}_{s}\pi^{+} \text{ significance} > 9\sigma$ $< A \text{ second } 1^{-} D^{+}_{s}\pi \text{ state yields significance of only } 1.3\sigma$ $< \text{Additional } D\pi, D^{+}_{s}\pi, DD^{+}_{s} \text{ resonances disfavored}$

> $J^P = 0^+$ favored over other spin-parity by more than 7.5 σ $M = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.011 \text{ GeV}$ > Flavor partner of $T_{cs0}(2900)^0 \rightarrow D^-K^+$? Multiplets to be revealed in the future

2023/4/15

Outline

W mass

 $> m_W$ is directly related to EW symmetry breaking in SM

$$m_W^2 \left(1 - \frac{m_W^2}{m_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} (1 + \Delta)$$

 α : fine structure constant Δ : loop corrections

[JHEP 01 (2022) 036]

[link to Moriond talk]

> 1.7 fb⁻¹ (~1/3 of Run 2 data) result:

 $m_W = 80354 \pm 23 \pm 10 \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

✓ Full Run 2 data \Rightarrow stat. uncertainty ~14 MeV

 Targeting an overall precision of ~20 MeV with all data and efforts to reduce syst. uncertainty

✓ Efforts ongoing for m_W combination

[EPJ C75 (2015) 601]

Rare W and Z decays

➢Hadronic-radiative W and Z decays can provide stringent tests of QCD factorization formalism

Outline

Heavy-ion physics at LHCb

- LHCb covers complementary kinematic regions to other experiments
- Unique role as highest-energy fixed-target experiment ever
- A broad physics scheme
 - Hadronization in hot and cold nuclear matter
 - ✓ Probes for quark-gluon plasma (QGP)
 - ✓ Constrain nPDF
 - ✓ Cosmic ray and astro-particle physics
 - ✓ Ultra-peripheral collisions (UPC)
 - ✓Exotic production

 \checkmark

J/ψ and D^0 production in PbNe

The first measurement in fixed-target nucleus-nucleus collision at the LHC!

 \blacktriangleright Lead ion beam with 2.5 TeV per nucleon + gaseous neon at rest $\Rightarrow \sqrt{s_{NN}} = 68.5$ GeV

Search for potential formation of QGP through J/ψ suppression; D^0 is a proxy for the overall $c\bar{c}$ production

[PLB 410 (1997) 337]

Summary

>LHCb keeps making important contributions to a rich physics program

>There are many more interesting results not covered in this talk: [LHCb publications]

Back up

$$T_{cs}$$
 in $B^+ \to D^+ D^- K^+$

[PRL 125 (2020) 242001] [PR D102 (2020) 112003]

Resonant structures observed in the D^-K^+ system from an amplitude analysis of the $B^+ \rightarrow D^+D^-K^+$ decay

 $\begin{aligned} X_0(2900): \quad M &= 2.866 \pm 0.007 \pm 0.002 \,\text{GeV}/c^2 \,, \qquad \Gamma &= 57 \pm 12 \pm 4 \,\text{MeV} \\ X_1(2900): \quad M &= 2.904 \pm 0.005 \pm 0.001 \,\text{GeV}/c^2 \,, \qquad \Gamma &= 110 \pm 11 \pm 4 \,\text{MeV} \end{aligned}$

First discovery of open-charm tetraquarks with four different flavors $[cs\overline{u}d]!$ The observation motivates study of $B \to \overline{D}D_s\pi$

Observation of $B^+ \rightarrow D_S^+ D_S^- K^+$

[arXiv: 2211.05034] [arXiv: 2210.15153]

Chen Chen, Hongrong Qi, Liming Zhang

 $N_{\rm sig} = \frac{360 \pm 22}{1000}$ Purity: 84%

✓ Near-threshold enhancement in $m(D_s^+D_s^-)$ ⇒ amplitude analysis

Observation of $X(3960) \rightarrow D_s^+ D_s^-$

[arXiv: 2211.05034] [arXiv: 2210.15153]

 $\checkmark 0^{++}$: X(3960) (14.3 σ), X₀(4140) (3.9 σ), Non-resonant

 $\checkmark 1^{--}: \psi(4260), \psi(4660)$

Chen Chen, Hongrong Qi, Liming Zhang

Liupan An

➤X(3960): threshold enhancement

 $\checkmark J^{PC} = 0^{++}$ preferred over 1^{--} and 2^{++} by 9.3 σ and 12.3 σ

 $> X_0(4140)$: dip at ~4.14 GeV via interference

✓ $J^{PC} = 0^{++}$ preferred over 1^{--} and 2^{++} by 3.5σ and 4.2σ

 \checkmark the dip can also be described by $J/\psi\phi \rightarrow D_s^+ D_s^-$ scattering

2023/4/15

Chen Chen, Hongrong Qi, Liming Zhang [arXiv: 2211.05034] [arXiv: 2210.15153]

	<i>M</i> [MeV]	Γ [MeV]	J ^{PC}
X(3960)	3955 <u>+</u> 6 <u>+</u> 12	$48 \pm 17 \pm 10$	0++
$\chi_{c0}(3930)$	3924 <u>+</u> 2	17 <u>+</u> 5	

➤Same particle?

 \mathcal{FF} : Fit fraction

 $\frac{\Gamma(X \to D^+ D^-)}{\Gamma(X \to D_s^+ D_s^-)} = \frac{\mathcal{B}(B^+ \to D^+ D^- K^+) \times \mathcal{FF}_{B^+ \to D^+ D^- K^+}^X}{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+) \times \mathcal{FF}_{B^+ \to D_s^+ D_s^- K^+}^X} = 0.29 \pm 0.09 \pm 0.10 \pm 0.08$

✓ Creation of $s\bar{s}$ from vacuum is suppressed wrt $u\bar{u}$ or $d\bar{d}$ ✓ $X \to D_s^+ D_s^-$ has smaller phase-space factor than $X \to D^+ D^-$ ⇒ X has an exotic nature! Candidate for $c\bar{c}s\bar{s}$

Different particles?

✓ No obvious candidate within conventional charmonium multiplets for them; likely to be exotic

History of \mathcal{Z}_{c}^{**}

 \blacktriangleright Heavy quark-light diquark Q[qq] model is widely used to describe Qqq systems

 $\checkmark \lambda$ -mode: low-lying states well established

 $\checkmark \rho$ -mode: no firm assignment yet

[PRD 77 (2008) 031101] [EPJC 78 (2018) 252] [EPJC 78 (2018) 928]

➤ Ξ_c(2930)^{0/+} seen by BaBar and Belle in B → Λ⁺_c Λ⁻_c K
> Prompt Λ⁺_c K⁻ studied at LHCb
✓ Ξ_c(2930)⁰ resolved into Ξ_c(2923)⁰ + Ξ_c(2939)⁰
✓ Peak at ~2880 MeV but suffer from feed-down

[PRL 124 (2020) 222001]

Study of $B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-$

[arXiv: 2211.00812] $\gg B^- \rightarrow \Lambda_c^+ \overline{\Lambda}_c^- K^-$ provides opportunities for Yiming Li, Yu Lu ✓ Search for $\mathcal{Z}_{c}^{0**} \to \Lambda_{c}^{+} K^{-}$ with lower background level & feed-down contribution in prompt $\Lambda_c^+ K^-$ spectrum will not present total \checkmark Search for possible exotics in $\Lambda_c^+ \overline{\Lambda}_c^-$ and $\overline{\Lambda}_c^- K^-$ systems >5 fb⁻¹ LHCb data at $\sqrt{s} = 13$ TeV used Signals extracted using $(m_{B^-}, m_{\Lambda_c^+}, m_{\overline{\Lambda_c^-}})$ 3D fit: $N_{\text{sig}} = 1365 \pm 42$ LHCb 5 fb⁻¹ LHCb 350 LHCb $5 \, {\rm fb}^{-1}$ $300^{\text{L}} 5 \text{ fb}^{-1}$

$$\frac{\mathcal{B}(B^- \to \Lambda_c^+ \overline{\Lambda}_c^- K^-)}{\mathcal{B}(B^- \to D^+ D^- K^-)} = 2.36 \pm 0.11 \pm 0.22 \pm 0.25(\mathcal{B})$$

2023/4/15

Liupan An

40/33

$\Lambda_c^+ K^-$ mass spectrum

Yiming Li, Yu Lu

 $\succ E_c(2790)^0, E_c(2880)^0, E_c(2923)^0, E_c(2939)^0$ included in the nominal fit

 $\checkmark J^P = 1/2^-$ (known), $1/2^-$, $3/2^-$, $3/2^-$ (1P $J^P_{[qq]} = 1^+$ multiplets; alternatives

studied in systematics); interference considered

✓ $\mathcal{E}_c(2790)^0$: 3.7 σ ⇒ evidence of new decay mode

✓ $\mathcal{I}_c(2880)^0$: 3.8 σ ⇒ evidence of a new state

 $\checkmark \Xi_c(2923)^0, \Xi_c(2939)^0$: confirm prompt $\Lambda_c^+ K^-$ observation

≻No significant structure in $M(\overline{\Lambda}_c^- K^-)$ and $M(\Lambda_c^+ \overline{\Lambda}_c^-)$

 $M(\mathcal{Z}_{c}(2880)^{0}) = 2881.8 \pm 3.1 \pm 8.5 \text{ MeV}$ $\Gamma(\mathcal{Z}_{c}(2880)^{0}) = 12.4 \pm 5.3 \pm 5.8 \text{ MeV}$

 $M(\Xi_c(2923)^0) = 2924.5 \pm 0.4 \pm 1.1 \text{ MeV}$ $\Gamma(\Xi_c(2923)^0) = 4.8 \pm 0.9 \pm 1.5 \text{ MeV}$

 $M(\mathcal{Z}_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \text{ MeV}$ $\Gamma(\mathcal{Z}_{c}(2939)^{0}) = 11.0 \pm 1.9 \pm 7.5 \text{ MeV}$

	$J^P_{[qq]} = 0^+$	$J^P_{[qq]} = 1^+$
L = 0	$(1/2)^+$ $\Xi_b^{0,-}$	$(1/2)^+, (3/2)^+$ $\Xi'_b(5935)^-, \Xi_b(5955)^- \to \Xi^0_b \pi^-$ $\Xi_b(5945)^0 \to \Xi^b \pi^+$
L = 1	$\begin{array}{c} (1/2)^{-}, (3/2)^{-} \\ (3/2)^{-} \to \Xi_{b}^{*}(3/2+)\pi \\ (1/2)^{-} \to \Xi_{b}^{\prime}(1/2+)\pi \end{array}$	

2023/4/15

*Neutral 1S $(1^+, 1/2^+)$ not seen because it is highly likely below $\Xi_b^- \pi^+$ threshold thus decaying 100% to $\Xi_b^0 \pi^0$ or $\Xi_b^0 \gamma$ *Charged 1P $(0^+, 3/2^-)$ observed by CMS [PRL 126 (2021) 252003]

✓ Results consistent with naïve expectation for 1P
 J^P_[qq] = 0⁺ (1/2)⁻, (3/2)⁻ doublet
 *Charged 1P (0⁺, 1/2⁻) not seen because it mainly
 decays to the missing neutral 1S (1⁺, 1/2⁺)

[LHCb-PAPER-2023-008] in preparation