Recent LHCb results on hadron spectroscopy

Yiming Li 李一鸣 Institute of High Energy Physics, CAS on behalf of LHCb-China group

The third LHCb physics frontiers workshop, 16 Apr 2023 @ UCAS

Heavy flavour production at LHC

Zhenwei Yang, "Production results from LHCb"

LHCb in Run 1+2

ECAL res. $\Delta E/E = 1\% \oplus 10\%/\sqrt{E \text{ (GeV)}}$

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

6 fb⁻¹

0

Approaches of new particle search

- Particles produced promptly in *pp* collision
 - Fully exploiting the large cross-section at LHC
 - Large combinatorial background
 - Only mass & width/lifetime
 - Effective for long-lived particles
 - τ > ~ ps

Common features

- Most powerful for final states of all charged tracks:
 - Excellent momentum resolution and PID
- Possible with K_S^0 or π^0 in the final state with reduced efficiency
- Partial reconstruction also effective with a soft γ or π^0 missing

Particles produced in *b*-decays

- Limited by available phase space
- Yield suppressed by *b*-decay BF
- Background is generally clean due to effective *b*-selection
- Mass, width and angular distribution (hence quantum numbers!)

New particles in a glance

62 new hadrons discovered at LHCb!

https://www.nikhef.nl/~pkoppenb/particles.html

Selected highlights

- Conventional states
 - Charm baryons: Ξ_c^{**} , Ω_c^{**}
 - Beauty baryons: Ξ_b^{**}
 - Doubly heavy hadrons: Ξ_{cc}^{++} , Ξ_{bc}^{0} , B_{c}^{+}
- Exotic hadrons
 - Tetraquark states:
 - $T^{a}_{c\bar{s}0}(2900)^{++/0}, T^{\theta}_{\psi s1}(4000)^{0}, X(3960),$
 - Pentaquark states: $P_{\psi s}^{\Lambda}(4338)^{0}$

Full list: https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_all.html

Exotic hadron naming convention: arXiv:2206.15233

Ξ_c baryon in *B* decay

- $\Xi_c(2930)^0$ (*csd*) found in $B^- \to \overline{\Lambda}_c^- \Lambda_c^+ K^-$ at BaBar, confirmed by Belle
- Resolved into $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$ in prompt $\Lambda_c^+K^-$ search at LHCb PHYS. REV. LETT. 124 (2020) 222001
- Confirmed by recent $B^- \to \bar{\Lambda}_c^- \Lambda_c^+ K^-$ study at LHCb • No significant structure in $\bar{\Lambda}_c^- \Lambda_c^+$ or $\bar{\Lambda}_c^- K^-$

State	Mass~(MeV)	Width (MeV)
$\Xi_c(2880)^0$	$2881.8 \pm 3.1 \pm 8.5$	$12.4 \pm 5.2 \pm 5.8$
$\Xi_c(2923)^0$	$2924.5 \pm 0.4 \pm 1.1$	$4.8\pm0.9\pm1.5$
$\Xi_c(2939)^0$	$2938.5 \pm 0.9 \pm 2.3$	$11.0\pm1.9\pm7.5$

$$R_{\mathcal{B}} = \frac{\mathcal{B}(B^- \to \bar{\Lambda}_c^- \Lambda_c^+ K^-)}{\mathcal{B}(B^- \to D^- D^+ K^-)} = 2.36 \pm 0.11 \pm 0.22 \pm 0.25$$

arXiv:2211.00812 (Accepted by PRD)

2850

2800

2900

2950

 $M(\Lambda_c^+K^-)$ [MeV]

New Ω_c states in $\Xi_c^+ K^-$ final state

arXiv:2302.04733 (Submitted to PRL)

- Five new Ω_c states (*css*) found in $\Xi_c^+ K^-$ at LHCb
 - Four confirmed in e^+e^- at Belle and in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decay at LHCb
- Search updated with full Run 1+2 data
 - Five states confirmed
 - Two new states observed near *ED*, *ED*^{*} thresholds

-	Resonance	$m \; ({\rm MeV})$	$\Gamma (MeV)$
)1	$\Omega_{c}(3000)^{0}$	3000.44 ± 0.07	3.83 ± 0.23
)2	$\Omega_c(3050)^0$	3050.18 ± 0.04	0.67 ± 0.17
JZ	$\Omega_{c}(3065)^{0}$	3065.63 ± 0.06	3.79 ± 0.20
	$\Omega_{c}(3090)^{0}$	3090.16 ± 0.11	8.48 ± 0.44
new	$\Omega_{c}(3119)^{0}$	3118.98 ± 0.12	0.60 ± 0.63
	$\Omega_{c}(3185)^{0}$	3185.1 ± 1.7	50 ± 7
\rightarrow	$\Omega_{c}(3327)^{0}$	3327.1 ± 1.2	20 ± 5

PRL 118 (2017) 182001

PRD 97 (2018) 051102

PRD104 (2021) L091102

New Ξ_h^{**} baryons

- Search for new $\underline{Z}_{h}^{**-/0}(bsq)$ states in $\underline{Z}_{h}^{-/0}\pi^{+}\pi^{-}$ final states
 - $\mathcal{Z}_{h}^{-/0} \rightarrow \mathcal{Z}_{c}^{0/+} \pi^{-}$ and $\mathcal{Z}_{c}^{0/+} \pi^{-} \pi^{+} \pi^{-}$ (max. 9 tracks!)
- Observation of two new states:
 - $\Xi_{h}(6087)^{0} \rightarrow \Xi_{h}^{\prime-}\pi^{+} \rightarrow [\Xi_{h}^{0}\pi^{-}]\pi^{+}$
 - $\Xi_{h}(6095)^{0} \rightarrow \Xi_{h}^{*-}\pi^{+} \rightarrow [\Xi_{h}^{0}\pi^{-}]\pi^{+}$
- Confirmation of one state observed by CMS:
 - $\Xi_{h}(6100)^{-} \rightarrow \Xi_{h}^{*0}\pi^{-} \rightarrow [\Xi_{h}^{-}\pi^{+}]\pi^{-}$

Value [MeV Confirmation $Q_0(\Xi_b^-(6100))$ $23.60 \pm 0.11 \pm 0.02$ Γ ($\Xi_{h}^{-}(6100)$) $0.94 \pm 0.30 \pm 0.08$ $m_0(\Xi_h^-(6100))$ $6099.74 \pm 0.11 \pm 0.02 \pm 0.6 \ (\Xi_{h}^{-})$ $Q_0 (\Xi_b^0(6087))$ $16.20 \pm 0.20 \pm 0.06$ $\Gamma (\Xi_{h}^{0}(6087))$ $2.43 \pm 0.51 \pm 0.10$ $m_0(\Xi_b^0(6087))$ $6087.24 \pm 0.20 \pm 0.06 \pm 0.5 \ (\Xi_{h}^{0})$ $Q_0(\Xi_b^0(6095))$ $24.32 \pm 0.15 \pm 0.03$ 1st Observ Γ ($\Xi_{b}^{0}(6095)$) $0.50 \pm 0.33 \pm 0.11$ $m_0(\Xi_h^0(6095))$ $6095.36 \pm 0.15 \pm 0.03 \pm 0.5 (\Xi_{h}^{0})$ $Q_0(\Xi_b^{*0})$ $15.80 \pm 0.02 \pm 0.01$ Γ (Ξ_b^{*0}) $0.87 \pm 0.06 \pm 0.05$ $m_0(\Xi_b^{*0})$ $5952.37 \pm 0.02 \pm 0.01 \pm 0.6 \ (\Xi_{h}^{-})$ $egin{array}{c} Q_0 \left(\Xi_b^{'-} ight) \ \Gamma \left(\Xi_b^{'-} ight) \end{array}$ $3.66 \pm 0.01 \pm 0.00$ Improvement $0.03 \pm 0.01 \pm 0.03$ $\begin{array}{c} (\Xi_{b}^{'-}) \\ m_{0} (\Xi_{b}^{'-}) \\ Q_{0} (\Xi_{b}^{*-}) \\ \Gamma (\Xi_{b}^{*-}) \end{array}$ $5935.13 \pm 0.01 \pm 0.00 \pm 0.5 \ (\Xi_{h}^{0})$ $24.27 \pm 0.03 \pm 0.01$

 $1.43 \pm 0.08 \pm 0.08$

 $5955.74 \pm 0.03 \pm 0.01 \pm 0.5 \ (\Xi_{h}^{0})$

 $m_0 (\Xi_h^{*-})$

LHCb-PAPER-2023-008 (In preparation)

New decay mode of \mathcal{Z}_{cc}^{++}

LHCb opens a new era in doubly heavy baryon search

- Starting with observation of Ξ_{cc}^{++} in $\Lambda_c^+ K^- \pi^+ \pi^+$
- Confirmed in $\Xi_c^+ \pi^+$ decay PRL 121 (2018) 162002

PRL 119 (2017) 112001

Recently a new decay $\Xi_c^{\prime+}\pi^+$ found

•
$$\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{\prime+} (\rightarrow \mathcal{Z}_{c}^{+} \gamma) \pi^{+}$$

• $\frac{\mathcal{B}(\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{\prime+} \pi^{+})}{\mathcal{B}(\mathcal{Z}_{cc}^{++} \rightarrow \mathcal{Z}_{c}^{+} \pi^{+})} = 1.41 \pm 0.17 \pm 0.10$ tension with prediction

JHEP 05 (2022) 038

2023/04/16

Search of *E*_{bc}

arXiv: 2204.09541 (Accepted by CPC)

- First search for Ξ_{bc}^{0} performed
 - $\Xi_{bc}^+ \rightarrow J/\psi \Xi_c^+$

	6571 MeV	6694 MeV
Local signficance	4.3 σ	4.1 σ
Global significance	2.8 σ	2.4 σ

B⁺_c decay BF measurement

arXiv:2210.12000 (submitted to JHEP)

- $\ \ \, B_c^+ \to B_s^0 \pi^+$
 - First *B* weak decay to another beauty PRL 111 (2013) 181801
 - Branching fraction expected to be large, and contributes to more stringent limit on $B_c^+ \rightarrow \tau^+ \nu$ decay BF

•
$$\frac{\mathcal{B}(B_c^+ \to B_s^0 \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 91 \pm 10 \pm 8 \pm 3$$

Selected highlights

- Conventional states
 - Charm baryons: Ξ_c^{**} , Ω_c^{**}
 - Beauty baryons: Ξ_b^{**}
 - Doubly heavy hadrons: Ξ_{cc}^{++} , Ξ_{bc}^{0} , B_{c}^{+}
- Exotic hadrons
 - Tetraquark states:
 - $T^{a}_{c\bar{s}0}(2900)^{++/0}, T^{\theta}_{\psi s1}(4000)^{0}, X(3960),$
 - Pentaquark states: $P_{\psi s}^{\Lambda}(4338)^{0}$

Full list: https://lhcbproject.web.cern.ch/Publications/LHCbProjectPublic/Summary_all.html

Exotic hadron naming convention: arXiv:2206.15233

Tetraquark with open charm: $T^a_{c\bar{s}0}(2900)$

arXiv: 2212.02716 (Accepted by PRL) arXiv: 2212.02717 (Accepted by PRD)

- First observation of doubly charged $T^a_{c\bar{s}0}(2900)^{++}(cu\bar{s}\bar{d})$ and its isospin partner $T^a_{c\bar{s}0}(2900)^0(cu\bar{s}\bar{u})$
 - $B^{+/0} \rightarrow \overline{D}^{-/0} D_s^+ \pi^{+/-}$
 - Both states have $J^P = 0^+$
 - Amplitude analysis using the package TF-PWA
- Reminder: $T_{cs0}(2900)^0$ and $T_{cs1}(2900)^0$ with quark content $(cs\bar{u}\bar{d})$ with $J^P = 0^+$ and 1^- found in Dalitz analysis of the $B^+ \rightarrow D^+D^-K^+$ decay PRL 125 (2020) 242001 PRD 102 (2020) 112003
 - $T_{c\bar{s}0}^{a}(2900)^{0}$ mass is consistent with $T_{cs0}(2900)^{0}$, but width and flavour differ

Tetraquark with hidden charm: $Z_{cs}(4000)^+$

■ $B^+ \rightarrow J/\psi \phi K^+$: a zoo of exotic states

PRL 127 (2021) 082001

- Multiple exotic states found in $J/\psi\phi$ system
- Two Z_{cs} states in $J/\psi K$ system

					$ \begin{array}{c} 5 \\ 7 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$		LHCb	
J^P	Contribution	Significance $[\times \sigma]$	$M_0[{ m MeV}]$	$\Gamma_0[{ m MeV}]$	$x_{(4274)} = - x_{(4274)}$	🔨 🔪 🎚	N/ NA	
2-	X(4150)	4.8 (8.7)	$4146 \pm 18 \pm 33$	$135\pm28{}^{+59}_{-30}$	200 - X(4150)	́ ∕ ∖∔	VI.	I Mining
1-	X(4630)	5.5(5.7)	$4626 \pm 16 ^{+\ 18}_{-\ 110}$	$174 \pm 27 {}^{+ 134}_{- 73}$	$100 = \frac{Z_{cs}(4000)}{Z_{cs}(4220)}$		XXX	
	X(4500)	20 (20)	$4474\pm3\pm3$	$77\pm6{}^{+10}_{-8}$				
$)^{+}$	X(4700)	17 (18)	$4694 \pm 4 {}^{+ 16}_{- 3}$	$87\pm8{}^{+16}_{-6}$	$\frac{5}{2}$	LHCb	LHCb	
	${ m NR}_{J/\psi\phi}$	4.8(5.7)			$\underbrace{=}_{k=0}^{\infty} \underbrace{=}_{k=0}^{\infty} \underbrace{=}$		n K	
	X(4140)	13 (16)	$4118 \pm 11 {}^{+ 19}_{- 36}$	$162\pm21{}^{+24}_{-49}$				1 🥂 🐪
1^{+}	X(4274)	18 (18)	$4294 \pm 4 {}^{+ 3}_{- 6}$	$53\pm5\pm5$	Due 300 Background	1	N min M	
	X(4685)	15 (15)	$4684 \pm 7 {}^{+ 13}_{- 16}$	$126\pm15{}^{+37}_{-41}$	200 + Data 9 fb ⁻¹		AXI	
1+	$Z_{cs}(4000)$	15 (16)	$4003\pm6{}^{+}_{-14}{}^{4}$	$131\pm15\pm26$	100 🚽 🌈		XAPPAN	
L	$Z_{cs}(4220)$	5.9(8.4)	$4216\pm24{}^{+43}_{-30}$	$233 \pm 52 {}^{+ 97}_{- 73}$	0 ^E	2	4.2 4.4 4.6 4.8	$\frac{1}{36}$ 38 4
						$m_{\phi K^+}^-$ [GeV]	$m_{J/\psi\phi}$ [GeV	$m_{J/\psi F}$

Tetraquark with hidden charm: $Z_{cs}(4000)^0$

- Combined fit to $B^+ \to J/\psi \phi K^+$ and $B^0 \to J/\psi \phi K_S^0$ find evidence (4.0 σ) of $Z_{cs}(4000)^0$ or $T_{\psi s1}^{\theta}(4000)^0$, with quark content $c\bar{c}s\bar{d}$
 - Assuming isospin asymmetry the significance is 5.4 sigma
 - $J^P = 1^+$

State	Mass~(MeV)	Width (MeV)
$T^{\theta}_{\psi s1}(4000)^0$	$3991{}^{+12}_{-10}{}^{+9}_{-17}$	$105{}^{+29}_{-25}{}^{+17}_{-23}$

Z_{cs} at LHCb and BESIII

LHCb: $Z_{cs}(4000)^+$ in $B^+ \rightarrow J/\psi \phi K^+$

BESIII:
$$Z_{cs}(3985)^+$$
 in $e^+e^- \rightarrow K^+(D_s^-D^{*0} + D_s^{*-}D^0)$
PRL 126 (2021) 102001

 $m = 3982.5^{+1.8}_{-2.6} \pm 2.1 \text{ MeV}$ $\Gamma = 12.8^{+5.3}_{-4.4} \pm 3.0 \text{ MeV}$

- Significantly different in width
- No evidence that $Z_{cs}(4000)^+$ and $Z_{cs}(3985)^+$ are the same state

Tetraquark with hidden charm X(3960)

- First observation of $B^+ \rightarrow D_s^+ D_s^- K^+$
 - $\frac{\mathcal{B}(B^+ \to D_s^+ D_s^- K^+)}{\mathcal{B}(B^+ \to D^+ D^- K^+)} = 0.525 \pm 0.033 \pm 0.027 \pm 0.034$
- Near-threshold structure X(3960) ($c\bar{c}s\bar{s}$) observed in the $D_s^+D_s^-$ system (>12 σ)
 - $m = 3956 \pm 5 \pm 10 \text{ MeV}$
 - $\Gamma = 43 \pm 13 \pm 8 \text{ MeV}$
 - $J^{PC} = 0^{++}$
 - 3.9 σ evidence of $X_0(4140)$: tetraquark? Cross-channel effect?
 - $J^{PC} = 1^{--}$: Evidence of $\psi(4260)$ and $\psi(4660)$

Pentaquark

arXiv: 2210.10346 (Accepted by PRL)

- A new pentaquark with strangeness $P_{\psi s}^{\Lambda}(4338)^0$ (*ccsud*) observed in the $B^- \rightarrow J/\psi \Lambda \bar{p}$ decay
 - At $\underline{z}_c^+ D^-$ threshold
 - $m = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$
 - $\Gamma = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$
 - $J^P = (1/2)^-$
- Most precise single measurement of B^- mass:
 - 5279.44 ± 0.05 ± 0.07 MeV

- Data

— Nominal fit

Summary & Prospects

- Thanks to the huge production rate at LHC and excellent detector performance, LHCb has greatly extended our knowledge on heavy hadron spectroscopy, both for conventional or exotic hadrons
- Chinese groups have been playing a crucial role, largely benefiting from active interaction with theoretical community

FRONTIERS OF PHYSICS	REVIEW ARTICLE Volume 18 / Issue 4 / 44601 / 2023			
Heavy flavour physics and CP violation at LHCb: A ten-year review				
Shanzhen Chen ¹ , Yiming Li ^{1,†} , Wenbin Qian ² , Zhihong Shen ³ , Yuehong Xie ⁴ , Zhenwei Yang ³ , Liming Zhang ⁵ , Yanxi Zhang ³				

S. Chen et al., Front. Phys. 18(4), 44601 (2023)

Summary & Prospects

- Upgrade I installation completed!
 - $\mathcal{L}: 4 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1} \rightarrow 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
 - Removal of hardware trigger
 - New tracking system
 - Chinese groups played key roles in Upstream
 Tracker and Scintillator Fibre Tracker
- More data & discovery potential expected in the coming years

https://lhcb-outreach.web.cern.ch

DETECTOR LATEST POSTS

Upstream Tracker closing completes installation of the LHCb Upgrade 1 detector

• APR 14, 2023 • PIETRZYK

Start of 2023 data taking. Recently the Upstream Tracker (UT), a sub-detector of the LHCb experiment, was closed around the LHC beam pipe. This event...

BACKUP

Doubly charmed tetraquark

Nature Physics 18 (2022) 751 Nature Comm. 13 (2022) 3351

A narrow resonance T_{cc}^+ ($cc\bar{u}\bar{d}$) discovered in prompt $D^0D^0\pi^+$ spectrum, just below the $D^{*+}D^0$ mass

Fully charmed tetraquark

- Narrow resonance of X(6900) or $T_{\psi\psi}(6900)$ discovered with full LHCb Run 1+2 data in prompt $J/\psi J/\psi$ pair spectrum
 - First tetraquark with all-charm quark
 - Recently confirmed by CMS and ATLAS

Science Bulletin 65 (2020) 1983

Pentaquark

• Evidence of $P_{\psi}^{N}(4337)^{+}$ in the $B_{s}^{0} \rightarrow J/\psi p \bar{p}$ decay

PRL 128 (2022) 062001

PRL 128 (2022) 062001

LHCb

9 fb⁻¹

4.5

5.0

 $m_{J/\psi A}({
m GeV})$

Yield / (20 MeV)

60

20