在 $B^- \rightarrow p J/\psi \Lambda$ 反应中利用耦合道 模型抽取P_{cs}(4338)极点

吴佳俊 (中国科学院大学) 合作者: Satoshi Nakamura <u>2208.11995</u>

第三届LHCb前沿物理研讨会 2023年4月16日

目录

- 背景介绍
- 研究 ccqqq 的初衷
- 数据驱动型的耦合道模型
- B⁻ → pJ/ψΛ的实验数据分析
- 小结

t

b

V.

τ

С

S

μ

狄拉克: Methods in Theoretical Physics (《From a life of physics》)

对理论物理学家而言,主要有两种研究方式,其一是以实验为出发点,这就必须保持与实验物 理学家紧密接触,获悉他们所得到的一切结果,并试图将这些结果恰如其分地安排到令人满 意,使人信服的物理框架中去。其二是以数学为基础,检验与批判现有的理论,准确找出并消 除现有理论中的缺陷。这里困难在于,消除缺陷而不损坏现有理论的巨大成就,当然,这两种 一般的研究方式的区别不是那样径渭分明,在这两极端之间还存在着种种程度不同的方式。

• 盖尔曼和茨威格提出了夸克模型

两次LHCb实验结果

Pc(4337)

$$B_s^0 \to J/\psi p\bar{p}$$

$$M_{P_c} = 4337 \,{}^{+7}_{-4} \,{}^{+2}_{-2} \,\text{MeV},$$

$$\Gamma_{P_c} = 29 \,{}^{+26}_{-12} \,{}^{+14}_{-14} \,\text{MeV},$$

$$3.1 - 3.7\sigma$$

Pcs的实验结果

 P_{cs} 的理论讨论

 $P_{cs}(4459)$ Ξ⁻_b → J/ψ ΛK⁻ Sci.Bull. 66 (2021) 1278-1287

质量 4458.8 ± 2.9^{+4.7}_{-1.1} MeV 宽度 17.3 ± 6.5^{+8.0}_{-5.7} MeV 置信度 P ~ 3.1 σ

 $P_{cs}(4338)$ B⁻ → $J/\psi\Lambda \bar{p}$ arXiv:2210.10346 质量 4338.2 ± 0.7 ± 0.4MeV 宽度

Chu-Wen Xiao, J. J. Wu, B. S. Zou PRD 103 (2021) 5, 054016 Valencia 模型 $P_{cs}(4459) - - - \overline{D}^* \Xi_c$ $P_{cs}(4310) - - - \overline{D}\Xi_c$ X.-W. Wang and Z.-G. Wang, CPC 47, 013109 (2023), L. Meng, B. Wang, and S.-L. Zhu, arXiv:2208.03883 F.-L. Wang and X. Liu, PLB835 137583 U. Ozdem, PLB 836, 137635 J.-T. Zhu, S.-Y. Kong, and J. He, arXiv:2211.06232

A. Feijoo, Wen-Fei Wang, Chu-Wen Xiao, J. J. Wu, E. Oset, B. S. Zou arXiv: 2212.12223 (PLB)
Valencia 模型

P_{cs}(4338) ---- D̄*Ξ_c
P_{cs}(4423) ---- D̄Ξ_c

三角奇异性
T. J. Burns, E. S. Swanson, arXiv:2208.05106
紧致五夸克态
P. G. Ortega, D. R. Entem, and F. Fernandez,

arXiv:2210.04465

为什么BW形式不好

- 这里的关键在于接近于 $E_c\overline{D}$ 的阈值,接近阈值会有两个明显的 效应。
- 1.运动学的cusp效应,这类效应可能不对应到一个复平面的极点,自然BW形式也不能用。
- 2. 在阈上, 宽度的能量依赖性由于衰变道的打开会变得和能量 非常敏感。 $\Gamma(\delta E = E - m_1 - m_2 > 0) \propto q^{2L+1} = \sqrt{2\delta E \mu}^{2L+1}$
- 3. 在阈下,宽度的会有一个纯虚数的贡献,也就是说裸质量实际上是能量依赖的,而BW形式中没有这种依赖性。

 $\Gamma(-\delta \mathbf{E} = -\mathbf{E} + \mathbf{m}_1 + \mathbf{m}_2 > \mathbf{0}) \propto q^{2L+1} = \left(i\sqrt{-2\delta E\mu}\right)^{2L+1}$

当然单道单态用Flatten形式代替BW形式可以近似替代2,3的效应, 但是最佳的办法还是应用耦合道模型进行满足幺正化的计算。

Data-driven 耦合道模型 $B^ \Lambda_c$ Λ_c $\bar{\Lambda}_c$ \bar{p} (a) (b) $v_{1} = c_{\Xi_{c}\bar{D}\bar{p},B^{-}}^{1/2^{-}} \left\langle t_{\bar{D}}t_{\bar{D}}^{z}t_{\Xi_{c}}t_{\Xi_{c}}^{z} | 00 \right\rangle f_{\Xi_{c}\bar{D}}^{0} F_{\bar{p}B^{-}}^{0} f_{ij}^{L} = \frac{(1 + q_{ij}^{2}/\Lambda^{2})^{-2 - \frac{L}{2}}}{\sqrt{E_{i}E_{j}}}, F_{kl}^{L} = \frac{(1 + \tilde{p}_{k}^{2}/\Lambda^{2})^{-2 - \frac{L}{2}}}{\sqrt{E_{k}E_{l}}},$ $v_2 = h_{\gamma,\alpha} \langle t_{\alpha 1} t_{\alpha 1}^z t_{\alpha 2} t_{\alpha 2}^z | TT^z \rangle \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{\psi} f_{\gamma}^0 Y_{00} f_{\alpha}^0 Y_{00}$ 顶点相互作用 $\sigma_{\alpha}(E) = \sum_{t^{z}} \int dq q^{2} \frac{\langle t_{\alpha 1} t_{\alpha 1}^{z} t_{\alpha 2} t_{\alpha 2}^{z} | TT^{z} \rangle^{2} \left[f_{\alpha}^{0}(q) \right]^{2}}{E - E_{\alpha 1}(q) - E_{\alpha 2}(q) + i\varepsilon} \qquad [G^{-1}(E)]_{\beta \alpha} = \delta_{\beta \alpha} - h_{\beta, \alpha} \sigma_{\alpha}(E)$ $A_{\psi\bar{p}(1/2^+)}^{\mathrm{dir}} = c_{\psi\bar{p}\Lambda B^-}^{1/2^+} \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{\psi} f_{\psi\bar{p}}^0 F_{\Lambda B^-}^0$ 总振幅 $\Xi_c \bar{D}, \Lambda_c \bar{D}_s$ $A^{\text{loop}}_{\psi\Lambda(1/2^{-})} = \sum^{-c_{-}, n_{c_{-}}, \sigma} h_{\psi\Lambda,\beta} c^{1/2^{-}}_{\alpha\bar{p},B^{-}} \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{\psi} f^{0}_{\psi\Lambda}(p_{\psi}) \sigma_{\beta}(M_{\psi\Lambda}) G_{\beta\alpha}(M_{\psi\Lambda}) F^{0}_{\bar{p}B^{-}} ,$

 $A^{\text{loop}}_{\psi\bar{p}(1/2^+)} = h_{\psi\bar{p},\bar{\Lambda}_c D} c^{1/2^+}_{\bar{\Lambda}_c D\Lambda,B^-} \boldsymbol{\sigma} \cdot \boldsymbol{\epsilon}_{\psi} f^0_{\psi\bar{p}}(p_{\psi}) \sigma_{\bar{\Lambda}_c D}(M_{\psi\bar{p}}) G_{\bar{\Lambda}_c D,\bar{\Lambda}_c D}(M_{\psi\bar{p}}) F^0_{\Lambda B^-} .$

TABLE II. Parameter values for $B^- \to J/\psi \Lambda \bar{p}$ models. The second, third, and fourth columns are for the default, alternative $(h_{\Lambda_c \bar{D}_s, \Lambda_c \bar{D}_s} = 0)$, and no-pole models, respectively. For the arbitrariness, we may multiply a common overall complex factor to the parameters in the 1-4th rows. $h_{\psi\Lambda,\alpha} = h_{\psi\Lambda,\Lambda_c \bar{D}_s} = h_{\psi\Lambda,\Xi_c \bar{D}}$.

$h_{\psi\Lambda,\alpha} c^{1/2^-}_{\Xi_c \bar{D}\bar{p},B^-}$	$(0.81 \pm 0.23) i$	$(-1.24 \pm 0.27) + (0.40 \pm 0.74) i$	$(0.42 \pm 1.24) + (7.88 \pm 0.47) i$
$h_{\psi\Lambda,\alpha} c_{\Lambda_c \bar{D}_s \bar{p},B^-}^{1/2^-}$	$(-0.24 \pm 0.07) + (0.28 \pm 0.14) i$	$(-1.40 \pm 0.28) i$	-2.09 ± 0.28
$h_{\psi\bar{p},\bar{\Lambda}_c D} c^{1/2^+}_{\bar{\Lambda}_c D\Lambda,B^-}$	$(-1.28 \pm 4.23) + (11.48 \pm 3.00) i$	$(-6.19 \pm 3.72) + (10.32 \pm 2.69) i$	$(5.14 \pm 0.40) + (3.17 \pm 1.16) i$
$c_{\psi\bar{p}\Lambda,B^-}^{1/2^+}$	-9.84 ± 2.26	-8.51 ± 2.46	-2.98 ± 2.17
$h_{\Xi_c \bar{D}, \Xi_c \bar{D}}$	-5.29 ± 0.36	-4.02 ± 0.30	0 (fixed)
$h_{\Lambda_c \bar{D}_s, \Lambda_c \bar{D}_s}$	-3.38 ± 0.22	0 (fixed)	0 (fixed)
$h_{\Xi_c \bar{D}, \Lambda_c \bar{D}_s}$	2.68 ± 0.31	-1.43 ± 0.95	0 (fixed)
$h_{\bar{\Lambda}_c D, \bar{\Lambda}_c D}$	3.30 ± 1.57	2.81 ± 1.60	0 (fixed)
$\Lambda \ ({\rm MeV})$	1000 (fixed)	1000 (fixed)	1000 (fixed)
参数个数	9+1	8+1	5+1
χ^2/dof	1.21	1.19	1.25
		Versity of Chinese Academy of Sciences	

讨论和结论(1): 各种机制贡献

图c, d贡献最大, 图a, b对峰贡献最大 a $\Xi_c \overline{D}$ 色压低 b $\Lambda_c \overline{D}_s$, $\Lambda_c \overline{D}_s \rightarrow J/\psi \Lambda$ 交换 D_s c $\overline{\Lambda}_c D$, $\overline{\Lambda}_c D \rightarrow J/\psi \overline{p}$ 交换 Dd 色压低但是没有圈图压低

日神令你大学

1. 我们考虑了耦合道效 应,LHCb的分析使用了 BW模型。

2. NR(J/ψp)中主要是p 波的贡献,但是我们都 是s波,整体的动量大 约是130MeV

 我们9个拟合参数, 他们16个。

讨论和结论(2): pole的位置

 $P_{cs}(4338)$ 主要是 $V_{\Xi_c \overline{D}, \Xi_c \overline{D}}$ 的吸引相互作用形成的。即使没有 $V_{\Xi_c \overline{D}, \Lambda_c \overline{D}_s}$ 的贡献,也有这个态,可以认为是 $\Xi_c \overline{D}$ 的束缚态。

I HCh

 $P_{cs}(4254)$ 是一个虚态,说明 $V_{\Lambda_c \overline{D}_s, \Lambda_c \overline{D}_s}$ 的相互作用就很弱。

这个和轻矢量介子交换模型是一致的。

能够出现 $P_{cs}(4254)$ 虚态,说明 $\Lambda_c \overline{D}_s \to \Lambda_c \overline{D}_s$ 至少是一个吸引势,这个吸引势能可能 来自于一个双 π 交换,或者直接由于非对角元 $\Xi_c \overline{D} \to \Lambda_c \overline{D}_s$ 的作用。

@ 中国种学馆大学

讨论和结论(3): 虚态讨论

Pcs(4254) 虚态也许仅仅是因为数据的涨落。

理论上我们可以遵循轻矢量介子交换模型,那么 $V_{A_c\bar{D}_s,A_c\bar{D}_s}$ =0,在该模型下,这个虚态会消失。同 时 P_{cs} (4338)的极点位置也会变化。

同时我们还尝试用能量依赖的 $V_{S_c\overline{D},S_c\overline{D}}$,也可以较好的拟合实验数据。

$$h_{\Xi_c\bar{D},\Xi_c\bar{D}} + h'_{\Xi_c\bar{D},\Xi_c\bar{D}} \frac{M_{J/\psi\Lambda}^2 - (m_{\Xi_c} + m_{\bar{D}})^2}{2(m_{\Xi_c} + m_{\bar{D}})}$$

$h_{\psi\Lambda,\alpha} c_{\Xi_c \bar{D}\bar{p},B^-}^{1/2^-}$	$(0.81 \pm 0.23) i$	$(-1.24\pm0.27)+(0.40\pm0.74)i$	$(3.85 \pm 3.38) + (-4.29 \pm 10.31) i$
$h_{\psi\Lambda,\alpha} c_{\Lambda_c \bar{D}_s \bar{p}, B^-}^{1/2^-}$	$(-0.24\pm0.07)+(0.28\pm0.14)i$	$(-1.40 \pm 0.28) i$	$(-0.92 \pm 0.49) i$
$h_{\psi \bar{p}, \bar{\Lambda}_c D} c_{\bar{\Lambda}_c D \Lambda, B^-}^{1/2^+}$	$(-1.28\pm 4.23) + (11.48\pm 3.00)i$	$(-6.19\pm3.72)+(10.32\pm2.69)i$	$(-11.54 \pm 3.60) + (10.83 \pm 0.64) i$
$c_{\psi \bar{p}\Lambda, B^{-}}^{1/2^{+}}$	-9.84 ± 2.26	-8.51 ± 2.46	-14.44 ± 4.21
$h_{\Xi_c \bar{D}, \Xi_c \bar{D}}$	-5.29 ± 0.36	-4.02 ± 0.30	-2.13 ± 1.89
$h_{\Lambda_c \bar{D}_s, \Lambda_c \bar{D}_s}$	-3.38 ± 0.22	$0 \ (fixed)$	0 (fixed)
$h_{\Xi_c \bar{D}, \Lambda_c \bar{D}_s}$	2.68 ± 0.31	-1.43 ± 0.95	-4.29 ± 7.51
$h_{\bar{\Lambda}_c D, \bar{\Lambda}_c D}$	3.30 ± 1.57	2.81 ± 1.60	3.55 ± 0.31
$\Lambda~({\rm MeV})$	1000 (fixed)	1000 (fixed)	1000 (fixed)
		$h'_{\Xi_c \bar{D}, \Xi_c \bar{D}}$	$(MeV^{-1}) -0.69 \pm 2.37$
参数个数 χ^2/dof	9+1 1.21	8+1 1. 19	9+1 1.15

讨论和结论(4):运动学效应

小结

- 分析了LHCb对B⁻ $\rightarrow J/\psi \Lambda \bar{p}$ 的观测结果。
- 主要结论如下:
- 1. 通过耦合道模型搜索了P_{cs}(4338)的pole位置,
 (4338.2±1.4) (1.9±0.5)i MeV
- 2. 仔细探讨了实验在 $\Lambda_c \overline{D}_s$ 阈值处的涨落点,可能预示这里有一个 $P_{cs}(4255)$ 虚态,来自于 $\Lambda_c \overline{D}_s$ 的弱吸引势能。
- 3. 排除了P_{cs}(4338)的峰结构纯粹由运动学效应引起, 预示存在 P_{cs}(4338)五夸克态。

谢谢!

https://indico.itp.ac.cn/event/106/

第六届强子谱和强子结构研讨会

26-30 August 2023 Asia/Shanghai timezone

地方组织委员:傅金林、郭奉坤、黄飞、吴佳俊、谢聚军

https://indico.itp.ac.cn/event/106/

第六届强子谱和强子结构研讨会

26-30 August 2023 Asia/Shanghai timezone

南中国神学院大学

Universiity of Chinese Academy of Sciences

地方组织委员:傅金林、郭奉坤、黄飞、吴佳俊、谢聚军