# Baryon CP Violation by T-odd and T-even correlations



兰州大学

Based on [J.P.Wang, Q.Qin, FSY, arXiv:2211.07332] LHCb workshop, 2023.4.15





# Outline

- Why baryon physics? Opportunities.
- CP violation induced by T-odd and T-even correlations
- Complimentary observables
- Summary

## **Baryon physics**

- •The visible matter of the Universe is mainly made of baryons.
- Baryons play an important role in the evolution of the Universe, such as baryogenesis and big-bang nucleosythesis.











## **Baryon physics**

- The visible matter of the Universe is mainly made of baryons.
- •Baryons play an important role in the evolution of the Universe, such as baryogenesis and big-bang nucleosythesis.
- •However, our knowledge on the basic nucleon are even limited.
- The mass and spin puzzles of nucleons.
- Related to the inner structures of hadrons and perturbative and non-perturbative QCD dynamics.











## **CP violation in baryons**

- Sakharov conditions for Baryogenesis:
  - 1) **baryon** number violation
  - 2) C and <u>CP violation</u>
  - 3) out of thermal equilibrium
- CPV: SM < BAU. => new source of CPV, NP
- CPV well established in K, B and D mesons, **but CPV never established in any baryon**
- Comparison between precise prediction and measurement is helpful to test the SM and search for NP













### **Opportunities**

• LHCb is a baryon factory !! Large Production:  $\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5 \longrightarrow \frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$ 



LHCb is a baryon factory !! Large Productio

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0) \%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0) \%$$

•CPV in some B-meson decays are as large as 10%:

$$A_{CP}(\overline{B}{}^0 \to \pi^+ \pi^-) = -(32 \pm 4)\%, \ A_{CP}(\overline{B}{}^0_s \to K^+ \pi^-) = +(21.3 \pm 1.7)\%$$

It can be expected that CPV in b-baryons might be observed soon !!

### **Opportunities**

on: 
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5$$
  $\longrightarrow$   $\frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$ 

• Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]



LHCb is a baryon factory !! Large Productio

$$A_{CP}(\Lambda_b^0 \to p\pi^-) = (-3.5 \pm 1.7 \pm 2.0) \%, \ A_{CP}(\Lambda_b^0 \to pK^-) = (-2.0 \pm 1.3 \pm 1.0) \%$$

•CPV in some B-meson decays are as large as 10%:

$$A_{CP}(\overline{B}{}^0 \to \pi^+ \pi^-) = -(32 \pm 4)\%, \ A_{CP}(\overline{B}{}^0_s \to K^+ \pi^-) = +(21.3 \pm 1.7)\%$$

- It can be expected that CPV in b-baryons might be observed soon !!
- •Baryons have non-zero spin, with more kinematic information for measurements.

### **Opportunities**

on: 
$$\frac{f_{\Lambda_b}}{f_{u,d}} \sim 0.5$$
  $\longrightarrow$   $\frac{N_{\Lambda_b}}{N_{B^{0(-)}}} \sim 0.5$ 

• Precision of baryon CPV measurements has reached to the order of 1% [LHCb, PLB2018]



- •One more energetic quark, one more hard gluon. Counting rule of power expansion is violated by  $\alpha_{s}$  . More is different.
- Progresses have been made for PQCD.

2. Measurements





- •One more energetic quark, one more hard gluon. Counting rule of power expansion is violated by  $\alpha_{s}$ . More is different.
- Progresses have been made for PQCD.

### **2. Measurements**

 Much less measurable processes, since only proton detectable for baryons. Low efficiency for hyperons whose lifetimes are too long.

### Challenges



- •One more energetic quark, one more hard gluon. Counting rule of power expansion is violated by  $\alpha_s$ . More is different.
- Progresses have been made for PQCD.

### **2. Measurements**

- Much less measurable processes, since only proton detectable for baryons. Low efficiency for hyperons whose lifetimes are too long.
- •Strong phases is process dependent.  $a_{CP}^{dir} \propto \sin \delta_s \sin \phi_w$  is small if  $\delta_s$  is small.

### Challenges



- •One more energetic quark, one more hard gluon. Counting rule of power expansion is violated by  $\alpha_s$ . More is different.
- Progresses have been made for PQCD.

### 2. Measurements

- Much less measurable processes, since only proton detectable for baryons. Low efficiency for hyperons whose lifetimes are too long.
- •Strong phases is process dependent.  $a_{CP}^{dir} \propto \sin \delta_s \sin \phi_w$  is small if  $\delta_s$  is small.
- •Observables: T-odd triple products  $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$ ,  $3\sigma$  signal in  $\Lambda_b \to p\pi\pi\pi\pi$ [LHCb2017]. Defined by kinematics, but unclear relation to the decay amplitudes. No way for theoretical explanations and predictions.

### Challenges





## **T-odd triple-product asymmetries**

- T violation
  - T violation implies CP violation, under CPT theorem.

However, time reversal cannot be really measured in a decay process in practice.

## **T-odd triple-product asymmetries**

- T violation
  - T violation implies CP violation, under CPT theorem.
  - However, time reversal cannot be really measured in a decay process in practice.
- T-odd operators are still helpful
  - Momentum  $\vec{p}$  and spin  $\vec{s}$  are odd under T operation. T-odd triple product:  $(\vec{s}_1 \times \vec{s}_2) \cdot \vec{p}$ • Example (1):  $\vec{s}_i \times \vec{s}_f \cdot \vec{p}$  measures the  $\beta$  parameter in  $\Lambda \to p\pi$  [Lee, Yang, 1957] It was found that  $a_{CP}^{\beta} \propto \beta + \bar{\beta} \propto \cos \delta_s \sin \phi_w$  [Donoghue, Pakvasa, 1985]



## **T-odd triple-product asymmetries**

- T violation
  - T violation implies CP violation, under CPT theorem.
  - However, time reversal cannot be really measured in a decay process in practice.
- T-odd operators are still helpful
  - Momentum  $\vec{p}$  and spin  $\vec{s}$  are odd under T operation. T-odd triple product:  $(\vec{s}_1 \times \vec{s}_2) \cdot \vec{p}$ • Example (1):  $\vec{s}_i \times \vec{s}_f \cdot \vec{p}$  measures the  $\beta$  parameter in  $\Lambda \to p\pi$  [Lee, Yang, 1957] It was found that  $a_{CP}^{\beta} \propto \beta + \bar{\beta} \propto \cos \delta_s \sin \phi_w$  [Donoghue, Pakvasa, 1985] • Example (2): It was proposed to measure  $A_B \propto N(\vec{p} \cdot \vec{e}_1 \times \vec{e}_2 > 0) - N(\vec{p} \cdot \vec{e}_1 \times \vec{e}_2 < 0)$ in  $B \to VV$ , whose CPV is  $A_R + A_{\overline{R}} \propto \cos \delta_s \sin \phi_w$  [Valencia, 1989]





- Precise prediction on strong phases is far beyond control currently
- Complimentary CPV observables proportional to  $\sin \delta$  or  $\cos \delta$  cover all the  $(0, 2\pi)$  region
- Whatever the strong phase is, either  $|\sin \delta|$  or  $|\cos \delta|$  would be larger than 0.7 which is large enough for measurements
- It might reduce the sensitivity of CPV on the strong phase, avoid the theoretical uncertainties on strong phases, and then increase the possibility of observation of baryon CPV

**Complementary:**  $\cos \delta_{\rm s}$  vs  $\sin \delta_{\rm s}$ 



 $a_{CP}^{(1)} \propto \cos \delta_s \sin \phi_w$  $a_{CP}^{(2)} \propto \sin \delta_s \sin \phi_w$ 



- To find the complementary observables, we should know
  - why are some CPV observables proportional to  $\cos \delta_s$ ?
  - what are the conditions to construct such observables?

- To find the complementary observables, we should know
  - why are some CPV observables proportional to  $\cos \delta_{\rm s}$ ?
  - what are the conditions to construct such observables?
- Why  $\cos \delta_s$ ?
  - T-odd operator  $Q_: TQ_T^{-1} = -Q_-$

### Why $\cos \delta_s$ ? What conditions?

• T is anti-unitary, T = UK with U a unitary operator and K a complex conjugation

- To find the complementary observables, we should know
  - why are some CPV observables proportional to  $\cos \delta_s$ ?
  - what are the conditions to construct such observables?
- Why  $\cos \delta_s$ ?
  - T-odd operator  $Q_{-}$ :  $TQ_{-}T^{-1} = -Q_{-}$
  - T is anti-unitary, T = UK with U a unitary operator and K a complex conjugation
- Two conditions:
  - (1) For a basis of final states and a unitary transformation so that  $UT |\psi_n\rangle = e^{i\alpha} |\psi_n\rangle$ (2)  $Q_{-}$  is invariant under this unitary transformation,  $UQ_{-}U^{\dagger} = Q_{-}$

### • Proof:

$$\begin{split} \langle f|Q_{-}|f\rangle &= \langle i|S^{\dagger}Q_{-}S|i\rangle \\ &= \sum_{m,n} \langle \psi_{i}|S^{\dagger}|\psi_{m}\rangle \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \langle \psi_{n}|S| \\ &= \sum_{m,n} A_{m}^{*}A_{n} \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \;. \end{split}$$



### •Proof:

$$\begin{split} \langle f|Q_{-}|f\rangle &= \langle i|S^{\dagger}Q_{-}S|i\rangle \\ &= \sum_{m,n} \langle \psi_{i}|S^{\dagger}|\psi_{m}\rangle \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \langle \psi_{n}|S| \\ &= \sum_{m,n} A_{m}^{*}A_{n} \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \;. \end{split}$$

$$\langle f | Q_{-} | f \rangle \propto \sum_{m_{f}}$$



### •Proof:

$$\begin{split} \langle f|Q_{-}|f\rangle &= \langle i|S^{\dagger}Q_{-}S|i\rangle \\ &= \sum_{m,n} \langle \psi_{i}|S^{\dagger}|\psi_{m}\rangle \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \langle \psi_{n}|S| \\ &= \sum_{m,n} A_{m}^{*}A_{n} \langle \psi_{m}|Q_{-}|\psi_{n}\rangle \;. \end{split}$$

$$\langle f | Q_{-} | f \rangle \propto \sum_{m}$$

$$A_{\rm CP}^{Q_-} \equiv \frac{\langle f | Q_- | f \rangle - \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle}{\langle f | Q_- | f \rangle + \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle} \quad \mathbf{c}$$

Quod erat demonstrandum.



$$A_{\rm CP}^{Q_-} \equiv \frac{\langle f | Q_- | f \rangle - \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle}{\langle f | Q_- | f \rangle + \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle} \quad \mathbf{C}$$

Compared to the direct CPV

$$A_{CP}^{\text{dir}} = \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \propto \underbrace{Re[A_1^*A_2]}_{Re[A_1^*A_2]}$$

**Complementary:**  $\cos \delta_{s}$  vs  $\sin \delta_{s}$ 

 $\propto \sum Im(A_m^*A_n - \bar{A}_m^*\bar{A}_n) \propto \cos \delta_s \sin \phi_w$ 

 $-\bar{A}_1^*\bar{A}_2)$  of  $\sin\delta_s \sin\phi_w$ 

 $A = A_1 + A_2$ 



$$A_{\rm CP}^{Q_-} \equiv \frac{\langle f | Q_- | f \rangle - \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle}{\langle f | Q_- | f \rangle + \langle \bar{f} | \bar{Q}_- | \bar{f} \rangle} \quad \mathbf{C}$$

Compared to the direct CPV

$$A_{CP}^{\text{dir}} = \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \propto \frac{Re|A^*A_2}{|A|^2 + |\overline{A}|^2}$$

• T-even operator,  $TQ_+T^{-1} = Q_+$ 

m,n

**Complementary:**  $\cos \delta_{c}$  vs  $\sin \delta_{c}$ 

 $\propto \sum Im(A_m^*A_n - \bar{A}_m^*\bar{A}_n) \propto \cos \delta_s \sin \phi_w$ 

 $_2 - \bar{A}_1^* \bar{A}_2) \propto \sin \delta_s \sin \phi_w$ 

 $A = A_1 + A_2$ 

 $A_{CP}^{Q_+} \propto \sum Re(A_m^*A_n - \bar{A}_m^*\bar{A}_n) \propto \sin \delta_s \sin \phi_w$ 

**Complementary!!** 



## **CPV induced by T-odd and T-even**



• Example:  $\Lambda \rightarrow p\pi$ , Lee-Yang decay-asymmetry parameter

 $\alpha \propto Re[S]$ T-even:  $\vec{s}_i \cdot \vec{p}$ 

T-odd:  $(\vec{s}_i \times \vec{s}_f) \cdot \vec{p}$  $\beta \propto Im[S]$ 

$${}^*\bar{A}_n) \propto \cos \delta_s \sin \phi_w$$

$$(\bar{A}_n, \bar{A}_n) \propto \sin \delta_s \sin \phi_w$$

$$S^*P] \qquad a^{\alpha}_{CP} = \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}} \propto \sin \delta$$
  

$$S^*P] \qquad a^{\beta}_{CP} = \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}} \propto \cos \delta$$

$$compliments$$



## **Angular distributions**

 Complementary observables can be constructed in the angular distributions

•Example: 
$$\Lambda_b \to N^*(3/2^+)K^*$$
,  $N^*(3/2^+)K^*$ 

$$\begin{aligned} \frac{d\Gamma}{dc_1 \, dc_2 \, d\varphi} \propto &- \frac{s_1^2 s_2^2}{\sqrt{3}} \mathrm{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^* + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{+1,+\frac{1}{2}}^* \right. \\ &+ \frac{s_1^2 s_2^2}{\sqrt{3}} \mathrm{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^* + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{+1,+\frac{1}{2}}^* \right. \\ &- \frac{4 s_1 c_1 s_2 c_2}{\sqrt{6}} \mathrm{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^* + \mathcal{H}_{0,-\frac{1}{2}}^* \right. \\ &+ \frac{4 s_1 c_1 s_2 c_2}{\sqrt{6}} \mathrm{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^* + \mathcal{H}_{0,-\frac{1}{2}}^* \right) \end{aligned}$$

 $)\rho$ 

 $\binom{*}{2} - 1, -\frac{3}{2} \sin 2\varphi$  $l^*_{-1,-\frac{3}{2}} \Big) \cos 2\varphi$  $_{\frac{1}{2}}\mathcal{H}_{-1,-\frac{3}{2}}^{*}\Big)\sin\varphi$  $\frac{1}{2}\mathcal{H}^*_{-1,-rac{3}{2}}\right)\cosarphi$ 





## Angular distributions

$$\frac{d\Gamma}{dc_{1} dc_{2} d\varphi} \propto -\frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin 2\varphi 
+ \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos 2\varphi 
- \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin \varphi 
+ \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi$$

$$\sin \varphi = (\vec{n}_a \times \vec{n}_b) \cdot \hat{p}_b = \vec{n}_a \cdot (\vec{n}_b)$$
$$\sin 2\varphi = 2\sin \varphi \cos \varphi \propto [(\vec{p}_1 \times \vec{p}_2)]$$

 $\times \hat{p}_b) \propto (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_4$   $\hat{p}_2) \cdot (\vec{p}_3 \times \vec{p}_4)][(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_4].$ 

## **Angular distributions**

$$\frac{d\Gamma}{dc_{1} dc_{2} d\varphi} \propto -\frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin 2\varphi 
+ \frac{s_{1}^{2} s_{2}^{2}}{\sqrt{3}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{-1,-\frac{1}{2}}^{*} + \mathcal{H}_{+1,+\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos 2\varphi 
- \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Im} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \sin \varphi 
+ \frac{4s_{1} c_{1} s_{2} c_{2}}{\sqrt{6}} \operatorname{Re} \left( \mathcal{H}_{+1,+\frac{3}{2}} \mathcal{H}_{0,+\frac{1}{2}}^{*} + \mathcal{H}_{0,-\frac{1}{2}} \mathcal{H}_{-1,-\frac{3}{2}}^{*} \right) \cos \varphi$$

$$\sin\varphi = (\vec{n}_a \times \vec{n}_b) \cdot \hat{p}_b = \vec{n}_a \cdot (\vec{n}_b)$$

 $\sin 2\varphi = 2\sin\varphi\cos\varphi\propto [(\vec{p_1}\times\vec{p_2})\cdot(\vec{p_3}\times\vec{p_4})][(\vec{p_1}\times\vec{p_2})\cdot\vec{p_4}].$ 

- Triple-product of momentum,  $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$ , is not good

 $(\hat{p}_1 \times \hat{p}_2) \propto (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_4$ 

•Angular distributions of resonant contributions are necessary. It is more clear in theory.

at the current stage.



# Summary and outlook

### Baryon physics is an opportunity of heavy flavor physics