Rare B decay results from LHCb

- Measurements
- Searches
- Selective

Measurements of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ and $B_s^0 \rightarrow f'_2(1525) \mu^+ \mu^-$ decays

• $B_s^0 \rightarrow \phi \mu^+ \mu^-$ BRs reported in intervals of q2, found 3.6 σ below SM

- Most precise measurement
- Differential BR, overlaid with SM predictions
- The results from the LHCb 3 fb^{-1} analysis are shown with gray markers

Phys. Rev. Lett. 127 (2021) 151801

Measurements of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ and $B_s^0 \rightarrow f'_2(1525) \mu^+ \mu^-$ decays

- The first observation of the rare $B_s^0 \rightarrow f_2'(1525)\mu^+\mu^-$ decay is reported
- The first observation of a rare semileptonic decay involving a spin-2 meson in the final state:
 - provides complementary information to transitions involving pseudoscalar or vector mesons.

• In agreement with SM predictions:

 $\begin{aligned} &\frac{\mathcal{B}(B^0_s \to f_2' \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to J/\psi \phi)} = (1.55 \pm 0.19 \pm 0.06 \pm 0.06) \times 10^{-4} , \\ &\mathcal{B}(B^0_s \to f_2' \mu^+ \mu^-) = (1.57 \pm 0.19 \pm 0.06 \pm 0.06 \pm 0.08) \times 10^{-7} , \end{aligned}$

15/04/2023

第三届LHCb前沿物理研讨会

The rare hadronic decay $B^0_{(s)} \rightarrow p\overline{p}p\overline{p}$

- No reliable theoretical prediction for $B^0_{(s)} \rightarrow p\overline{p}p\overline{p}$ decays for now, a first measurement of the corresponding BR would allow to better understand the underlying dynamics
- The BRs of multi-body baryonic decay modes may be significantly increased due to a threshold enhancement effect in the baryon-antibaryon invariant mass, while two-body baryonic decays (such as B⁰_(s)→ pp̄) are suppressed
- B^0 / B_s^0 : significance of 9.3 σ and 4.0 σ

arXiv:2211.08847

The rare hadronic decay $B^0_{(s)} \rightarrow p\overline{p}p\overline{p}$

- The branching fractions are measured relative to the topologically similar normalisation decays: $B^0 \rightarrow J/\psi(\rightarrow p\overline{p})K^{*0}(\rightarrow K\pi)$ and $B_s^0 \rightarrow J/\psi(\rightarrow p\overline{p})\phi(\rightarrow KK)$
- Results: BR($B^0 \rightarrow p\overline{p}p\overline{p}p\overline{p}$)= (2.2±0.4±0.1) ×10⁻⁸ and BR($B_s^0 \rightarrow p\overline{p}p\overline{p}p\overline{p}$)= (2.2±1.0±0.2) ×10⁻⁸

arXiv:2211.08847

The baryon and lepton number violating decays $B_s^{\ 0} \rightarrow p\mu^{-}$ and $B^0 \rightarrow p\mu^{-}$

- Matter-antimatter asymmetry is a serious challenge to our understanding of nature. Proposed three necessary conditions to produce such a large matter-antimatter asymmetry, one of which is baryon number violation.
- Various violation processes have been searched for in τ,
 Λ, D, J/ψ, and B decays by the CLEO, CLAS, BESIII and BABAR experiments, but no evidence has been found so far.

???

Figure 1: Hypothetical Feynman diagrams of $B^0_{(s)} \to p\ell^-$ mediated by a hypothetical Y boson.

15/04/2023

第三届LHCb前沿物理研讨会

The baryon and lepton number violating decays $B_s^{\ 0} \rightarrow p\mu^{-}$ and $B^0 \rightarrow p\mu^{-}$

• Mass distribution of signal candidates for Run 2 samples in regions of MLP.

- Results from the CLs scan used to obtain the limit on BR($B^0 \rightarrow p\mu^-$) and BR($B_s^0 \rightarrow p\mu^-$)
- the first upper limits on these decays

Channel	Expected	Observed
$B^0 \rightarrow p\mu^-$	$1.9(2.4) \times 10^{-9}$	$2.6 (3.1) \times 10^{-9}$
$B_s^0 \to p\mu^-$	$7.0~(8.6) \times 10^{-9}$	$12.1~(14.0) \times 10^{-9}$

arXiv:2210.10412

LFV decays $B_s^0 \to \phi \mu^{\pm} e^{\mp}, B^0 \to K^{*0} \mu^{\pm} e^{\mp} \text{ and } B^0 \to K^{*0} \mu^{\pm} \tau^{\mp}$

- An observation of LFV decays involving charged leptons would constitute a clear and unambiguous sign of New Physics
 - Specific NP scenarios that can induce LFV b-hadron decays include models with scalar or vector leptoquarks and models with additional Z' bosons
- the flavour anomalies in rare b → sl⁺l⁻ also make LFV important, as lepton flavour non-universality is closely connected with LFV

• The world's most stringent

limits to date

arXiv:2207.04005

LFV decays $B^0 \to K^{*0} \mu^{\pm} \tau^{\mp}$

• Not ever investigated by any prior experiment

 $\mathrm{BR}(B^0 \to K^{*0} \mu^- \tau^+) < 1.0(1.2) \times 10^{-5}, \, \mathrm{BR}(B^0 \to K^{*0} \mu^+ \tau^-) < 8.2(9.8) \times 10^{-6}$

• The world's most stringent limits to date

arXiv:2209.09846

Search for the $B^0 \rightarrow \varphi \mu^+ \mu^-$

- No statistically significant excess of the decay $B^0 \rightarrow \varphi \mu^+ \mu^-$
- An upper limit on its BR excluding the φ and charmonium regions in the dimuon spectrum, relative to that of the decay $B_s^0 \rightarrow \varphi \mu^+ \mu^-$ is determined to be 4.4 × 10⁻³ at a 90% CL.
- Using the LHCb measurement of $B(B_s^0 \to \varphi \mu^+ \mu^-)$, an upper limit on $B(B^0 \to \varphi \mu^+ \mu^-)$ in the full q^2 range is set to be 3.2 × 10⁻⁹ at a 90% CL, which is compatible with the SM prediction.

JHEP 05 (2022) 67

Search for the rare decays $B_s^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

- Highly suppressed in SM: BR $(B^0 \rightarrow 4\mu) \sim 10^{-12}$, BR $(B_s^0 \rightarrow 4\mu) \sim 10^{-10}$
- For example, decays via scalar and pseudoscalar Sgoldstino particles into a pair of dimuons in the MSSM may lead to significant enhancements of the BRs
- Furthermore, the decays into a pair of dimuons mediated by BSM light narrow scalars, $B_{(s)}^0 \rightarrow a(\mu^+\mu^-)a(\mu^+\mu^-)$, naturally occur in the extensions of SM
 - In particular, such models can account for the long-standing tension of the anomalous magnetic dipole moment of the muon, as well as the widely discussed anomalies in transitions

Search for the rare decays $B_s^{\ 0} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$

• No evidence for the six signal decay modes, with the most significant excesses

found in the $B^0_{(s)} \to J/\psi(\mu^+\mu^-)\mu^+\mu^-$ searches, amounting to 2σ

Search for the rare hadronic decay $B_s^0 \rightarrow p\overline{p}$

- To date only three charmless two-body baryonic decays have been observed, namely the $B^+ \rightarrow p \overline{\Lambda}(1520)$, $B^+ \rightarrow p \overline{\Lambda}$ and $B^0 \rightarrow p \overline{p}$ modes.
- Run-I result:

 $BR(B^0 \rightarrow p\overline{p}) = (1.25 \pm 0.27 \pm 0.18) \times 10^{-8}$

arXiv:2206.06673

Search for the rare hadronic decay $B_s^0 \rightarrow p\overline{p}$

• No statistically significant excess of the decay is observed.

The 90% (95%) upper limit on the $B_s^0 \rightarrow p\overline{p}$ decay branching fraction is set at

$$\mathcal{B}(B_s^0 \to p\overline{p}) < 4.4 \ (5.1) \times 10^{-9} \text{ at } 90\% \ (95\%) \text{ CL}.$$

• Using the measured quantities and the equation below, the branching fraction of the $(B^0 \rightarrow p\overline{p})$ decay is measured more precisely to be:

$$\mathcal{B}(B^0_{(s)} \to p\overline{p}) = \frac{N(B^0_{(s)} \to p\overline{p})}{N(B^0 \to K^+\pi^-)} \times \frac{\varepsilon_{B^0 \to K^+\pi^-}}{\varepsilon_{B^0_{(s)} \to p\overline{p}}} \times \mathcal{B}(B^0 \to K^+\pi^-) \times \frac{f_d}{f_{d(s)}}, \qquad (1)$$

$$\mathcal{B}(B^0 \to p\overline{p}) = (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8},$$

arXiv:2206.06673

15/04/2023

第三届LHCb前沿物理研讨会

Measurement of $B_s^0 \to \mu^+ \mu^-$ and search for $B^0 \to \mu^+ \mu^-$, $B_s^0 \to \mu^+ \mu^- \gamma$

- Extremely rare in SM $(B_s^0 \to \mu^+ \mu^- \sim (3.66 \pm 0.14) \times 10^{-9}, B^0 \to \mu^+ \mu^- \sim (1.03 \pm 0.05) \times 10^{-9}$).
- powerful probes for detecting deviations from the SM due to new physics contributions mediated, for instance, by heavy Z'gauge bosons, leptoquarks or non-SM Higgs bosons

Phys. Rev. D105 (2022) 012010

LHCb Run 1 + Run 2, $B_s^0 \rightarrow \mu^+ \mu^-$

Systematic uncertainties of B⁰_s → μ⁺μ⁻ and B⁰ → μ⁺μ⁻ are dominated by the uncertainty on *fs/fd* (3%) and the knowledge of the background from specific processes (9%), respectively.

Phys. Rev. Lett. 128, (2022) 041801 Phys. Rev. D105 (2022) 012010

Search for $B_s^0 \to \mu^+ \mu^- \gamma$

- Compared to the $B_s^0 \to \mu^+ \mu^-$ amplitude, the additional suppression arising from the photon is compensated by no longer helicity suppressed, increasing the total predicted BR
- The $B_s^0 \to \mu^+ \mu^- \gamma$ process is a powerful probe of SM, being sensitive to C7, C9 and C10, While $B_s^0 \to \mu^+ \mu^-$ is only sensitive to C10

Summary

• LHCb provides ideal environment for searching for rare decays (and new physics) in B decays

• No evidence for some, although the world's best upper limits on the BFs are set

• More results are on the way; looking forward to new data (Run3 and beyond) in the years to come!

