

Rare Charm & Strange Decays @ LHCb

Liang Sun Wuhan University 2023/04/16

Outline

- Rare charm decays @ LHCb
- Rare strange decays @ LHCb
- Summary & prospects

LHCb: a charm factory

- levelled instantaneous luminosity of $\mathcal{L}=4\times 10^{32}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$
- Run 1: $\sim 3 \, {\rm fb}^{-1}$ of pp collisions at $\sqrt{s} = 7-8 \, {\rm TeV}$
- Run 2: $\sim 6 \, \text{fb}^{-1}$ of pp collisions at $\sqrt{s} = 13 \, \text{TeV}$
- $\sigma(pp \rightarrow Q\bar{Q}X) \propto \sqrt{s} \Rightarrow 4x b$ and *c*-hadrons in Run 2

More than 1B of $D^0 \rightarrow K^-\pi^+$ events reconstructed with full LHCb data sample

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Summary of charm decays

BFs expected in SM

10-0		Charm provide	a unique environment for			
	testing the SM rare/forbidden decays and searching for NP					
10-1	Cabibbo favor	Complementar	ry information to B and K			
10-2	Seciors with down-type quarks					
10-3	Single Cabibbo suppressed					
10-4	Doubly Cabibbo suppressed					
10 ⁻⁵	Radiative decays		D⁰→Κ*⁰γ/φγ/ωγ/ργ			
10 ⁻⁶			D+ _(S) →Κ [*] +γ/ρ+γ			
10 ⁻⁷	Long distance:					
10 ⁻⁸	Vector meson Domina	ance (SM)	D⁰+—>γγ/VV′(I+I−)/ hV(I+I−)/ hh′V(I+I−)	Rare decays		
10 ⁻⁹						
10 ⁻¹⁰	Short distance FCNC	; (SM+NP)	D⁰/+—→γγ/VI+I [_] /hI+I [_] /hh′I+I [_]			
10 ⁻¹¹			${\sf D}^0 { ightarrow} \mu^+ \mu^- / {\sf e}^+ {\sf e}^-$			
10 ⁻¹²						
10 ⁻¹³			D→(hh)µ ⁺ µ ⁺ /(hh)e ⁺ e ⁺			
10 ⁻¹⁴	/	(NP)	D→(h)µ⁺e⁻			
10-15	Forbidden decays: L	NV, LFV, BNV	D→(h)pe [_]			

4

Flavor Changing Neutral Currents

 10^{-9}

^F ≈ 10⁻¹¹

 10^{-13}

- Forbidden at tree level in SM, only allowed in loop and box diagrams
 - Strongly suppressed due to GIM cancellation:
 - BF ~O(10⁻⁹)
- $D \rightarrow X\ell^+\ell^-$ dominated by Long-Distance contributions
 - **)** $\frac{10^{-5}}{10^{-5}}$ • Vector Meson dominance (VMD)
 - BF ~O(10⁻⁶)
- No VMD in $D \to X \nu \overline{\nu}$

VMD

5

esonant SM

 $q^2 \, [\text{GeV}^2]$

Lepton Flavor Violation

- LFV exists in neutrino oscillation
- Observation of charged LFV (cLFV) decays will be a clear sign for NP
- Lepton flavor non-universality closely related to cLFV
 - LHCb recently reported 3.1 σ tension with SM in $b \rightarrow s \ell^+ \ell^-$

[Nature Phys. 18 (2022) 3, 277]

 BSM models (lepto-quark, Z', etc.) may induce cLFV and enhance BF up to O(10⁻⁵)

Lepton Number Violation

- Lepton Number Violation ($\Delta L \neq 0$) is forbidden in SM
- Neutrino oscillation $\rightarrow m_{\nu} \neq 0 \rightarrow$ New Physics needed to explain mass origin
- Nature of neutrino: Dirac or Majorana (ν_m)?
- Majorana neutrino can lead to $\Delta L = 2 \text{ LNV}$ processes
- LNV is introduced in many NP models:
 - 4th quark generation, SO(10) SUSY GUT, exotic Higgs, etc.
- LNV processes have been widely searched for in τ , K, D, and B decays

Results on rare charm decays (D⁰)

https://hflav-eos.web.cern.ch/hflav-eos/charm/rare/Spring2021/rare_charm.html

8

Results on rare charm decays

Search for $D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell^{(\prime)\mp}$ decays

- 25 decays
 LFV & LNV included
- $D^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-}$ $D^{+} \rightarrow \pi^{-}\mu^{+}\mu^{+}$ $D^{+} \rightarrow \pi^{+}\mu^{+}e^{-}$ $D^{+} \rightarrow \pi^{-}\mu^{+}e^{+}$ $D^{+} \rightarrow \pi^{+}e^{+}\mu^{-}$

• Normalized with $D^+_{(s)} \rightarrow \phi(\ell \ell) \pi^+$

Allowed in the SM, Forbidden in the SM

• Analysis based on 2016 dataset (1.7 fb⁻¹)

JHEP 06 (2021) 44

Search for $D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell^{(\prime)\mp}$ decays

- No signal observed, BF limits are set down to $\mathcal{O}(10^{-8})$
- Results improve the prior world's best by up to a factor of 500

vetoed

CPV and angular analysis in $D^0 \rightarrow hh\mu^+\mu^-$

D*+

PV

 K^{-}

IP~0

 Rarest charm meson decays observed, dominated by resonant contributions

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 9.6 \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 1.5 \times 10^{-7}$

- First full angular analysis with 9 fb⁻¹ data
- D^0 selected from flavor specific $D^{*+} \rightarrow D^0 \pi^+$

$$\begin{split} \mathsf{N}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) &\sim 3500 \\ \mathsf{N}(D^0 \to K^+ K^- \mu^+ \mu^-) &\sim 300 \end{split}$$

400

600

 $m(\mu^+\mu^-)$ [MeV/ c^2]

800

i=2,..,9

preliminary

Differential decay rate in $D^0 \rightarrow hh\mu^+\mu^-$

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ $d\Gamma$ $= I_1 +$ $d\cos\theta_{\mu}d\cos\theta_{h}d\phi$ \vec{n}_{hh} $I_2 \cdot \cos 2\theta_{\mu} +$ ϕ \vec{e}_{h} - $I_3 \cdot \sin^2 2\theta_\mu \cos 2\phi +$ $\vec{n}_{\mu\mu}$ \vec{e}_{hh} θ_h $e_{\mu\mu}$ $I_4 \cdot \sin 2\theta_\mu \cos \phi +$ \vec{e}_{μ} \vec{e}_{h+} $I_5 \cdot \sin \theta_\mu \cos \phi +$ I_5, I_6, I_7 clean $I_6 \cdot \cos \theta_{\mu} +$ null tests! 1000 1500 $I_7 \cdot \sin \theta_\mu \sin \phi +$ $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}] $I_8 \cdot \sin 2\theta_\mu \sin \phi +$ $p^2 = m^2(h^+h^-)$ $q^2 = m^2(\mu^+\mu^-)$ $20 \text{ MeV}/c^2$ 80 LHCb preliminary $I_9 \cdot \sin^2 \theta_u \sin 2\phi$ 70 € 9 fb⁻¹ • Measure p^2 , $\cos \theta_h$ integrated $\langle I_i \rangle$ separately for D^0/\overline{D}^0 in q^2 bins $D^0 \rightarrow K^+ K^- \mu^+ \mu^ \rho | \omega$ 50E candida $\langle S_{5,6,7} \rangle = 0$ $\langle I_{2,3,6,9} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m}^{p_{max}^2} dp^2 \int_{-1}^{1} d\cos\theta_h I_{2,3,6,9}$ $\langle S_i \rangle = \frac{1}{2} \left[\langle I_i \rangle + (-) \langle \overline{I_i} \rangle \right]$ $\langle A_i \rangle = 0$ 'eighted c $\langle A_i \rangle = \frac{1}{2} \left[\langle I_i \rangle - (+) \langle \overline{I_i} \rangle \right]$

$$\langle I_{4,5,7,8} \rangle (q^2) = \frac{1}{\Gamma} \int_{4m_h}^{p_{max}^2} dp^2 \left[\int_{-1}^0 d\cos\theta_h - \int_0^1 d\cos\theta_h \right] I_{4,5,7,8}$$

2,3,4,7 (5,6,8,9)

for CP even (CP odd) coefficients

Flavor-averaged observables $\langle S_i \rangle$

• Shown examples: SM null tests $\langle S_{5,6,7} \rangle [\langle S_6 \rangle \sim A_{FB}]$

From D. Mitzel's talk @ 11th workshop on "Implications of LHCb measurements and future prospects"

CP asymmetries $\langle A_i \rangle$

 $A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$

From D. Mitzel's talk @ 11th workshop on "Implications of LHCb measurements and future prospects"

• Shown: $\langle A_6 \rangle [\langle A_6 \rangle \sim A_{FB}^{CP}]$, $\langle A_{8,9} \rangle$ [triple-product-asym.] & A_{CP} of LHCb measurements

arXiv:2212.11203

Search for $D^0 \rightarrow \mu^+ \mu^-$

- Short-distance contribution from $c \rightarrow u\ell\ell$ (FCNC) highly suppressed: Br~10⁻¹⁸
- Long-distance from a two-photon intermediate state: Br < 10⁻¹³
- Dataset: full Runs1+2 9 fb⁻¹
- D^0 candidates from $D^{*+} \rightarrow D^0 \pi^+$
- Normalization channels: $D^0 \rightarrow K^- \pi^+, \pi^+ \pi^-$
- BDT trained to suppress combinatorial backgrounds

Search for $D^0 \rightarrow \mu^+ \mu^-$: results

- Peaking backgrounds from $D^0 \rightarrow h\pi$ are carefully calibrated using MC & control samples
 - K π : $\mu\mu$ mass sideband
 - $\pi\pi: D^+_{(s)} \to \pi\pi\pi$ decays
- Final yield: $N(D^0 \rightarrow \mu \mu) = 79 \pm 45$
- Upper limits are set: $\mathcal{B}(D^0 \to \mu^- \mu^+) < 3.1(3.5) \times 10^{-9} \text{ at } 90 \text{ (95)\% CL}$

A factor of 2 improvement!

Candidates / ($5.0 \text{ MeV}/c^2$

Search for $D^{*0} \rightarrow \mu^+ \mu^-$ in B decay

- Leptonic D* decays offer a complementary approach to constraining Wilson coefficients
- Highly suppressed in SM: BF $\sim 10^{-18}$
- Search in the decay chain of $B^- \rightarrow D^{*0} (\rightarrow \mu^+ \mu^-) \pi^-$
- Normalization channel: $B^- \to J/\psi (\to \mu^+ \mu^-) K^- \overset{\sim}{\mathbb{P}}$

 $\varepsilon_{J/\psi K^-}/\varepsilon_{D^{*0}\pi^-}$

 $N_{J/\psi K^-}$

 1.21 ± 0.03

 $(2316 \pm 8) \times 10^3$

First search:

 $\mathcal{B}(D^{*0} \to \mu^+ \mu^-) < 2.6 \times 10^{-8}$ at 90% CL

PRL 125, 231801 (2020)

Search for $K_S^0 \rightarrow \mu^+ \mu^-$

• Expected:

 $\mathcal{B}(K_{\rm L}^0 \to \mu^+ \bar{\mu}^-)_{\rm SM} = (6.85 \pm 0.80_{\rm LD} \pm 0.06_{\rm SD}) \times 10^{-9}$

- Sensitive to NP contributions
- Dedicated software trigger in Run2
- Normalized to $K^0_S \rightarrow \pi^+ \pi^-$
- Combined results from Runs1-2:

 $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$ at 90% CL

Search for
$$K^0_{S(L)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$$

- Expected: $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^- \mu^+ \mu^-)_{\rm SM} \sim (1-4) \times 10^{-14}.$ $\mathcal{B}(K_{\rm L}^0 \to \mu^+ \mu^- \mu^+ \mu^-)_{\rm SM} \sim (4-9) \times 10^{-13}.$
- LHCb acceptance for $K_L^0 \sim 0.2\%$ of K_S^0
- Normalized to $K^0_S \rightarrow \pi^+ \pi^-$
- No events found in the signal mass window
- ULs @ 90% CL using 5.1 fb⁻¹ Run2:

 $\mathcal{B}(K_{\rm S}^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12},$ $\mathcal{B}(K_{\rm L}^0 \to \mu^+ \mu^- \mu^+ \mu^-) < 2.3 \times 10^{-9},$

PRL 120, 221803 (2018)

21

Search for $\Sigma^+ \rightarrow p \mu^+ \mu^-$

- A s \rightarrow d FCNC process, LD contribution dominated
- Events/0.5 MeV/c² N • Evidence from HyperCP [PRL 94 021801 (2005)]: $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (8.6^{+6.6}_{-5.4} \pm 5.5) \times 10^{-8}$
 - Three candidates found with $m_{\chi 0} = 214.3 \pm 0.5$ MeV
- LHCb uses $\Sigma^0 \rightarrow p\pi^0(\gamma\gamma)$ as norm channel
 - $N_{\Sigma^+ \to p\pi^0} = (1171 \pm 9) \times 10^3$

Observed $\Sigma^+ \rightarrow p \mu^+ \mu^-$ candidates evaluated by fitting $m_{p\mu^+\mu^-}$

- $N_{\Sigma^+ \to p \mu^+ \mu^-} = (10.2^{+3.9}_{-3.5})$
- Measured $\mathcal{B}(\Sigma^+ \to p\mu^+\mu^-) = (2.2^{+0.9+1.5}_{-0.8-1.1}) \times 10^{-8}$ •
- No significant peak found in the dimuon invariant mass distribution
 - $\mathcal{B}(\Sigma^+ \to pX^0(\to \mu^+\mu^-)) < 1.4 \times 10^{-8} \text{ at } 90\% \text{ CL}$
 - HyperCP result excluded

Run 2 analysis ongoing

LHCb prospects for rare charm decays

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 fb^{-1})
$D^0 o \mu^+ \mu^-$	$4.2 imes 10^{-10}$	$1.3 imes10^{-10}$
$D^+ ightarrow \pi^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\Lambda o p \mu \mu$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
$D^0 o e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019

Prospects for measurements with strange hadrons at LHCb

arXiv:1808.03477

A. A. Alves Junior¹, M. O. Bettler², A. Brea Rodríguez¹, A. Casais Vidal¹, V. Chobanova¹, X. Cid Vidal¹, A. Contu³, G. D'Ambrosio⁴, J. Dalseno¹, F. Dettori⁵, V.V. Gligorov⁶, G. Graziani⁷, D. Guadagnoli⁸, T. Kitahara^{9,10}, C. Lazzeroni¹¹, M. Lucio Martínez¹, M. Moulson¹², C. Marín Benito¹³, J. Martín Camalich^{14,15}, D. Martínez Santos¹, J. Prisciandaro¹, A. Puig Navarro¹⁶, M. Ramos Pernas¹, V. Renaudin¹³, A. Sergi¹¹, K. A. Zarebski¹¹

Figure 1: Multiplicity of particles produced in a single pp interaction at $\sqrt{s} = 13$ TeV within LHCb acceptance.

Summary

- Thanks to overwhelming statistics & superb detector performance, LHCb has been dominating the searches for rare charm & strange decays into all-track final states
- Still great potentials to be explored, e.g.
 - Di-electron channels
 - Radiative charm decays
 - Semileptonic charm decays
 - Decays of $D^*_{(s)}$ from B
- Expectation of improved ULs or observations in the Run3 era and beyond!

