

Update from CTEQ-TEA and LHCb related

- 高俊上海交通大学 **CTEQ-TEA** collaboration
- 第三届LHCb前沿物理研讨会
 - 中国科学院大学,北京
 - April 16, 2023

Overview

New CT18 NNLO grids for precision calculations

- Soon to appear in the LHAPDF library •
- Crossing of quark mass thresholds implemented with multiple Q grids lacksquare
- lacksquare

• Contain more x and Q points – improved interpolation at the expense of slightly slower evaluation

Complement the published (less dense) CT18 grids that remain sufficient for most applications

CTEQ-TEA pres

Toward a new generation of CT202X PDFs

1.Impact of Drell-Yan data on post-CT18 gl

2. Constraints from $t\bar{t}$ production at LHC 1

3. Epistemic uncertainty quantification in P

4. CT18 NNLO fitted charm PDFs [arXiv:2211.01

5. Prospects for using lattice-QCD constraints

6. CTEQ-TEA NNLO predictions for high-ener

7. Simultaneous CTEQ-TEA extraction of PDF

8. Small-x dynamics in CTEQ-TEA fits and Fo

		$ \begin{array}{c} \widehat{O} \\ {\times} \\ {\times} \\ 0.00 \end{array} $
		-0.02
sentations at DIS'	2023	-0.04 -0.04 10^{-6} 10^{-4} 10^{-3}
China: A. Ablat, S. Dulat, J. Gao, T	-J. Hou,	
I. Sitiwaldi, M. Yan, and col	laborators	
Mexico: A. Courtoy		
USA: T.J. Hobbs, M. Guzzi, X. Jin	g, P. Nadolsky	
J. Huston, HW. Lin, D. Stu	mp, C. Schmidt, K. X	lie, CP. Yuan
IODal tite	Keping Xie	WG3
	Fermilab	WG1
DF ms	P. Nadolsky	WG1
1387]	Tim Hobbs	WG1
s in the global PDF analysis	TJ. Hou	Plenary
rgy neutrino cross sections	Dan Stump	WG3
Fs and SMEFT contributions	Tim Hobbs	WG3
orward Physics Facility	Keping Xie	WG2

0.04

Overview

Intrinsic Charm

References

CTEQ-TEA analyses of fitted charm

- NP charm and CT14 IC NNLO pheno analysis
- analysis with the LHC Run-1 and 2 data
- 3. Dulat et al., PRD 89 (2014) 073004, IC parton distribution functions from CTEQ-TEA

IC from nonperturbative methods and models:

- BHPS(3): Brodsky, Hoyer, Peterson, Sakai, PLB 93 (1980) 451
- 074008
- 4. IC lifetime: Blümlein, PLB 753 (2016) 619
- 5. Light-front WF models: Hobbs, Alberg, Miller, PRD 96 (2017) 7, 074023
- 6. Dyson-Schwinger equations, lattice QCD, ...

al., PRD 103 (2021) 1, 014013

Strong goodness-of-fit criteria for PDF fits: K. Kovařík, P. Nadolsky, D. Soper, RMP 92 (2020) 4, 045003

1. T.-J. Hou et al., JHEP 02 (2018) 059; 57 pages, 19 figures: QCD factorization with the 2. M. Guzzi, T. J. Hobbs, K. Xie, et al., arXiv:2211.01387; 10 pages: **new** CT18 FC 2. Scalar cloud model: Pumplin, PRD 73 (2006) 114015; et al., PRD 75 (2007) 054029 3. Meson-Baryon models (MBMs): Hobbs, Londergan, Melnitchouk, PRD 89 (2014)

CT18 NNLO analysis and methodology: T.-J. Hou, J. Gao, T. J. Hobbs, K. Xie, et

T. Hobbs, DIS 2023

Intrinsic Charm

challenging to formulate a rigorous definition of intrinsic charm

- The concept of nonperturbative methods
- Can refer to a component of the • hadronic Fock state or the type of the hard process
- Predicts a typical enhancement of the charm PDF at $x \gtrsim 0.2$

CT18 FC total charm PDFs

FC scenarios traverse range of high-x behaviors from IC models

- → fit implementation of BHPS from CT14IC (BHPS3) on CT18 or CT18X (NNLO)
- → fit two MBMs: MBMC (confining), MBME (effective mass) on CT18

investigate constraints from newer LHC data in CT18

FC PDF moments as F.o.M.

even restrictive uncertainties give moments consistent with zero

→ broaden further for default CT tol.

 \rightarrow lattice may give $\langle x \rangle_{c^+}, \langle x^2 \rangle_{c^-}$

$$\begin{aligned} \langle x \rangle_{\rm FC} &\equiv \langle x \rangle_{\rm c^+} [Q_0 = 1.27 \,{\rm GeV}] \\ &= 0.0048 \,_{-0.0043}^{+0.0063} \, (^{+0.0090}_{-0.0048}), \, {\rm CT18} \, ({\rm BF}_{-0.0041}), \\ &= 0.0041 \,_{-0.0041}^{+0.0049} \, (^{+0.0091}_{-0.0041}), \, {\rm CT18X} \, ({\rm H}_{-0.0041}), \\ &= 0.0057 \,_{-0.0045}^{+0.0048} \, (^{+0.0084}_{-0.0057}), \, {\rm CT18} \, ({\rm MI}_{-0.0038}), \\ &= 0.0061 \,_{-0.0038}^{+0.0064} \, (^{+0.0064}_{-0.0061}), \, {\rm CT18} \, ({\rm MI}_{-0.0061}), \\ &\Delta \chi^2 \leq 10 \qquad \Delta \chi^2 \leq 30 \end{aligned}$$

(restrictive tolerance)

(~CT standard tolerance)

historically, charm structure function data, $F_2^{c\overline{c}}$, from EMC were suggestive

F. M. Steffens, W. Melnitchouk and A. W. Thomas, Eur. Phys. J. C **11**, 673 (1999) [hep-ph/9903441].

See Fig. 3 (lower panel)

Candidate NNLO PDF fits	$\chi^2/N_{ m pts}$				
	All Experiments	HERA inc. DIS	HERA $c\bar{c}$ SIDIS	EMC $c\bar{c}$	SIDIS
CT14 + EMC (weight=0), no IC	1.10	1.02	1.26	3.48	
CT14 + EMC (weight=10), no IC	1.14	1.06	1.18	2.32	
CT14 + EMC in BHPS model	1.11	1.02	1.25	2.94	
CT14 + EMC in SEA model	1.12	1.02	1.28	3.46	

few expts with 'smoking gun' sensitivity to FC; but **EMC data** (?)

J. J. Aubert *et al*. (EMC), NPB**213** (1983) 31–64.

 \rightarrow hint of high-x excess in select Q^2 bins

→ data were analyzed only at LO

- \rightarrow show anomalous Q^2 dependence
- → EMC data fit poorly in CT14 IC study

we do not include EMC in CT18 FC

CT14 IC, arXiv: 1707.00657.

- CT uses tier1+tier2 tolerance, MSHT uses a pure dynamic tolerance, both close to a hypothesis test criterion
- ✤ NNPDF3.1 uses ML algorithm with effective tolerance that is smaller than CT and MSHT as checked explicitly from reduced fits
- substantial changes on methodologies for NN4.0 vs. NN3.1 further affect the uncertainty

ID	Expt.	$N_{\rm pt}$	0	χ^2
	СТ	14HER	Ag Ida	
201	E605DY	119	$ \frac{\infty}{2}103 $	324
203	E866 $\sigma_{pd}/(2\sigma_{pp})$	15		
204	E866 $Q^3 d^2 \sigma_{pp} / (d Q d x_F)$	184		
225	$CDF1Z^{T}A(e)$	11	Rat 8	0(9.3)
227	CDF2W A(e)	11		5(13.4)
234	$D \varnothing 2W A(\mu)$	9	9	1(9.0)
260	DØ2Z $y_{\ell\ell}$	28	1.6	9(18,7)
261	CDF2Z $y_{\ell\ell}$	29	480-	7(69-41)
266	CMS7W $A(\mu)$	11	1749	(12.2)
267	CSM7W $A(e)$	11	14	6(5. 5)́x,
268	ATL7WZ ₍₂₀₁₂₎	41	9 44	4(50.6)
281	$D \varnothing 2W \stackrel{(L \circ 1 L)}{A(e)}$	13		8(20.5)
	N	ew LH	Cadata	
245	LHCb7WZ(μ)	33	<u>_</u> 58	
246	LHCb8Z(e)	17	<u>9</u> 17	7(18.0)
248	ATL7WZ ₍₂₀₁₆₎	34	[™] 287.	3(88.7)
249	$CMS8W[A(\mu)]$	11		4(12.1)
250	LHCb8WZ(μ)	34	73	7(59.4)
253	ATL8ZpT	27	<u> </u>	$\frac{2(28.3)}{2(28.3)}$

018NNL0

New post-CT18 LHC Drell-Yan data

Boson	\sqrt{s}	Lumi	Observable			
ATLAS						
W, Z	2.76	4.0 pb ⁻¹	$\sigma^{ m fid,tot}$			
W, Z	13	81.0 pb ⁻¹	$\sigma^{ m fid}$			
W, Z	5.02	25.0 pb ⁻¹	$(oldsymbol{\eta}_\ell,y_{\ell\ell})$			
Z	8	20.2 fb ⁻¹	$(m_{\ell\ell},y_{\ell\ell})$			
$W \rightarrow \mu v$	8	20.2 fb ⁻¹	η_{μ}			
Z	13	36 .1 fb ⁻¹	$p_T^{\ell\ell}$			
CMS						
Z	13	$2.8 { m ~fb^{-1}}$	$m_{\ell\ell}$			
Z	13	35.9 fb ⁻¹	(y, p_T, ϕ^*)			
\overline{W}	13	35.9 fb ⁻¹	$oldsymbol{\sigma}^{\mathrm{fid}}$, $y_W, (oldsymbol{\eta}_\ell, p)$			
LHCb						
$W \rightarrow e \nu$	8	$2.0 { m ~fb^{-1}}$	η_{e}			
Z	13	294 pb ⁻¹	$oldsymbol{\sigma}^{ ext{fid}}$, $(y, p_T, oldsymbol{\phi}^*$			
$Z \rightarrow \mu \mu$	13	$5.1 { m fb^{-1}}$	$oldsymbol{\sigma}^{ ext{fid}}$, $(y, p_T, oldsymbol{\phi}^*$			

We mainly focus on (pseudo)rapidity distributions in this work.

Conclusion

CTEQ-TEA presentations at DIS'2023

- Toward a new generation of CT202X PDFs
 1.Impact of Drell-Yan data on post-CT18 g
 2. Constraints from *tt* production at LHC '
 3. Epistemic uncertainty quantification in P
 4. CT18 NNLO fitted charm PDFs [arXiv:2211.0]
- 5. Prospects for using lattice-QCD constraints
- 6. CTEQ-TEA NNLO predictions for high-energy
- 7. Simultaneous CTEQ-TEA extraction of PD
- 8. Small-x dynamics in CTEQ-TEA fits and Fo

Thank you for your attention!

global fits	Keping Xie	WG3
13 TeV	Marco Guzzi	WG1
PDF fits	P. Nadolsky	WG1
91387]	Tim Hobbs	WG1
s in the global PDF analysis	TJ. Hou	Plenary
ergy neutrino cross sections	Dan Stump	WG3
Fs and SMEFT contributions	Tim Hobbs	WG3
orward Physics Facility	Keping Xie	WG2

Simultaneous	fits
--------------	------

ID Experiment	Exporimont	ΛT	$\chi^2/N_{ m pt}$					
	¹ v _{pt}	CT18	CT18A	CT18As	ATLASpdf21	MSHT20	NNPDF4.0	
215	ATL5WZ	27	0.89	0.70	0.70	_	—	—
211	ATL8W	22	2.75	2.94	2.79	1.41	2.61	[3.50]
214	ATL8Z3D	188	1.14	1.13	1.17	1.13(184)	1.45(59)	1.22(60)
212	CMS13Z	12	2.45	2.02	1.73	_	_	—
216	LHCb8W	14	1.41	2.02	1.73	—	—	—
213	LHCb13Z	16	1.24	0.98	0.82	_	—	—
248	ATL7WZ	34	2.59	2.51	2.31	1.24(55)	1.91(61)	1.67(61)
Total	3994/3953/3	959 points	1.20	1.20	1.19		_	_

- The global fitted results can be deduced from the individual fits.

The tension between the ATL8W and ATL7WZ can be relaxed (but not completely resolved) with a more flexible strangeness parameterization.

• With CT18As, the impact on strangeness is minimal, but on $d(\overline{d})$ remains

