Recent progress on the molecular tetraquarks, pentaquarks and di-baryons

河北大学

第三届LHCb前沿物理研讨会

2023年4月16日

Outline

✓ Background : experimental observations

- $Z_c(3900), Z_c(4020), Z_b(10610), Z_b(10650)$
- $Z_{cs}(3985), Z_{cs}(4000)$
- $P_c(4312), P_c(4440), P_c(4457)$
- $P_{cs}(4459), P_{cs}(4338)$
- $X_{0,1}(2900), T_{cc}(3875)$ and $T_{cs}(2900)$

✓ Theoretical aspects:

- Molecular tetraquarks
- Molecular pentaquarks
- Molecular hexaquarks (dibaryons)

✓ Summary and outlook

Conventional and exotic hadrons

X(3872)

 $Z_{c}(3900)$

 $Z_{c}(4020)$

 $Z_h(10610)$

 $Z_{h}(10650)$

 $P_{c}(4312)$

 $P_{c}(4440)$

 $P_{c}(4457)$

.

Recent reviews:

- ✓H.-X. Chen et al, Phys. Rept. 639, 1 (2016)
- ✓ R. Lebed et al, Prog. Part. Nucl. Phys. 93, 143 (2017)
- ✓ A. Esposito et al, Phys. Rept. 668, 1(2017)
- ✓ F.-K. Guo et al, Rev. Mod. Phys. 90, 015004 (2018)
- ✓ Y.-R. Liu et al, Prog. Part. Nucl. Phys. 107, 237 (2019)
- N. Brambilla et al, Phys. Rept. 873, 1 (2020)
- ✓ S. Chen et al, Front. Phys. 18, 44601 (2023)
- H.-X. Chen et al, Rept. Prog. Phys. 86, 026201 (2023)
- ✓ **L. Meng** et al, arXiv:2204.08716

2023/4/16

• Charmonium energy region: $Z_c(3900)$ (Z_c) and $Z_c(4020)$ (Z'_c)

- **BESIII**: $e^+e^- \rightarrow J/\psi \pi^+\pi^-$ and $e^+e^- \rightarrow h_c \pi^+\pi^-$, respectively.
- Z_c(3900): subsequently confirmed by the Belle [Phys. Rev. Lett. 110, 252002] and Xiao *et al* [Phys. Lett. B 727, 366].

• Charmonium energy region: $Z_c(3900)$ and $Z_c(4020)$

• **BESIII**: $e^+e^- \rightarrow \overline{D}D^*\pi$ and $e^+e^- \rightarrow \overline{D}^*D^*\pi$, respectively. $Z_c(3900): I^G(J^{PC}) = 1^+(1^{+-})$ is measured $Z_c(4020): I^G(J^{PC}) = 1^+(1^{+-})$ is favored

• Bottomonium energy region: $Z_b(10610) (Z_b)$ and $Z_b(10650) (Z'_b)$

• Bottomonium energy region: $Z_b(10610)$ and $Z_b(10650)$

Belle: $e^+e^- \rightarrow \overline{B}B^*\pi$ and $e^+e^- \rightarrow \overline{B}^*B^*\pi$, respectively.

 $Z_b(10610)$: $I^G(J^{PC}) = 1^+(1^{+-})$ is measured $Z_b(10650)$: $I^G(J^{PC}) = 1^+(1^{+-})$ is measured

• Charmonium energy region: $P_c(4312)$, $P_c(4440)$, $P_c(4457)$ and P_{cs}

- A $P_c(4337)$ was also reported by the LHCb in $B_s^0 \rightarrow J/\psi p\bar{p}$ decay [Phys.Rev.Lett. 128 (2022) 062001].
- LHCb: the J^P quantum numbers of P_c s and $P_{cs}(4459)$ are undetermined yet, while $\frac{1}{2}^-$ is preferred for $P_{cs}(4338)$ with 90% CL.

 $X_{0,1}(2900), T_{cc}(3875)$ and $T_{c\bar{s}}(2900)$

 $B^+ \rightarrow D^+ D^- K^+$ *X*_{0.1}(2900) $T_{cc}(3875)$ LHCb 9 fb⁻¹ Candidates / $(17.3 \text{ MeV}/c^2)$ 60 F 35 30 LHCb 60 25 LHC (a) 50 F 20 50 (²-2) 40 40 3.874 3.876 $T^+_{cc} \rightarrow D^0 D^0 \pi^+$ Id/(500 30 F 30 (GeV c⁻² Background Total D*+D0 threshold 20 20 E D'0D+ threshold 10 10 F 0 3.5 3.87 2.5 3.88 3.9 3 3.80 (GeV c-2) $m_{D^0D^0\pi}$ $m(D^{-}K^{+})$ [GeV/ c^{2}] Nature Phys. 18 (2022) 7, 751-754 PhysRevD.102.112003

Possible combinations

• Sometimes, the K^* meson may be regarded as the heavy matter field to some extent ($m_{K^*} \sim m_N$). The $X_{0,1}(2900)$ [1, 2] and $T_{cs}(2900)$ [3] observed by the LHCb are very close to the \overline{D}^*K^* and D^*K^* thresholds, respectively.

[1] Phys. Rev. D 102 (2020) 112003 [2] Phys. Rev. Lett. 125 (2020) 242001 [3] arXiv: 2212.02716 [hep-ex] [4] arXiv: 2212.02717 [hep-ex]

X(3872) and its possible partners

In Refs. [J. Nieves *et al*, Phys.Rev.D 86 (2012) 056004; F-.K. Guo *et al*, Phys.Rev.D 88 (2013) 054007; V. Baru *et al*, Phys.Lett.B 763 (2016) 20-28], the heavy quark spin symmetry (HQSS) partners of X(3872) with the J^{PC} quantum numbers 2⁺⁺ was proposed.

1

SU(3)_F symmetry and HQSS for di-meson systems L. Meng, B. Wang, S-.L. Zhu, Sci.Bull. 66 (2021) 1288-1295

 $\begin{array}{ll} D_{s}^{(*)}-D^{(*)}\simeq 100 \; {\rm MeV}, \\ D_{(s)}^{*}-D_{(s)}\simeq 140 \; {\rm MeV}, \end{array} \qquad \qquad V_{q\bar{q}}=c_{1}+c_{2}\boldsymbol{s}_{1}\cdot\boldsymbol{s}_{2}+c_{3}\mathbb{C}_{2}+c_{4}(\boldsymbol{s}_{1}\cdot\boldsymbol{s}_{2})\mathbb{C}_{2} \end{array}$

 $m_{D^0} + m_{D^{*0}} - m_{X(3872)} = (0.00 \pm 0.18)$ MeV. It can be approximately regarded as a pure $D^0 \overline{D}^{*0} / \overline{D}^0 D^{*0}$ dimeson, then its flavor wave function in the light part will be $|\overline{u}u\rangle$.

$$\langle \mathbf{s}_{1} \cdot \mathbf{s}_{2} \rangle_{\{\mathbb{PP}, \mathbb{VV}\}}^{0^{++}} = \begin{bmatrix} \mathbf{0} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & -\frac{1}{2} \end{bmatrix},$$

$$\langle \mathbf{s}_{1} \cdot \mathbf{s}_{2} \rangle_{\{\mathbb{PV}, \mathbb{VV}\}}^{1^{+-}} = \begin{bmatrix} -\frac{1}{4} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{4} \end{bmatrix},$$

$$\langle \mathbf{s}_{1} \cdot \mathbf{s}_{2} \rangle_{\{\mathbb{PV}\}}^{1^{++}} = \frac{1}{4}, \quad \langle \mathbf{s}_{1} \cdot \mathbf{s}_{2} \rangle_{\{\mathbb{VV}\}}^{2^{++}} = \frac{1}{4}, \quad \langle \mathbf{s}_{1} \cdot \mathbf{s}_{2} \rangle_{\{\mathbb{VV}\}}^{2^{++}} = \frac{1}{4},$$

$$V_{q\bar{q}} = \tilde{c}_{1} + \tilde{c}_{2} \mathbf{s}_{1} \cdot \mathbf{s}_{2},$$

$$(V_{\mathbb{PV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{VV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}/\mathbb{VV}}^{1^{+-}} - V_{\mathbb{PP}}^{0^{++}}) = 1 : -2 : -1.$$

$$(V_{\mathbb{PV}}^{1^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{VV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}/\mathbb{VV}}^{1^{+-}} - V_{\mathbb{PP}}^{0^{++}}) = 1 : -2 : -1.$$

$$(V_{\mathbb{PV}}^{1^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{1^{+-}} - V_{\mathbb{PP}}^{0^{++}}) = 1 : -2 : -1.$$

$$(V_{\mathbb{PV}}^{1^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{1^{+-}} - V_{\mathbb{PP}}^{0^{++}}) = 1 : -2 : -1.$$

$$(V_{\mathbb{PV}}^{1^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) = 1 : -2 : -1.$$

$$(V_{\mathbb{PV}}^{1^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{1^{+-}} - V_{\mathbb{PP}}^{0^{++}}) = 1 : -2 : -1.$$

$$(V_{\mathbb{PV}}^{1^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{PV}}^{0^{++}} - V_{\mathbb{PP}}^{0^{++}}) : (V_{\mathbb{P}}^{0^{++}} - V_{\mathbb{P}}^{0^{++}}) : (V_{\mathbb{P}}^{0^{++}} - V_{\mathbb{P}}^{0^{++}}) : (V_{\mathbb{P}}^{0^{++}} - V_{\mathbb{P}}^{0^{++}}) : (V_{\mathbb{P}}^{0^{++}} - V_{\mathbb{P}}^{0^{++}}) : (V_{\mathbb{P}}^{0^{$$

X(3872) and its possible partners

Two prerequisites:

- The X(3872) is the molecular state with its mass coinciding exactly with the $\overline{D}_0^* D_0$ threshold;
- There exist the $\overline{D}_s D_s$ bound states with $J^{PC} = 0^{++}$.

The recent lattice QCD calculation yielded a shallow $[D_s \overline{D}_s]^{0^{++}}$ bound state with $\Delta E = -6.2^{+3.8}_{-2.0}$ MeV [JHEP 06 (2021) 035]

<i>X</i> (3872) _{input}	$\overline{D}_s D_s$] ⁰⁺⁺ input	$[\overline{D}_{s}^{*}D]$	$[s]^{0^{++}}$	$[\overline{D}_s^*D_s/\overline{D}]$	$\left[\bar{D}_s D_s^*\right]^{1^{+-}}$	$\left[\overline{D}_{s}^{*}D\right]$	* \$] ¹⁺⁻
ΔE (MeV)	ΔE (MeV)	M (MeV)	ΔE (MeV)	M (MeV)	ΔE (MeV)	M (MeV)	ΔE (MeV)	<i>M</i> (MeV)
0.0	-2.4	3934.3	-20.3	4204.1	-9.5	4071.0	-11.4	4213.0
0.0	-6.2	3930.5	-45.5	4178.9	-22.5	4058.0	-25.2	4199.2
0.0	-8.2	3928.5	-57.6	4166.8	-29.0	4051.5	-32.0	4192.4
0.0	-12.9	3923.8	-84.3	4140.1	-43.7	4036.8	-47.2	4177.2
-1.0	-2.4	3934.3	-8.3	4216.1	-4.9	4075.6	-6.3	4218.1
-1.0	-6.2	3930.5	-28.9	4195.5	-15.9	4064.6	-18.2	4206.2
-1.0	-8.2	3928.5	-39.6	4184.8	-21.7	4058.8	-24.4	4200.0
-1.0	-12.9	3923.8	-64.1	4160.3	-35.2	4045.3	-38.5	4185.9
Cutoff-I [49]	-13	3924	-84	4140	-46	4035	-47	4177
Cutoff-II [49]	-9	3928	-84	4140	-41	4040	-44	4180

$$T(p\prime,p;E) = V(p\prime,p) + \int rac{{
m d}^3 p\prime\prime}{{(2\pi)}^3} rac{V(p\prime,p\prime\prime)T(p\prime\prime,p;E)}{E-p^2/(2\mu)+i\epsilon},$$

[49] C. Hidalgo-Duque et al, Phys.Rev.D 87 (2013) 7, 076006.

T_{cc} and its decays

Table 1 | Parameters obtained from the fit to the $D^0D^0\pi^+$ mass spectrum: signal yield, *N*, BW mass relative to the $D^{+}D^0$ mass threshold, $\delta m_{\rm BW}$, and width, $\Gamma_{\rm BW}$. The uncertainties are statistical only

Parameter	Value
Ν	117 ± 16
$\delta m_{\scriptscriptstyle \mathrm{BW}}$	$-273 \pm 61 \text{keV} c^{-2}$
$arGamma_{BW}$	410 ± 165 keV

Nature Phys. 18 (2022) 7, 751-754

✓ Within the contact EFT [L. Meng *et al*, Phys.Rev.D 104 (2021), L051502]

isoscalar assignment for T_{cc} is supported!

The improved calculations for the DD^* interactions that based on the χ EFT up to N²LO was given in **B. Wang** *et al*, arXiv:2212.08447 [accepted by PRD]. Isospin violating decays of X(3872) was revisited in **L. Meng** *et al*, PhysRevD.104.094003 2023/4/16

$Z_{c,b}$ and their strange partners

B. Wang *et al*, PhysRevD.102.114019 **B. Wang** *et al*, PhysRevD.103.L021501

Poles in the second Riemann sheet

• Fitted parameters and predicted states

Strangne	States	Thresholds	$\tilde{C}_{\rm s}$ [GeV ⁻²]	$C_{\rm s} [{\rm GeV^{-4}}]$	$C_{\rm sd} \ [{\rm GeV^{-4}}]$	Λ [GeV]	$[m,\Gamma]$	pole	[m	$[e, \Gamma]_{expt}.$
	$\frac{1}{\sqrt{2}}[D\bar{D}^* + D^*\bar{D}]$	3875.8	$3.6^{+1.2}_{-1.2}$	$-76.9^{+6.2}_{-6.2}$	$1.1^{+5.8}_{-5.8}$	$0.33\substack{+0.024\\-0.024}$	$[3881.3^{+3.0}_{-3.0},$	$12.4^{+5.0}_{-5.0}]$	$[3881.7^{+2.3}_{-2.3}]$	$\overline{\frac{3}{3}, 26.6^{+3.0}_{-3.0}]}$
	$D^* \bar{D}^*$	4017.1	$4.0^{+1.6}_{-1.6}$	$-78.1_{-8.7}^{+8.7}$	$1.7^{+6.3}_{-6.3}$	$0.34^{+0.031}_{-0.031}$	$[4026.5^{+4.5}_{-4.5},$	$10.1^{+7.2}_{-7.2}$]	$[4025.5^{+3.7}_{-5.6}]$	$[\frac{7}{5}, 26.0^{+6.0}_{-6.0}]$
	$\frac{1}{\sqrt{2}}[B\bar{B}^*+B^*\bar{B}]$	10604.4	$2.2^{+0.2}_{-0.2}$	$-9.9^{+1.0}_{-1.0}$	$3.6^{+4.7}_{-4.7}$	$0.51^{+0.014}_{-0.014}$	$[10607.9^{+2.2}_{-2.2}]$	$, 10.9^{+3.0}_{-3.0}]$	$[10607.2^{+2.}_{-2.}]$	$^{.0}_{.0}, 18.4^{+2.4}_{-2.4}]$
	$B^*ar{B}^*$	10649.4	$2.2^{+0.3}_{-0.3}$	$-9.9^{+1.2}_{-1.2}$	$3.3_{-6.6}^{+6.6}$	$0.51\substack{+0.015\\-0.015}$	$[10652.8^{+2.7}_{-2.7}$	$, 10.9^{+3.4}_{-3.4}]$	$[10652.2^{+1.}_{-1.}]$	$[\frac{.5}{.5}, 11.5^{+2.2}_{-2.2}]$
	s=-1			$(m, \Gamma) =$	$(3982.4^{+4.8}_{-3.4}, 11)$	$(.8^{+5.5}_{-5.2})$ Me	V,			
Strangnes	Systems	$I(J^P)$	Threshole	ds (MeV)	Masses (Me	V) W	idths (MeV)	Δm (N	/IeV)	States
	$\frac{1}{\sqrt{2}}[\bar{D}_s^*D + \bar{D}_sD^*]$	$\frac{1}{2}(1^+)$	39	77.0	$3982.5^{+1.8}_{-2.6}\pm$	2.1 12	$2.8^{+5.3}_{-4.4}\pm 3.0$	$5.5^{+1.8}_{-2.6}$	± 2.1	$\overline{Z_{cs}(3985)^{\dagger}}$
	$ar{D}_s^*D^*$	$\frac{1}{2}(1^+)$	41	19.1	$4124.2^{+5.0}_{-3.7}$	5	$9.8^{+5.2}_{-4.8}$	5.1^{+}_{-}	-5.6 -3.7	Z _{cs} (4125)
	$rac{1}{\sqrt{2}}[B_s^*ar{B}+B_sar{B}^*]$	$\frac{1}{2}(1^+)$	106	94.7	$10701.9^{+3.}_{-2.}$.9 7	$7.4_{-4.4}^{+3.6}$	7.2^{+}_{-}	3.9 2.7	$\overline{Z_{bs}(10700})$
	$B_s^* \bar{B}^*$	$\frac{1}{2}(1^+)$	107	40.1	10747.0^{+4}_{-3}	.3 1	$7.3^{+3.7}_{-4.6}$	6.9^+	4.3 3.1	$Z_{bs}(10745)$

✓ New measurement from BESIII ($e^+e^- \rightarrow K^+D_s^{*-}D^{*0} + c.c$): Z'_{cs} , $m \sim 4123.5$ MeV, with a significance of 2.1 σ . Chin.Phys.C 47,033001 (2023).

 \checkmark Implications of $Z_{cs}(4000)$ and $Z_{cs}(3985)$ as two different states are given in Ref. [L. Meng *et al*, Sci.Bull. 66 (2021) 2065-2071].

P_cs and their strange partners

P_cs and their strange partners

• $\Xi_{c}^{(\prime,*)}\overline{D}^{(*)}$ systems

$XYZ: Q\overline{Q}q\overline{q}; \qquad P_c: Q\overline{Q}qqq.$

- 1. The **heavy quark core** plays an important role in stabilizing the exotic clusters [Phys. Rev. D 84, 014031, Phys. Rev. D 86, 014020, Eur. Phys. J. C 74, 3198].
- 2. Hydrogen molecule: two protons plus two electrons, stably exists in the nature.
- 3. Existence of $P_c \rightarrow$ more hadronic molecules in **SU(3) symmetry**?
- 4. Two heavy matter fields tend to form the bound states in the lowest isospin channels?

 $\begin{array}{l} \textbf{Deuteron} \ (I = 0, np \text{ molecule}) \\ \textbf{X(3872)} \ (I = 0, D\overline{D}^* \text{ molecule candidate}) \\ \textbf{P}_c \ \textbf{states} \ (I = \frac{1}{2}, \Sigma_c \overline{D}^{(*)} \text{ molecule candidates}) \end{array} \quad \textbf{observed} \\ \textbf{T}_{cc} \ \textbf{and} \ \textbf{T}_{bb} \ (I = 0, DD^* \text{ and } BB^* \text{ molecule candidates}) \end{array} \quad \textbf{predictions}$

- 5. Whether the $\Xi_{c}^{(\prime,*)}\overline{D}^{(*)}$ systems can form bound states in the I = 0 channels?
- 6. May be observed in $J/\psi\Lambda$ final states of the decays $\Lambda_b(\Xi_b) \rightarrow J/\psi\Lambda K(\eta)$?

P_cs and their strange partners

• <i>P_{cs}</i> spectra B. Wang <i>et al</i> , Phys. RevD. 101 .034018										
System	$[\Xi_c'ar D]_{1\over 2}$	$[\Xi_c^\prime ar{D}^*]_{rac{1}{2}}$	$[\Xi_c^\prime ar{D}^*]_{rac{3}{2}}$	$[\Xi_c^*ar D]_{rac{3}{2}}$	$[\Xi_c^*ar{D}^*]_{rac{1}{2}}$	$[\Xi_c^*ar{D}^*]_{rac{3}{2}}$	$[\Xi_{c}^{*}\bar{D}^{*}]_{\frac{5}{2}}^{\#}$	$[\Xi_c \bar{D}]_{rac{1}{2}}$	$[\Xi_c ar{D}^*]_{rac{1}{2}}$	$[\Xi_c ar{D}^*]_{rac{3}{2}}$
ΔE	$-18.5^{+6.4}_{-6.8}$	$-15.6^{+6.4}_{-7.2}$	$-2.0^{+1.8}_{-3.3}$	$-7.5^{+4.2}_{-5.3}$	$-17.0^{+6.7}_{-7.5}$	$-8.0^{+4.5}_{-5.6}$	$-0.7^{+0.7}_{-2.2}$	$-13.3^{+2.8}_{-3.0}$	$-17.8^{+3.2}_{-3.3}$	$-11.8^{+2.8}_{-3.0}$
Μ	$4423.7_{-6.8}^{+6.4}$	$4568.7^{+6.4}_{-7.2}$	$4582.3^{+1.8}_{-3.3}$	$4502.9^{+4.2}_{-5.3}$	$4635.4_{-7.5}^{+6.7}$	$4644.4_{-5.6}^{+4.5}$	$4651.7_{-2.2}^{+0.7}$	$4319.4_{-3.0}^{+2.8}$	$4456.9^{+3.2}_{-3.3}$	$4463.0_{-3.0}^{+2.8}$

- 1. Predicted ten P_{cs} states in the isoscalar channels.
- 2. Three new ones in $\Xi_c \overline{D}^{(*)}$ systems.

Taken from Science Bulletin 66 (2021) 1278-1287					
State	M_0 (MeV)	Γ_0 (MeV)			
$P_{cs}(4459)^0$	$4458.8 \pm 2.9^{+4.7}_{-1.1}$	$17.3 \pm 6.5^{+8.0}_{-5.7}$			

- 3. The new $[\Xi_c \overline{D}^*]_{1/2}$ state is VERY consistent with the newly LHCb result.
- What about the $\Lambda_c \overline{D}^{(*)}$ and other systems?
- 1. The $\Lambda_c \overline{D}^{(*)}$ systems: No isospin-isospin interaction, contact (repulsive)+TPE (couplechannel, attractive) $\simeq 0 \Rightarrow$ no bound states (estimation).
- 2. Other systems: $\Lambda_c \overline{D}_s^{(*)}$, $\Sigma_c \overline{D}_s^{(*)}$, $\Sigma_c^* \overline{D}_s^{(*)}$ (s = -1): attractive, but too weak to form bound states. $\Omega_c^{(*)} \overline{D}_s^{(*)}$ (s = -3): repulsive. It is hard to form bound states in these systems!

Doubly charmed *P*_{cc} states

From $\Sigma_c^{(*)}\overline{D}^{(*)}$ to $\Sigma_c^{(*)}D^*$ systems

The low energy constants of the $\Sigma_c^{(*)}D^*$ systems are estimated from the $N\overline{N}$ scattering data by introducing a quark level Lagrangian:

$\mathcal{L} = g$	$\eta_s \bar{q} S q +$	$-g_a \bar{q} \gamma_\mu$	$_{\iota}\gamma^{\flat}\mathcal{A}^{\mu}q,$
-------------------	------------------------	---------------------------	---

$$V_{q\bar{q}} = c_s(1 - 3\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + c_t(1 - 3\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2.$$
$$V_{\Sigma_c D^*} = 2c_s - 12c_s \mathbf{I}_1 \cdot \mathbf{I}_2 - \frac{4}{3}c_t \boldsymbol{\sigma} \cdot \boldsymbol{T} + 8c_t(\mathbf{I}_1 \cdot \mathbf{I}_2)(\boldsymbol{\sigma} \cdot \boldsymbol{T}).$$

 $[\Sigma_c D]_{\frac{1}{2}}$ $[\Sigma_c^*D]_{\frac{3}{2}}$ $[\Sigma_c D^*]_{\frac{1}{2}}$ $[\Sigma_{c}^{*}D^{*}]_{\frac{1}{2}}$ $[\Sigma_c^* D^*]_{\frac{3}{2}}$ $[\Sigma_c^*D^*]_{rac{5}{2}}$ $[\Sigma_c D^*]_{\frac{3}{2}}$ Case 1 BE (MeV) -15.4-25.0-31.8-8.0-32.8-18.2-3.51.91 R_{rms} (fm) 1.45 1.25 1.20 1.65 1.20 1.38 Case 2 BE (MeV) -31.3-42.9-30.3-31.7-26.6-25.4-29.71.23 1.22 1.26 1.27 1.22 R_{rms} (fm) 1.11 1.20 -22.2 Case 3 BE (MeV) -26.5-37.7 -29.1-25.0-26.4 -22.61.23 R_{rms} (fm) 1.27 1.14 1.27 1.26 1.31 1.30

All the $\Sigma_c^{(*)}D^*$ systems with isospin I = 1/2 can form bound states. In addition, we also investigate the interactions of the charmed-bottom $\Sigma_c^{(*)}\overline{B}^{(*)}, \Sigma_b^{(*)}D^{(*)}$ and $\Sigma_b^{(*)}\overline{B}^{(*)}$ systems. Among the obtained bound states, the bindings become deeper when the reduced masses of the corresponding systems are heavier.

More systems

Within the same framework, we also covered more systems

K. Chen <i>et al</i> ,	Eur.Phys.J.C 82	2 (2022) 7, 581	
Meson-meson	$[ar{D}ar{D}]_0^1$	$[\bar{D}\bar{D}^*]^{0,1}_1$	$[\bar{D}^*\bar{D}^*]^1_{0,2}$
	$[ar{D}^*ar{D}^*]^0_1$		
Baryon-meson	$[\Lambda_c ar{D}]_{rac{1}{2}}^{rac{1}{2}}$	$[\Lambda_c ar{D}^*]^{rac{1}{2}}_{rac{1}{2},rac{3}{2}}$	$[\Sigma_c ar{D}]_{rac{1}{2}}^{rac{1}{2},rac{3}{2}}$
	$[\Sigma_c ar{D}^*]^{rac{1}{2},rac{3}{2}}_{rac{1}{2},rac{3}{2}}$	$[\Sigma_{c}^{*}\bar{D}]_{rac{3}{2}}^{rac{1}{2},rac{3}{2}}$	$[\Sigma_c^*ar{D}^*]^{rac{1}{2},rac{3}{2}}_{rac{1}{2},rac{3}{2},rac{5}{2}}$
	$[\Xi_c \bar{D}]^{0,1}_{\frac{1}{2}}$	$[\Xi_c \bar{D}^*]^{0,1}_{\frac{1}{2},\frac{3}{2}}$	$[\Xi_c'\bar{D}]^{0,1}_{\frac{1}{2}}$
	$[\Xi_c' \bar{D}^*]^{0,1}_{\frac{1}{2},\frac{3}{2}}$	$[\Xi_c^* \bar{D}]^{0,1}_{\frac{3}{2}}$	$[\Xi_c^* \bar{D}^*]^{0,1}_{rac{1}{2},rac{3}{2},rac{5}{2}}$
Baryon-baryon	$[\Lambda_c \Lambda_c]_0^0$	$[\Lambda_c \Sigma_c]_{0,1}^1$	$[\Sigma_c \Sigma_c]_0^{0,2}$
	$[\Sigma_c \Sigma_c]_1^1$	$[\Lambda_c \Sigma_c^*]_{1,2}^1$	$[\Sigma_c \Sigma_c^*]_{1,2}^{0,1,2}$
	$[\Sigma_c^*\Sigma_c^*]_{1,3}^1$	$[\Sigma_{c}^{*}\Sigma_{c}^{*}]_{0,2}^{0,2}$	$[\Xi_c \Xi_c]_0^1$
	$[\Xi_c \Xi_c]_1^0$	$[\Xi_c \Xi_c']_{0,1}^{0,1}$	$[\Xi_c \Xi_c^*]_{1,2}^{0,1}$
	$[\Xi_c^\prime\Xi_c^\prime]_0^1$	$[\Xi_c'\Xi_c']_1^0$	$[\Xi_c'\Xi_c^*]^{0,1}_{1,2}$
	$[\Xi_{c}^{*}\Xi_{c}^{*}]_{1,3}^{0}$	$[\Xi_{c}^{*}\Xi_{c}^{*}]_{0,2}^{1}$	

	Mass (Expt.)	BE (Expt.)	Mass (Our)	BE (Our)
$T_{cc}(3875)^+$	3874.8	-1.0	$3874.5^{+1.7}_{-1.1}$	$-1.8^{+1.7}_{-1.1}$
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$-8.9^{+6.8}_{-0.9}$ (input)	$4311.9_{-2.8}^{+6.8}$	$-8.9^{+6.8}_{-2.8}$
$P_c(4380)^+$	$4380\pm8\pm29$	-6.2 ± 30.1	$4376.2_{-2.8}^{+6.9}$	$-9.1^{+6.9}_{-2.8}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$-21.8^{+4.3}_{-4.9}$ (input)	$4440.2^{+13.8}_{-5.3}$	$-21.8^{+13.8}_{-5.3}$
$P_c(4457)^+$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$-4.8^{+4.1}_{-1.8}$ (input)	$4457.3_{-1.9}^{+4.1}$	$-4.8^{+4.1}_{-1.9}$
$P_{cs}(4459)^0$	$4458.8 \pm 2.9^{+4.7}_{-1.1}$	$-19.7^{+5.5}_{-3.1}$	$4468.1_{-3.0}^{+7.3}$	$-10.0^{+7.3}_{-3.0}$

K. Chen et al, Phys.Rev.D 105 (2022) 9, 096004

М–М	DD D_sD_s	DD^* $D_sD_s^*$	$oldsymbol{D}^*oldsymbol{D}^*\ D^*_sD^*_s$	DD_s	$DD_s^* (D_s D^*)$	$D^*D^*_s$
В-М	$\begin{array}{c} \boldsymbol{\Lambda}_{c}\bar{\boldsymbol{D}}\\ \boldsymbol{\Lambda}_{c}\bar{\boldsymbol{D}}_{s}\\ \boldsymbol{\Xi}_{c}\bar{\boldsymbol{D}}\\ \boldsymbol{\Xi}_{c}\bar{\boldsymbol{D}}_{s}\\ \boldsymbol{\Omega}_{c}\bar{\boldsymbol{D}} \end{array}$	$\begin{array}{c} \boldsymbol{\Lambda}_{c}\bar{\boldsymbol{D}}^{*}\\ \boldsymbol{\Lambda}_{c}\bar{\boldsymbol{D}}^{*}_{s}\\ \boldsymbol{\Xi}_{c}\bar{\boldsymbol{D}}^{*}\\ \boldsymbol{\Xi}_{c}\bar{\boldsymbol{D}}^{*}_{s}\\ \boldsymbol{\Omega}_{c}\bar{\boldsymbol{D}}^{*}\end{array}$	$ \begin{split} \boldsymbol{\Sigma}_{c} \bar{\boldsymbol{D}} \\ \boldsymbol{\Sigma}_{c} \bar{\boldsymbol{D}}_{s} \\ \boldsymbol{\Xi}_{c}' \bar{\boldsymbol{D}} \\ \boldsymbol{\Xi}_{c}' \bar{\boldsymbol{D}}_{s} \\ \boldsymbol{\Omega}_{c} \bar{\boldsymbol{D}}_{s} \end{split} $	$ \begin{split} \boldsymbol{\Sigma}_{c} \boldsymbol{\bar{D}}^{*} \\ \boldsymbol{\Sigma}_{c} \boldsymbol{\bar{D}}^{*}_{s} \\ \boldsymbol{\Xi}_{c}^{\prime} \boldsymbol{\bar{D}}^{*} \\ \boldsymbol{\Xi}_{c}^{\prime} \boldsymbol{\bar{D}}^{*}_{s} \\ \boldsymbol{\Omega}_{c} \boldsymbol{\bar{D}}^{*}_{s} \end{split} $	$ \begin{split} \boldsymbol{\Sigma}^*_{\boldsymbol{c}} \bar{\boldsymbol{D}} \\ \boldsymbol{\Sigma}^*_{\boldsymbol{c}} \bar{\boldsymbol{D}}_{\boldsymbol{s}} \\ \boldsymbol{\Xi}^*_{\boldsymbol{c}} \bar{\boldsymbol{D}} \\ \boldsymbol{\Xi}^*_{\boldsymbol{c}} \bar{\boldsymbol{D}} \\ \boldsymbol{\Xi}^*_{\boldsymbol{c}} \bar{\boldsymbol{D}}_{\boldsymbol{s}} \end{split} $	$ \begin{split} \boldsymbol{\Sigma}_{c}^{*} \bar{\boldsymbol{D}}^{*} \\ \boldsymbol{\Sigma}_{c}^{*} \bar{\boldsymbol{D}}_{s}^{*} \\ \boldsymbol{\Xi}_{c}^{*} \bar{\boldsymbol{D}}^{*} \\ \boldsymbol{\Xi}_{c}^{*} \bar{\boldsymbol{D}}^{*} \\ \boldsymbol{\Xi}_{c}^{*} \bar{\boldsymbol{D}}_{s}^{*} \end{split} $
В-В	$ \begin{array}{l} \Lambda_c \Lambda_c \\ \Xi_c \Xi_c \\ \Lambda_c \Xi_c \\ \Sigma_c \Xi_c^* \\ \Xi_c \Omega_c \end{array} $	$ \begin{array}{l} \Lambda_c \Sigma_c \\ \Xi_c \Xi_c' \\ \Lambda_c \Xi_c^* \\ \Sigma_c \Omega_c \\ \Xi_c' \Omega_c \end{array} $	$\begin{array}{l} \Lambda_c \Sigma_c^* \\ \boldsymbol{\Xi}_c \boldsymbol{\Xi}_c^* \\ \Lambda_c \boldsymbol{\Xi}_c^* \\ \Sigma_c^* \boldsymbol{\Xi}_c \\ \boldsymbol{\Xi}_c^* \boldsymbol{\Omega}_c \end{array}$	$ \begin{split} \boldsymbol{\Sigma}_{c}\boldsymbol{\Sigma}_{c} \\ \boldsymbol{\Xi}_{c}^{\prime}\boldsymbol{\Xi}_{c}^{\prime} \\ \boldsymbol{\Lambda}_{c}\boldsymbol{\Omega}_{c} \\ \boldsymbol{\Sigma}_{c}^{*}\boldsymbol{\Xi}_{c}^{\prime} \\ \boldsymbol{\Xi}_{c}^{*}\boldsymbol{\Omega}_{c} \end{split} $	$ \begin{array}{c} \boldsymbol{\Sigma}_{c} \boldsymbol{\Sigma}_{c}^{*} \\ \boldsymbol{\Xi}_{c}^{\prime} \boldsymbol{\Xi}_{c}^{*} \\ \boldsymbol{\Sigma}_{c} \boldsymbol{\Xi}_{c} \\ \boldsymbol{\Sigma}_{c}^{*} \boldsymbol{\Xi}_{c}^{*} \\ \boldsymbol{\Omega}_{c} \boldsymbol{\Omega}_{c} \end{array} $	$ \begin{split} \boldsymbol{\Sigma}_c^* \boldsymbol{\Sigma}_c^* \\ \boldsymbol{\Xi}_c^* \boldsymbol{\Xi}_c^* \\ \boldsymbol{\Sigma}_c^* \boldsymbol{\Xi}_c^* \\ \boldsymbol{\Sigma}_c^* \boldsymbol{\Omega}_c^* \end{split} $

Lineshapes of the $P^{\Lambda}_{\psi s}(4338)^0$

 $T = V + VGT, G = \text{diag}\{G_1, G_2, G_3\}$

$$G_{i}(E) = \int_{0}^{\Lambda} \frac{l^{2}d^{2}l}{(2\pi)^{2}} \frac{\omega_{i1} + \omega_{i2}}{\omega_{i1}\omega_{i2}[E^{2} - (\omega_{i1} + \omega_{i2})^{2} + i\epsilon]}, \quad \omega_{ia} = \left(l^{2} + m_{ia}^{2}\right)^{1/2}.$$
 Analytical continuation: $G_{i} \to G_{i} + i\frac{k_{i}}{4\pi E}$

Dibaryons (molecular hexaquark)

A dibaryon is essentially a system with two baryons. There is one known dibaryon in naturedeuteron, another possible one is the $\Delta\Delta$ dibaryon- $d^*(2380)$ (**disputed**).

NB₀and NB₀₀systems

- ✓ The NY_c ($Y_c = \Sigma_c$, Λ_c) interactions are essential for understanding the in-medium properties of the charmed baryons. The experimental proposals at the J-PARC [arXiv:1706.07916] and GIS-FAIR [Prog. Part. Nucl. Phys. 66 (2011) 477–518] have stimulated many investigations on the NY_c interactions.
- ✓ In Refs. [Nucl. Phys. A 971 (2018) 113–129, PoS Hadron2017 (2018) 146], the HAL QCD Collaboration calculated the phase shifts of the $N\Lambda_c$ and $N\Sigma_c$ scatterings from lattice QCD at the unphysical pion mass $m_{\pi} = 410 570$ MeV.

✓ In Ref. [L. Meng *et al*, Eur. Phys. J. A 54 (9) (2018) 143], the authors predicted the bound states in the $N\Xi_{cc}$ and $\overline{N}\Xi_{cc}$ systems from the OBE model .

Dibaryons (molecular hexaquark)

$B_Q B_Q$ and $B_Q \overline{B}_Q$ systems

- ✓ In Ref. [N. Lee *et al*, PhysRevD.84.014031], the authors calculated the $\Lambda_c \Lambda_c(\overline{\Lambda}_c)$, $\Xi_c \Xi_c(\overline{\Xi}_c)$, $\Sigma_c \Sigma_c(\overline{\Sigma}_c)$, $\Xi_c' \Xi_c'(\overline{\Xi}_c')$, $\Omega_c \Omega_c(\overline{\Omega}_c)$ systems within the OBE model, they obtained: the H-dibaryonlike state $\Lambda_c \Lambda_c$ does not exist; there may exist loosely bound deuteronlike states for the other systems
- ✓ In Ref. [J-.B. Cheng *et al*, PhysRevD.107.054018], the authors investigated the double-charm and hidden-charm hexaquarks as molecules in complex scaling method with explicit three-body effect.
- ✓ In Ref. [J-.X. Lu *et al*, PhysRevD.99.074026], the authors found that the isoscalar $\Lambda_c \overline{\Lambda}_c$, $\Sigma_c^{(*)} \overline{\Sigma}_c^{(*)}$ and isovector $\Lambda_c \overline{\Sigma}_c^{(*)}$ as well as their doubly charmed and doubly bottom counterparts are good candidates of the molecular hexaquarks.
- ✓ In Ref. [X. Z. Ling *et al*, Eur. Phys. J. C (2021) 81:1090], the masses and strong decays of the $\Sigma_c^{(*)}\Sigma_c^{(*)}$ dibaryons were calculated.
- Calculations from other approaches, see [H. Huang *et al*, PhysRevC.89.035201; T. F. Carames *et al*, PhysRevD.92.034015; H. Garcilazo *et al*, Eur. Phys. J. C 80 (8) (2020) 720; Z. Liu *et al*, Phys.Rev.D 105 (2022) 3, 034006; X.-K. Dong *et al*, Commun. Theor. Phys. 73 (12) (2021) 125201; X.-K. Dong *et al*, Progr. Phys. 41 (2021) 65–93].

$B_{QQ}B_Q$ and $B_{QQ}\overline{B}_{QQ}$ systems

The $\Xi_{cc}^{(*)}[\overline{\Xi}_{cc}^{(*)}]$ can be related to the $\overline{D}^{(*)}[D^{(*)}]$ with the heavy diquark-antiquark symmetry (HDAS),

$$\Xi_{cc}^{(*)} \xrightarrow{\text{HDAS}} \overline{D}^{(*)} \qquad \overline{\Xi}_{cc}^{(*)} \xrightarrow{\text{HDAS}} D^{(*)}$$

Dibaryons (molecular hexaquark)

$B_{QQ}B_Q$ and $B_{QQ}\overline{B}_{QQ}$ systems

As a consequence of the HDAS, the $\Xi_{cc}^{(*)}D^{(*)}$, $\Xi_{cc}^{(*)}\Sigma_{c}^{(*)}$ and $\Xi_{cc}^{(*)}\overline{\Xi}_{cc}^{(*)}$ systems can be related to the $\overline{D}^{(*)}D^{(*)}$, $\overline{D}^{(*)}\Sigma_{c}^{(*)}$ and $\overline{D}^{(*)}D^{(*)}$ systems, respectively.

Thus, the existence of the molecular states in the $\overline{D}^{(*)}D^{(*)}$ and $\overline{D}^{(*)}\Sigma_c^{(*)}$ systems should also imply the existence of the molecular states in the $\Xi_{cc}^{(*)}D^{(*)}$, $\Xi_{cc}^{(*)}\Sigma_c^{(*)}$ and $\Xi_{cc}^{(*)}\overline{\Xi}_{cc}^{(*)}$ systems.

- ✓ In Ref. [B. Yang *et al*, Eur. Phys. J. A56 (2) (2020) 67], Yang et al investigated the possible bound states in the $\Xi_{cc}^{(*)}\Xi_{cc}^{(*)}(\overline{\Xi}_{cc}^{(*)})$ systems, and predicted the molecular candidates in the isoscalar and isovector channels.
- ✓ In Ref. [F.-K. Guo *et al*, PhysRevD.88.054014], the authors predicted the triply heavy pentaquarks with $I(J^P) = 0(3/2^-)$, $0(5/2^-)$ with the X(3872) as input, as well as the $1(1/2^-)$ and $1(3/2^-)$ ones with the $Z_b(10650)$ as input. see also R. Chen *et al*, PhysRevD.96.114030.
- ✓ In Ref. [Y.-W. Pan *et al*, PhysRevD.102.011504], the authors proposed an alternative way to determine the spins of the $P_c(4440)$ and $P_c(4457)$ from the spectrum of the , $\Xi_{cc}^{(*)} \Sigma_c^{(*)}$ systems with the help of lattice QCD.

B_{QQQ}B_{QQQ} systems

- ✓ Lattice: Phys. Rev. Lett.127.072003; Phys. Rev. Lett.130.111901
- Models: Chin. Phys. Lett. 38, 101201; Eur. Phys. J. C 82, 805; Int. J. Mod. Phys. A 37, 2250166; arXiv: 2207.05505; arXiv: 2208.03041

Summary and outlook

- 1. Many near-threshold states have been observed in experiments.
- 2. Their spectra and decays were intensively studied within various models.
- 3. Most of the nowadays observed exotic states have the same origin? —The dynamically generated resonances (bound states) from the analogue of nuclear forces in different sectors.
- 4. What forces govern the formations of these states—the "general nuclear forces"?
- 5. Weak(er) model-dependent approaches need to be developed.

