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Introduction

Lattice QCD is the most important theoretical method to solve the
strong interaction non-perturbatively from first principles. In recent,
some studies began to focus on the imaginary part distribution and
signal noise ratio (SNR) problems of lattice data [1–3]. This work gives
a mathematical description that can reasonably explain the lattice data,
and then gives a self-consistent SNR improvement scheme.

Real and imaginary parts distributions

In lattice studies, the meson two-point correlation function is one of the
most basic computations, which can be formally expressed as

C2(t,p) =
∑
x

e−ip·x⟨O(x, t)O†(0, 0)⟩ =
∑
n

|An|2e−Ent. (1)

To extract the distribution of real and imaginary parts, we use an en-
semble composed of 4000 pure gauge configurations with lattice size
163 × 192. By observing the real and imaginary parts distributions of
the boosted pseudoscalar two-point function (Fig. 1), we can learn
•The width of the real part distribution is much larger than that of the
imaginary part distribution when t is small. The real part distribution is
close to the imaginary part distribution when t is large.
•The imaginary part of the distribution is always close to a symmetric,
zero-centered normal distribution.
•When t is small, the correlation function is always positive and the
distribution has a lower bound of zero. The lower bound significantly
affects the shape of the distribution function, which is similar to log-
normal.
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Figure 1: The real-part (upper panel) and imaginary-part (lower panel)
distributions of the pseudoscalar two-point functions with p2 = 1 over
gauge configurations. From left to right, the figures are for t/at = 1, 30
and 90, respectively.

Statistical correlation

In order to explain the above distribution behavior of real and imaginary
parts of correlation function, we propose

R(x) =

∫
dyS(y − x)

[
I(y)K(Uy)

]
, (2)

where R, S and I are real part distribution, signal and imaginary part
distribution, respectively. K(Ux) is a kernel function associated with
the gauge field. And first, we assume K(Ux) is trivial, such that

R(x) = S(x)⊗ I(x). (3)

One self-consistent example of this assumption is the zero-momentum
pseudoscalar case, where the imaginary part is strictly zero and its
SNR does not decay with time [4].

From Eq. (3), one can prove that there should be a non-zero statistical
correlation between the real and imaginary parts

R(R, I) = C(R, I)/
√

V (R)V (I), (4)

where C denotes the covariance and V is the variance. However,
as shown by the blue dashed line in the left panel of Fig. 2, no sig-
nificant statistical correlation is found. So we abandon the assump-
tion of K(Ux) being trivial and propose instead K(Ux) = sgn(Ux),
where function sgn denotes a sign correction for different gauge sam-
ples. Specifically, this sign function changes the sign of the imaginary
parts to be the same as the sign of the mean of the real parts in
each jackknife ensemble. After this correction, as shown by the or-
ange line in the left panel of Fig. 2, significant statistical correlation
is observed. The non-triviality of such a sign correction can be in-
vestigated by adding random perturbations on the magnitude of the
imaginary parts. As shown in the right panel of Fig. 2, a small dis-
turbance makes the correlation vanish, which indicates that the sign
function is for the moment a good approximation of the kernel K(Ux).
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Figure 2: The statistical correlation between the real and imaginary
part for different cases.

Utilizing Eq. (2) and the correlation between the real and (corrected)
imaginary parts, the signal of the correlation function can be im-
proved. The variance improvement for different quantum numbers
and different momenta is about 60% as show in Fig. 3, indicating that
the correlation between the real and imaginary part distributions is
roughly independent of the specific form of the physical observables.

Figure 3: The variance improvement of two-point correlation func-
tions with different quantum numbers and momenta.

Conclusions and outlook

In this work, we propose a conjecture about the distribution of real
and imaginary parts as R(x) = S(x) ⊗

[
I(y)K(Uy)

]
. We find that

the kernel function K(Uy) can be chosen approximately as a sign
function, and thus the statistical variance of the two-point functions is
reduced to 60%. If we have more rigorous constraints on the kernel
function, we can further get stronger statistical correlation and more
effective error improvement. It is our ongoing work to further explore
the relationship between the real and imaginary parts of lattice data by
using machine learning, and to better understand the error of lattice
calculation.
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