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Introduction
Non-perturbative lattice gauge-fixing becomes unavoidable to extract information from gauge dependent

correlators [1]. It is also necessary in some non-perturbative renormalization schemes [2] which use gauge
dependent matrix elements to renormalize composite operators. In the standard formulation of lattice gauge
theories proposed by Wilson [3] the link Uµ(x) are the fundamental gauge fields of the theory, they are group
elements of SU(N) in the fundamental (N-dimensional) representation and they transform under a gauge
transformation g(x) as

U
g
µ(x) = g(x)Uµ(x)g

†(x + µ̂a). (1)

For Landau gauge on lattice, the discretized gauge condition is,

∆g(x) ≡
∑
µ

(Ag(x)− Ag(x− µ̂a)) = 0, Aµ(x) ≡
[
Uµ(x)− U

†
µ(x)

2ig0

]
Traceless

, (2)

g0 is the bare coupling constant. Non-perturbative gauge fixing is impossible to be perfect and imprecise gauge
fixing is unavoidable, so the effect of imprecise gauge fixing is necessary to be investigated. Recently, we find
that gauge dependent non-local measurements are much more sensitive to the precision of gauge fixing than
we expect, especially for long distance and small lattice spacing.

Simulation Setup
We use valence clover fermion on (2+ 1+1) flavor MILC gauge configurations on five ensembles [4]. The

parameters of the ensembles used are:

Tag 6/g2 L T a(fm) mw
q a csw

a12m310 3.60 24 64 0.1213(9) -0.0695 1.0509
a09m310 3.78 32 96 0.0882(7) -0.0514 1.0424
a06m310 4.03 48 144 0.0574(5) -0.0398 1.0349

a045m310 4.20 64 192 0.0425(5) -0.0365 1.0314
a03m310 4.37 96 288 0.0318(5) -0.0333 1.0287

We use the Coulomb wall source and pion external state in rest frame for 2pt and 3pt functions to im-
prove the signal. One step of HYP smearing is applied on the Wilson link to improve the signal. The off-shell
momentum for quark matrix element is set to be (px, py, pz, pt) = 2π

La(5, 5, 0, 0). And for the gluon propagator,
the momentum is selected by the condition

∑
µ p

4
µ/

(∑
µ p

2
µ

)2
< 0.260 for a09m310 and 0.251 for a045m310

to suppress the discretization error.

Result and Summary
The standard way of fixing the Landau gauges on the lattice [5, 6] is based on the numerical minimiza-

tion of a functional, its extrema g∗ are the gauge fixing transformation corresponding to the discretized gauge
condition

FU [g] = − 1

12V
Re Tr

∑
x

4∑
µ=1

U
g
µ(x),

δF

δg

∣∣∣∣
g∗

= 0. (3)

The precision of gauge fixing can be defined as the change of the functional per renewal step, and we call
it δF . Another one to estimate the precision, denoted by θ, is defined as folows,

θg ≡ 1

V

∑
x

θg(x) ≡ 1

V

∑
x

Tr[(∆g)†(x)(∆g)(x)]. (4)

The distribution of ∆(x) in Eq. 2 is symmetric for different precision and different ensembles. The tail
of the distribution will be longer as the precision becomes lower (note that the x axis is different for different
precision), but it does not show a strong dependence of lattice spacing. And it is hard for us to learn something
non-local by just look at ∆(x).

To extract some non-local information, we define a correlation function of gauge transformation as,

C1,0(z) =
1

3V

∑
x

Tr
[[
g1(x + z)g

†
0(x + z)

]†[
g1(x)g

†
0(x)

]]
. (5)

Typically, δF0 of gauge fixing 0 is small enough and gauge fixing 1 is not so precise. Then the ratio of the
gauge transformation will reveal the unphysical contribution from imprecise gauge fixing. And the correlation
of the ratio will help us to get more knowledge of the unphysical contribution in long distance.

We choose gauge fixing with δF = 10−8 as the denominator. The correlation C1,0 defined in Eq. 5
will decay faster as the gauge fixing becomes worse, the distance becomes longer and the lattice spacing be-
comes smaller. The effect of imprecise gauge fixing is more obvious in long distance and small lattice spacing.

To have a wider understanding of imprecise gauge fixing, we consider a longitudinal component related
to gluon propagator in momentum space:

Θ(p) ≡ 1

8V
Tr
[
(p · A(p))†(p · A(p))

]
. (6)

Our result shows that, in the region of large momentum and small momentum, Θ will deviate from zero
if the precision of gauge fixing is not so high, and the deviation is larger for finer lattice.

Now we focus on some more popular measurements. In RI/MOM scheme, we need to calculate quark
matrix element, which is gauge dependent. If we just concentrate on local operator, the difference between
δF = 10−7 and δF = 10−8 is negligible within uncertainty. But quasi-PDF operator is a non-local operator.
Wwith small lattice spacing in long distance, it should have a much stronger dependence of the precision of
gauge fixing. Wilson link is another non-local gauge dependent measurement. We try to use them to cancel
the linear divergence in hadron matrix element of quasi-PDF operator. Note that hadron matrix element is
gauge independent. Wilson link and quasi PDF operator are defined as follow,

Uµ(x, x + na) =

n−1∏
k=0

Uµ(x + kµ̂a), Wµ(z) =
1

3V
Tr
[∑

x

Uµ(x, x + z)
]
, OΓ(z) = ψ̄(0)ΓU(0, z)ψ(z). (7)

For quasi PDF, no matter it is renormalized by Wilson link (lower panel) or in RI/MOM scheme (upper
panel), the results with δF = 10−7 are not consistent between different lattice spacings. The discrepancy is
larger for finer lattice. And the discrepancy grows larger as the link becomes longer. But as the precision
becomes higher, such as δF = 10−8, the results show a convergent behavior which means linear divergence
has been eliminated. Although in short distance, the results between δF = 10−7 and δF = 10−8 are consistent
within error, the effect of imprecise gauge fixing will be huge in non-local case, especially for small lattice
spacing in long distance.
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