Variational ansatz inspired by Quantum imaginary time evolution

Xiaoyang Wang ${ }^{1}$ ，Yahui Chai²，Maria Demidik²，Xu Feng¹，Yibin Guo²，Karl Jansen²，Cenk Tüysüz² ${ }^{1}$ School of Physics，Peking University，Beijing，China ${ }^{2}$ Deutsches Elektronen－Synchrotron DESY，Zeuthen，German

Introduction：imaginary time evolution on quantum computers with unitary gates
Quantum imaginary time evolution（QITE）reads

$$
\frac{e^{-\Delta \tau H}}{\| e^{-\Delta \tau H}|\psi\rangle \|}|\psi\rangle=e^{i \Delta \tau \sum_{i} a_{i} \sigma_{i}}|\psi\rangle=\prod_{i} e^{i \Delta \tau a_{i} \sigma_{i}}|\psi\rangle+\mathcal{O}\left(\Delta \tau^{2}\right)
$$

Unitary gates $e^{i \Delta \tau a_{i} \sigma_{i}}$ can be realized using basic quantum gates．
In principle，the number of σ_{i} grows as 4^{n} ，which can not be extended to large－scale problems．

Fortunately，for finitely correlated systems and local interacting Hamiltonian，the number of σ_{i} can be reduced to a constant（See left

－QITE of a finitely correlated system

Method：Symmetry reductions of gates and optimize parameters variationally
［arXiv：2307．13598］
Use Twirling projection to solve symmetry constrains：
For example：
－Particle number preserving systems $[H, \hat{N}]=0$ ：

$$
\mathscr{T}(\sigma)=\int_{0}^{2 \pi} d \alpha e^{i \alpha \hat{N}} \sigma e^{-i \alpha \hat{N}}, \quad \hat{N}=\sum_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i}
$$

－Lattice gauge theory $\left[H, \hat{G}_{x}\right]=0$ ：
$\mathscr{T}(\sigma)=\int \mathscr{D} \alpha \prod_{x} e^{i \alpha_{x} \hat{G}_{x}} \sigma \prod_{x} e^{-i \alpha_{x} \hat{G}_{x}}, \hat{G}_{x}=\left(e \psi_{x}^{\dagger} \psi_{x}\right)+\hat{E}_{x}-\hat{E}_{x-1}$

－Number of gates reduced by symmetries
Numerics：Comparison to QAOA and study on Ising critical behavior
［PhysRevA．108．022612］

Two paths on Bloch sphere

