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Introduction: imaginary time evolution on quantum computers with unitary gates

Quantum imaginary time evolution (QITE) reads





Unitary gates  can be realized using basic quantum gates.


In principle, the number of  grows as , which can not be 
extended to large-scale problems.


Fortunately, for finitely correlated systems and local interacting 
Hamiltonian, the number of  can be reduced to a constant(See left 
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‣QITE of a finitely correlated system

Method: Symmetry reductions of gates and optimize parameters variationally       [arXiv:2307.13598]  

Use Twirling projection to solve symmetry constrains:

For example: 

• Particle number preserving systems :





• Lattice gauge theory :
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Numerics: Comparison to QAOA and study on Ising critical behavior              [PhysRevA.108.022612] 

‣ Two paths on Bloch sphere
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the quantum chemistry model [5]. So that Eq. (42) is
satisfied. Finally, by investigating transformation rela-
tion Eq. (43) for K operator, One can separate Pauli
strings into two sets: Pauli strings with an even number
of Pauli-Y letters, Peven, and Pauli strings with an odd
number of Pauli-Y letters, Podd. Entries of c(TR) matrix
are di↵erent for these two sets

c(TR)
ij

=

⇢
�i,j , �i 2 Peven;

��i,j , �i 2 Podd.
(60)

Combining this matrix with Eq. (47), where ⇠ = �1 for
the anti-unitary operator, we conclude that only Pauli
strings with an odd number of Pauli-Y letters should be
involved in the ansätze. This is consistent with intuitions
because we use unitary transformation e�i✓� to simulate
imaginary time propagator e�⌧H . The imaginary time
propagator is purely real if all the entries in the Hamil-
tonian are real. So we need an odd number of Pauli-Y
letters to make the Pauli string � purely imaginary.

Ansätze carrying out imaginary time evolution for sys-
tems with additional TR symmetry can be further sim-
plified. The example for the Ising system possessing both
Z2 and TR symmetries has been given in subsection IIC.
The ansätze for the one-body interaction term ti,i+1 can
be further simplified, as shown in Table I.

V. NUMERICAL RESULTS

In this section, we carry out the VarQITE algorithm on
the ansätze preserving symmetries for the Potts, clock,
and ZQ gauge model. The Hamiltonians of these mod-
els are introduced in subsection IIIA. We choose
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state defined in Eq. (51) as the initial state. This ini-
tial state preserves all the permutation transformation
between computational basis. Thus, it is invariant to the
symmetry transformation in global SQ, global ZQ and
local ZQ group and the requirement of Eq. (42) is sat-
isfied. Additionally, the thermal expectation values of
these statistical models can be derived directly using the
imaginary time evolution of
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as explained in the following.
The thermal expectation value for an observable O is

defined by

hOi� ⌘
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�
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where Z is the partition function of the thermal system
and � is the inverse temperature. In Ref. [19], the au-
thors show that the thermal expectation value can be
calculated with the expectation value of
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Figure 2: (a) The number of relevant Pauli exponen-
tials reduced by TR and Internal + TR symmetry for
di↵erent statistical models. The model is labelled by
their corresponding internal symmetry in the x-axis,
i.e., global S4: 4-state Potts model, global Z2: Ising
model, global Z4: 4-state clock model, local Z2: Z2

gauge model, local Z4: Z4 gauge model. The y-axis
is in the log scale.(b) Comparison of the number of
CNOT gates by compiling the relevant Pauli exponen-
tials using two compilation strategies: Naive decompo-
sition and Set synthesis. The complied Pauli exponen-
tials have been reduced by Internal + TR symmetry.
The y-axis is in the log scale.

with the inverse temperature � = 2⌧ .

Table II presents Pauli exponentials satisfying the sym-
metry constraints of the statistical models for the cor-
responding local interaction terms. In the ansätze, we
discard Pauli exponentials whose expansion coe�cients
ai = 0 and assign each remaining Pauli exponential a
free variational parameter. We call the remaining Paulis
exponentials (strings) as the relevant Pauli exponentials
(strings). The number of relevant Pauli exponentials
characterizes the depth and degree of freedom of the
ansätze. In Figure 2a, we compare the number of rel-
evant Pauli exponentials for one local interaction term
of di↵erent models before and after the symmetry re-
ductions. The models we considered possess global S4,

‣ Number of gates reduced by symmetries


