Generation of relative lattice energy spectrum using *KK** **operators** Jia-Jun Xie, Yu Lu, Jia-Jun Wu, Ross D. Young, James M. Zanotti

Introduction

LHCb collaboration recently report a doubly charmed tetraquark T_{cc}^+ in the $D^0D^0\pi^+$ mass spectrum, which is closed to threshold of $D^0D^{*+}[1]$. One explanation for T_{cc}^+ is a DD^* molecular state. The isospin breaking effect requires a resonance $T_{cc}^{'+}$ between the D^0D^{*+} and D^+D^{*0} mass thresholds [2]. The existence of T_{cc}^+ and $T_{cc}^{'+}$ two states is directly related to the form of DD^* intercation. So we want to check the sign of the intercation of DD^* via the LQCD energy level. Here, due to limitations in data accuracy, we first construct the KK^* operator by dummbell method[3], which is quiet similiar to the DD^* operator, and we obtain different energy levels of different irreducible representations. And this work will be helpful for our latter research of DD^* state.

FORMALISM

Base state for *KK**

 $\ket{\Phi_{\mu R}(\boldsymbol{x})}=\ket{\Phi_{\mu}(R^{-1}\boldsymbol{x})}$

Representation matrix of the base state

$$\hat{P}_{R} | \Phi_{\mu R'}(oldsymbol{x})
angle = \sum_{\mu' R''} \; \left| \Phi_{\mu' R''}(oldsymbol{x})
ight
angle \delta_{RR',R''} \Lambda_{\mu' \mu}(R) \; .$$

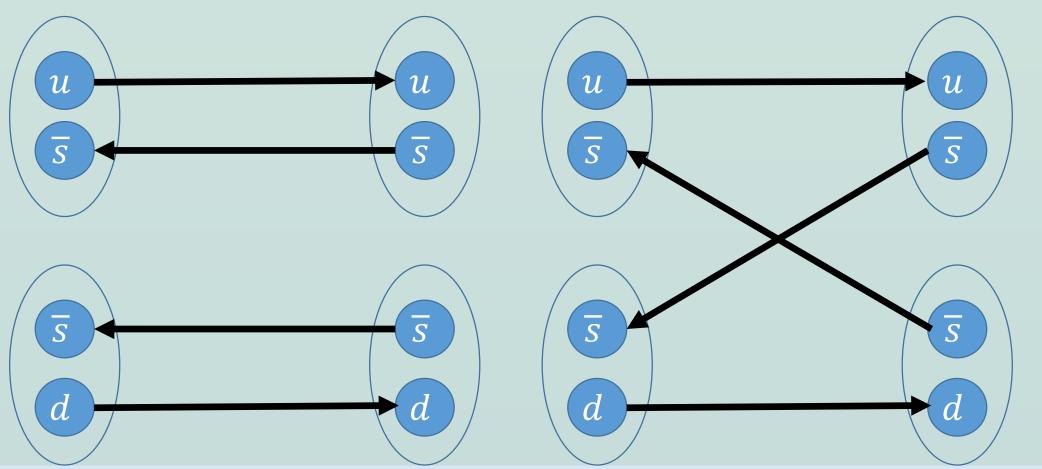
where $\delta_{RR',R''}$ refers to a regular representation, $\Lambda_{\mu'\mu'}$ refers to an irreducible

Correlation function of $\Phi_{\mu i \Gamma n}$ and $\Psi_{i \Gamma n}$

$$\sum_{i} \langle \Phi_{\mu i \Gamma n}(oldsymbol{y}) | \hat{O} | \Phi_{\mu' i \Gamma n'}(oldsymbol{x})
angle = \sum_{i ilde{R}m l au \lambda} ar{\Gamma}^*_{l,m}(ilde{R}) \langle \Phi_{ au ilde{R}} | \hat{O} | \Phi_{\lambda I}
angle \sum_{R'} \Lambda_{\mu au}(R') \Lambda_{\mu' \lambda}(R') ar{\Gamma}^*_{n,l}(R') ar{\Gamma}^*_{n',m}(R')$$

Here, we project the $\Phi_{\mu R}$ to the $\Phi_{\mu i \Gamma n}$,then by using the transition matrix we can obtain the correlation function of $\Psi_{i\Gamma n}$.

$$\langle \Psi_{\tilde{\Gamma}'m'}(\boldsymbol{y})|\hat{O}|\Psi_{\tilde{\Gamma}m}(\boldsymbol{x})
angle = \sum_{\mu'n'}\sum_{\mu i \,\Gamma n}S_{\mu'\Gamma n',\tilde{\Gamma}'m'}\langle \Phi_{\mu'i'\Gamma n'}(\boldsymbol{y})|\hat{O}|\Phi_{\mu i \,\Gamma n}(\boldsymbol{x})
angle S_{\mu\Gamma n,\tilde{\Gamma}m}$$

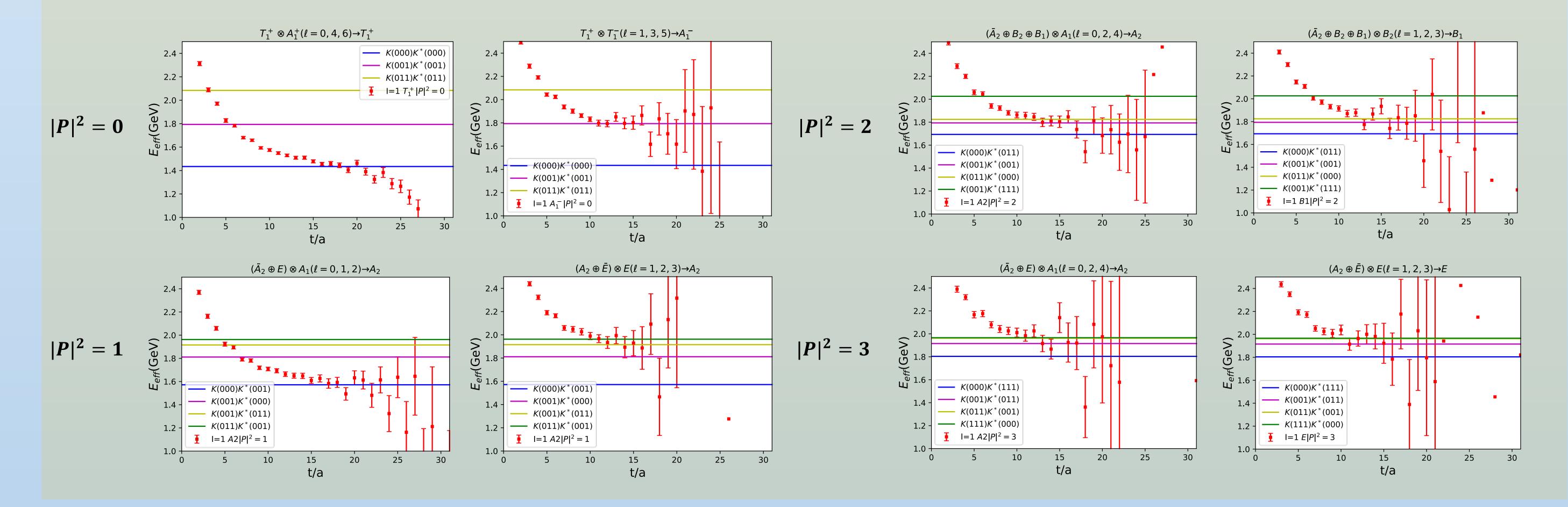

representation T_1^+ of O_h group. So the total representation is the direct product of T_1^+ and the regular representation

Projection to the irreducible representation

 $\ket{\Phi_{\mu R}(\boldsymbol{x})} \Rightarrow \ket{\Phi_{\mu i \, \Gamma n}(\boldsymbol{x})} \Rightarrow \ket{\Psi_{i \, \Gamma n}(\boldsymbol{x})}$

Here $\Phi_{\mu i\Gamma n}$ refers to the direct product of $\Lambda_{\mu'\mu}$ and an irreducible representation of the regular representation, $\Psi_{i\Gamma n}$ refers to an irreducible representation of the direct product of $\Lambda_{\mu'\mu}$ and the regular representation.

Wick contraction



Main Result

Lattice setup

$L^3 \times T$	a(fm)	к(u,d)	к (s)	N _{cfg}	m_{π} (MeV)	m_K (MeV)	m_{K^*} (MeV)	N _{tsrc}
32 ³ × 64	0.074	0.12104	0.12062	700	362.1(0.5)	506.6(1.6)	928(11)	16

Spectra

Summary

• The energy levels of distinct irreducible representation are separated clearly.

•As excepted, the results belonging to the irreducible representation A_1^+ of the regular representation are generally cleaner statistically, nevertheless the signal quality degrades for the irreducible representation corresponding to the resolution of higher-

Reference: [1] R. Aaij et al. (LHCb), Nature Phys. 18, 751 (2022),arXiv:2109.01038 [hep-ex].
[2] Chen, Rui and Huang, Qi and Liu, Xiang and Zhu, Shi-Lin, Phys. Rev. D 104, 114042[arXiv:2108.01911[hep-ph]]
[3] Wu, Jia-Jun and Kamleh, Waseem and Leinweber, Derek B. and Li, Yan and Schierholz, Gerrit and Young, Ross D. and Zanotti, James M,Phys.Rev.D 105.074506[arXiv:2109.01557[hep-lat]]

