

Selected results from the BESIII experiment

Xiao-Rui Lyu (吕晓睿) University of Chinese Academy of Sciences (UCAS) (On behalf of the BESIII collaboration)

Outline

- Introduction
- Selected recent results
- **Prospects for the future**
- Summary

Beijing Electron Positron Collider (BEPCII)

beam energy: 1.0 – 2.3(2.45) GeV

2020: energy upgrade to 2.45 GeV & top-up mode 2004: started BEPCII upgrade, BESIII construction 2008: test run 2009 - now: BESIII physics run

LINAC

• 1989-2004 (BEPC):

 L_{peak} =1.0x10³¹ /cm²s

• 2009-now (BEPCII):

 L_{peak} = 1.0 x10³³/cm²(4/5/2016)

BESIII

detector

BESIII data sample

2009: 106M $\psi(2S)$ 225M J/w **2010**: 975 pb⁻¹ at $\psi(3770)$ **2011**: 2.9 fb⁻¹ (total) at $\psi(3770)$ 482 pb⁻¹ at 4.01 GeV **2012**: 0.45B (total) $\psi(2S)$ 1.3B (total) J/ψ **2013**: 1092 pb⁻¹ at 4.23 GeV 826 pb⁻¹ at 4.26 GeV 540 pb⁻¹ at 4.36 GeV $10 \times 50 \text{ pb}^{-1} \text{ scan } 3.81 - 4.42 \text{ GeV}$ 2014: 1029 pb⁻¹ at 4.42 GeV 110 pb⁻¹ at 4.47 GeV 110 pb⁻¹ at 4.53 GeV 48 pb-1 at 4.575 GeV 567 pb⁻¹ at 4.6 GeV 0.8 fb⁻¹ R-scan 3.85 - 4.59 GeV **2015**: R-scan 2 - 3 GeV + 2.175 GeV **2016**: \sim 3fb⁻¹ at 4.18 GeV (for D_s) **2017**: $7 \times 500 \text{ pb}^{-1} \text{ scan } 4.19 - 4.27 \text{ GeV}$ **2018**: more J/ψ (and tuning new RF cavity) **2019**: 10B (total) J/\u03c6 $8 \times 500 \text{ pb}^{-1} \text{ scan } 4.13, 4.16, 4.29 - 4.44 \text{ GeV}$ 2020: 3.8 fb⁻¹ scan 4.61-4.7 GeV **2021**: 2 fb⁻¹ scan **4.74-4.95 GeV**; 2.55B ψ (2S) **2022**: 5.1 fb⁻¹ at $\psi(3770)$ **2023**: ~8.1 fb⁻¹ will be taken at $\psi(3770)$

46.58 • Total lum. Total lum. Total lum. 46.58 • Total lum. 7.48 Before 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 Year

BESIII integrated luminosity

Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D₀-D₀ mixing
- Charm baryons

Precision measurement

Unique data sets near thresholds

e⁺e⁻ symmetric collision: energy scan data sets at open charm thresholds and hyperon pairs

3.773 GeV, ~16 fb⁻¹, $D\overline{D}$ 4.008 GeV, 0.48 fb⁻¹, $D_s\overline{D}_s$ 4.18-4.23 GeV, 6.32 fb⁻¹, $D_s\overline{D}_s^*$ 4.6-4.95 GeV, 6.4 fb⁻¹, $\Lambda_c\overline{\Lambda}_c$

-qd) tp BESIII 2015 BESIII 2012 **BESIII 2014** BESIII 2011 10⁵ ------ BES (1999 + 2004) SND (2011 + 2012) FENICE (1991 + 1993) --- DM2 (1984) 10 10^{3} 10^{2} 10 10-1 2.5 2 3.5 (GeV/c) Energy scan in 2014-2015 at

Meson and Baryon pair-productions near thresholds: form-factors in the time-like production, precision branching fractions, relative phase;

- Quantum-entangled pair productions of charmed mesons
- > Hyperon and charmed baryon spin polarization in quantum entangled productions;

BESIII advantage: unique data near to the thresholds

Charm hadron decays

COMPLEXITY cd(s) d (s) $\Gamma(D^+_{(\mathrm{s})} o \ell^+
u_\ell) = rac{G_F^2 f_{D^+_{(\mathrm{s})}}^2}{8\pi} |V_{cd(\mathrm{s})}|^2 m_\ell^2 m_{D^+_{(\mathrm{s})}} \left(1 - rac{m_\ell^2}{m_{D^+_{\mathrm{s}}}^2}
ight)^2$ $f_+(q^2)$ Semi Leptonic **Purely Leptonic** Hadronic Take V_{cx} from fits to CKM Similar to leptonic decay but now Models of hadronic decay assuming unitarity and measure f q (= four-momentum of W) Isospin SU(3) flavour dependent Different amplitudes T, P, A, E Precise test of lattice QCD in charm and extrapolate to beauty Test QCD models of the form Long and short distance effects factor

Hereision measurement of CKM elements -- Test EW theory

CKM matrix elements are fundamental SM parameters that describe the mixing of quark fields due to weak interaction.

- Precision measurement of CKM matrix elements
- A precise test of SM model
- New physics beyond SM?

• Highest precision for f_{D^+} in single decay mode: $D^+ \to \mu^+ \nu_{\mu}$: 2.7% (2.93 fb⁻¹) \to 1.8% (7.9 fb⁻¹) \to 1.3% (20 fb⁻¹)

• Highest precision for $f_{D_s^+}$: 1.3% (7.33 fb⁻¹ $D_s^+ \rightarrow \mu^+ \nu_\mu$) \rightarrow 0.9% (Combine all $D_s^+ \rightarrow \ell^+ \nu_\ell$)

吕晓睿

- LQCD has repaid improvement on precisions
 - Systematics on from factors at BESIII will be dominant and crucial for further 20/fb charm data

Energy-dependent form factors

data: BESIII, PRD 92, 072012 (2015)] LQCD: PRD 107, 094516 (2023)

amazing agreement

Energy-dependent form factors

data: BESIII, arXiv:2306.05194, arXiv:2307.12852 LCSR: JHEP11, 138 (2015)

More form factors

Chain	Ref.	$rac{{\it L}/{\it E}_{ m cm}}{({ m fb}^{-1}/{ m GeV})}$	BF(%)	FF	
$D^0 ightarrow K^{*-} e^+ u_e$	PRD99,0111003	2.93/3.773	$1.434 \pm 0.029 \pm 0.032$	$r_V = 1.46 \pm 0.07 \pm 0.02$ $r_2 = 0.67 \pm 0.06 \pm 0.01$	
$D^+ ightarrow ar{K}^{*0} e^+ u_e$	PRD94,032001	2.93/3.773	$3.77 \pm 0.03 \pm 0.08$	$r_V = 1.411 \pm 0.058 \pm 0.007$ $r_2 = 0.788 \pm 0.042 \pm 0.008$	
$D ightarrow ho e^+ u_e$	PRL122,062001	2.93/3.773	$D^0: 0.1445 \pm 0.0058 \pm 0.0039 \ D^+: 0.1860 \pm 0.0070 \pm 0.0061$	$r_V = 1.695 \pm 0.083 \pm 0.051$ $r_2 = 0.845 \pm 0.056 \pm 0.039$	
$D^0 o ho^- \mu^+ u_\mu$	$\rightarrow \rho^{-}\mu^{+}\nu_{\mu}$ PRD104,L091103 2.93/3.773		$0.135 \pm 0.009 \pm 0.009$	-	
$D^+ ightarrow \omega e^+ u_e$	$\rightarrow \omega e^+ \nu_e$ PRD92,071101 2.93/3		$0.163 \pm 0.011 \pm 0.008$	$r_V = 1.24 \pm 0.09 \pm 0.06$ $r_2 = 1.06 \pm 0.15 \pm 0.05$	
$D^+ o \omega \mu^+ u_\mu$	PRD101,072005	2.93/3.773	$0.177 \pm 0.018 \pm 0.011$	_	
$D_s^+ ightarrow K^{*0} e^+ u_e$	$D_s^+ \rightarrow K^{*0} e^+ \nu_e$ PRL122,061801		$0.237 \pm 0.026 \pm 0.020$	$r_V = 1.67 \pm 0.34 \pm 0.16$ $r_2 = 0.77 \pm 0.28 \pm 0.07$	
$D_s^+ o \phi e^+ u_e$	PRD97,012006	0.482/4.009	$2.26 \pm 0.45 \pm 0.09$	-	
$D_s^+ o \phi \mu^+ u_\mu$	$\rightarrow \phi \mu^+ \nu_\mu$ arXiv:2307.03024 7.33/4.128-4.226		$2.25 \pm 0.09 \pm 0.07$	$r_V = 1.58 \pm 0.17 \pm 0.02$ $r_2 = 0.71 \pm 0.14 \pm 0.02$	

- Precisions will be improved much with future 20/fb $\psi(3770)$ data
- LQCD calculations are desired.

Measurement of |Vcs| and |Vcd|

SM global fit HFLAV21	PDG(2022) PRD(2023) 107,	052008	0.22486±0.00067 0.2208±0.0040			
HPQCD ETM(2+1+1)	PRD84(2011)11 PRD96(2017)05	4505,π ^{0(·)} Ι⁺ν _ι 4514,π ^{0(·)} Ι⁺ν _ι	0.225±0.06±0.10 0.2330±0.0137±0.0067	┝─── ++		
CLEO	PRD80(2015)03	2005,π ^{0(·)} e⁺ν _e	0.2381±0.0066±0.0025	м		
BESIII	PRD92(2015)07	2012, π' e ⁺ ν _e	0.2278±0.0034±0.0023	+		
BESIII	PRD96(2017)01	2002,π⁰e⁺ν _e	0.2243±0.0058±0.0026	м		
BESIII	PRD97(2018)09	2009,ηe⁺ν _e	0.2264±0.0338±0.0318			
BESIII	PRL124(2020)23	31801,ղ μ *ν _µ	0.242±0.041±0.034			
BESIII	PRL124(2019)00	61801,Κ ^{0*} ν _μ	0.217±0.026±0.004	H		
BESIII	PRD89(2014)05	1104,μ*ν _μ	0.2165±0.0055±0.0020	•		
BESIII	PRL123(2019)2	11802, TV	0.238±0.024±0.012	, <mark>∣⊳</mark> 4		
0.6	-0.4	-0.2	0	0.2		
V _{cd}						

Semileptonic $D_{(s)}$ decay

CKMFitter HFLAV21	PTEP2022(2022)083C01 PRD107(2023)052008	0.97349±0.00016 0.9701±0.0081	
HPQCD ETM(2+1+1)	PRD104(2021)034505 PRD96(2017)054514	0.9663±0.0079 • 0.945±0.38 •	
CLEO BESIII BESIII BESIII BESIII	PRD80(2015)032005, Ke ⁺ v PRD92(2015)112008, K ⁰ e ⁺ PRD96(2017)012002, K ⁰ e ⁺ PRD92(2015)072012, K ⁰ e ⁺ v PRL122(2019)011804, K ¹ u ⁺ v	0.9648±0.0090±0.078 0.977±0.008±0.016 0.946±0.005±0.016 0.9624±0.0034±0.0062 0.9572±0.0050±0.0057	
BESIII BESIII BESIII BESIII BESIII	PRL122(2019)121801, ηe [*] ν _e arxiv:2306.05194, ηe [*] ν _e arxiv:2307.12852, ημ [*] ν _μ PRL122(2019)121801, η'e [*] ν arxiv:2306.05194, η'e [*] ν _e arxiv:2307.12852, η'μ [*] ν _μ	0.900±0.020±0.057 0.913±0.014±0.057 0.911±0.020±0.057 0.903±0.060±0.077 0.941±0.044±0.081 0.907±0.067±0.078	
	-1 -0.5	0 0.5 1	

	Le	p	to	ni	ic	D	+ s	d	ec	ay	1
_					_	_					_

CKMFitter	PTEP2022(2022)083C01	0.97349+0.00016	
HFLAV21	PRD107(2023)052008	0.9701±0.0081	
CLEO	PRD79(2009)052002, τ _e ν	0.981±0.044±0.021	-
CLEO	PRD80(2009)112004, τ _ρ ν	1.001±0.052±0.019	
CLEO	PRD79(2009)052001 , $\tau_{\pi} v$	1.079±0.068±0.016	++
BaBar	PRD82(2010)091103 , $\tau_{e,\mu}v$	0.953±0.033±0.047	H++
Belle	JHEP09(2013)139, $\tau_{e,u,\pi}v$	$1.017 \pm 0.019 \pm 0.028$	-
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, τ _π ν	0.972±0.023±0.016	
BESIII 6.32 fb ⁻¹	PRD104(2021)032001, τ _ρ ν	$0.980 \pm 0.023 \pm 0.019$	-
BESIII 6.32 fb ⁻¹	PRL127(2021)171801, τ _e ν	$0.978 \pm 0.009 \pm 0.012$	+
BESIII 7.33 fb ⁻¹	arXiv:2303.12600[hep-ex], τ _π ν	0.993±0.016±0.013	H
BESIII 7.33 fb ⁻¹	arXiv:2303.12468[hep-ex], $\tau_{\mu}\nu$	$0.987 \pm 0.016 \pm 0.014$	•
CLEO	PRD79(2009)052001, μν	1.000±0.040±0.016	
BaBar	PRD82(2010)091103, µv	1.032±0.033±0.029	
Belle	JHEP09(2013)139, μν	0.969±0.026±0.019	
BESIII 0.482 fb ⁻¹	PRD94(2016)072004, µv	0.956±0.069±0.020	
BESIII 3.19 fb ⁻¹	PRL122(2019)071802, μν	0.985±0.014±0.014	-
BESIII 6.32 fb ⁻¹	PRD104(2021)052009, µv	0.973±0.012±0.015	
BESIII 7.33 fb ⁻¹	arXiv:2307.14585[hep-ex], μν	$0.968 \pm 0.010 \pm 0.009$	1
BESIII Combined	τv	0.9831±0.0068±0.0080	
BESIII Combined	τν + μν	0.9774±0.0056±0.0072	•

- Great precision improvement due to LQCD form factors
- No sign of conflicts between direct measurement and indirect fit

Study on $D_s^{*+} \rightarrow e^+ \nu$

arXiv:2304.12159

• Branching fraction is determined to be $(2.1^{+1.2}_{-0.9} \pm 0.2_{\text{syst.}}) \times 10^{-5}$

an avenue to study the weak decays of vector charmed mesons in experiment

 $B(\Lambda_{\rm c}^+ \to \Lambda e^+ \nu_e) = (3.56 \pm 0.11 \pm 0.07)\%$

Observation of $\Lambda_c^+ \rightarrow p K^- e^+ \nu$

PRD106, 112010 (2022)

$$\begin{split} B(\Lambda_c^+ \to pK^-e^+\nu) &= (0.88 \pm 0.17 \pm 0.07) \times 10^{-3} \\ B(\Lambda_c^+ \to \Lambda(1405)e^+\nu) &= (1.69 \pm 0.76 \pm 0.16) \times 10^{-3} \\ B(\Lambda_c^+ \to \Lambda(1520)e^+\nu) &= (0.99 \pm 0.51 \pm 0.10) \times 10^{-3} \end{split}$$

- Second leptonic decay of Λ_c^+ is observed!
- Good channel to study Λ excited states, such as $\Lambda(1405)$ and $\Lambda(1520)$

First direct comparisons on the differential decay rates and form factors with LQCD calculations [PRL118, 082001 (2017)] 容格点QCD2023年会

EXAMPLE SIME Combined form factor fits to $\Lambda_c^+ \to \Lambda \mu^+ \nu_{\mu}$ and $\Lambda e^+ \nu_e$

Baryon pair production

Abnormal threshold effects observed in various baryon pair production: $p\bar{p}, \Lambda\bar{\Lambda}, \Lambda_c^+\bar{\Lambda}_c^- \dots$

 \succ |G_E/G_M| ratio significantly larger than 1 at low beta for *p*, Λ⁺_c, Σ⁺, indicating large D-wave near threshold.

Hyperon physics at BESIII

10 billion I/osi events collected	Decay mode	е	$\mathcal{B}(imes 10^{-3})$	$N_B~(imes 10^6)$
	$J/\psi \to \Lambda \bar{\Lambda}$		1.61 ± 0.15	16.1 ± 1.5
• Large rates in J/ψ decays	$J/\psi \rightarrow \Sigma^0 \Sigma$	$\overline{\Sigma}^{0}$	1.29 ± 0.09	12.9 ± 0.9
Quantum entangled pair productions	$J/\psi \rightarrow \Sigma^+$.	$\bar{\Sigma}^-$	1.50 ± 0.24	15.0 ± 2.4
Background free, high efficiency	$J/\psi \rightarrow \Sigma(1$	$(385)^{-}\bar{\Sigma}^{+}$ (or c.c.)	0.31 ± 0.05	3.1 ± 0.5
Hai-Bolli arXiv:1612.01775	$J/\psi \rightarrow \Sigma(1$	$(385)^{-}\bar{\Sigma}(1385)^{+}$ (or c.c.)	1.10 ± 0.12	11.0 ± 1.2
A. Adlarson, A. Kupsc,	$J/\psi \rightarrow \Xi^0 \Xi$	<u>3</u> 0	1.20 ± 0.24	12.0 ± 2.4
arXiv:1908.03102	$J/\psi \rightarrow \Xi^-$	<u></u>	0.86 ± 0.11	8.6 ± 1.0
	$J/\psi \rightarrow \Xi(1)$.530) ⁰ Ξ ⁰	0.32 ± 0.14	3.2 ± 1.4
a hyperon factory!	$J/\psi \rightarrow \Xi(1$	$(530)^{-}\bar{\Xi}^{+}$	0.59 ± 0.15	5.9 ± 1.5
	$\psi(2S) \rightarrow \Omega$	$-\bar{\Omega}^+$	0.05 ± 0.01	0.15 ± 0.03
CPV in SM is small:	# events	Experiments	1	980
B meson : O(1) discovered (2001)	10 ³	B factory		E E
K meson : O(10 ⁻³) discovered (1964)	10 ⁶	Fix targets	Jamu Cron	es Watson Val Logsdon Fitch
D meson : O(10 ⁻⁴) discovered(2019)	10 ⁸	LHCb		
Hyperon : $O(10^{-4})$ no evidence (10^{-2})	O (10 ⁸)	Fix targets		
		→ BESIII ?	2	2008

Study on hyperon rare decays

0.04

HFLAV 2018

 $\tau \rightarrow X_{e}v$ 0.2195 ± 0.0019 $\tau \rightarrow Kv / \tau \rightarrow \pi v$ 0.2236 ± 0.0015 $\tau \rightarrow Kv$ 0.2234 ± 0.0015 τ average 0.2220 ± 0.0013

0.22

IVusI

0.225

0.06

€€SШ

Hadron Spectroscopy

Hadron Landscape

At BESIII, two golden measures to study hadron spectroscopy, *esp.*, to search for **exotics**

- Light hadrons: charmonium radiative decays (act as spin filter) (10 B J/ ψ and 3 B ψ (2S))
- Heavy hadrons: direct production, radiative and hadronic transitions (data above 3.8 GeV)

Hadron-physics challenges:

- Understanding of established states: precision spectroscopy
- Nature of exotic states: search and spectroscopy of unexpected states

$X(p\overline{p})/X(18??)$ from J/ψ radiative decays

Are they the same state? It is crucial to understand their connections. 格点QCD2023年会

€€SШ

EXAMPLE 5 Rediscovery of Y(2175)/ ϕ (2170)

- > Theorists explain φ(2170) as
 - ✓ ssg hybrid
 - $\checkmark 2^{3}D_{1} \text{ or } 3^{3}S_{1} \text{ s}\overline{\text{s}}$
 - ✓ tetraquark
 - Molecular state $\Lambda\overline{\Lambda}$
 - ✓ φf₀(980) resonance with FSI
 - ✓ Three body system \u00f6KK

26 New Hadrons Discovered at BESIII

Date of arXiv submission

Amplitude analysis of X(2085) in $e^+e^- \rightarrow pK^-\overline{\Lambda}$

8.35 fb⁻¹ data at 4.008, 4.178, 4.226, 4.258, 4.416, and 4.682 GeV

\sqrt{s}	$\mathcal{L}_{ ext{int}}$	Year	$M_{ m pole}$	$\Gamma_{ m pole}$
4.008	482.0 ± 4.7	2011	2085 ± 14	50 ± 16
4.178	3189.0 ± 31.9	2016	2085 ± 6	62 ± 10
4.226	1100.9 ± 7.0	2013	2088 ± 10	68 ± 12
4.258	828.4 ± 5.5	2013	2083 ± 11	48 ± 10
4.416	1090.7 ± 7.2	2014	2088 ± 13	56 ± 12
4.682	1669.3 ± 9.0	2020	2092 ± 10	54 ± 10
Average			2086 ± 4	56 ± 5

- $p\overline{\Lambda}$ resonance parameters and spinparity:
 - > pole mass: $(2086\pm4\pm6)$ MeV/c²
 - > pole width: $(56\pm5\pm16)$ MeV
 - \succ favor 1⁺
- no corresponding excited kaon candidates in experiment or in quark model prediction
- could be an exotic state

arXiv:2305.10789

	-		
	Result 1	Result 2	Result 3
$M_1 \; ({ m MeV}/c^2)$	$4186.5{\pm}9.0$	$4193.8{\pm}7.5$	$4195.3{\pm}7.5$
$\Gamma_1 ({ m MeV})$	$55{\pm}17$	$61.2{\pm}9.0$	$61.8{\pm}9.0$
$M_2~({ m MeV}/c^2)$	$4414.5{\pm}3.2$	$4412.8{\pm}3.2$	$4411.0{\pm}3.2$
$\Gamma_2 ({ m MeV})$	$122.6{\pm}7.0$	$120.3{\pm}7.0$	$120.0{\pm}7.0$
$M_3~({ m MeV}/c^2)$	$4793.3{\pm}7.5$	$4789.8{\pm}9.0$	$4786{\pm}10$
$\Gamma_3 (MeV)$	$27.1{\pm}7.0$	$41{\pm}39$	$60{\pm}35$

Y(4790): the heaviest charmoniumlike state!

EVALUATE: Cross sections of $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$

arXiv:2307.07316

- Negate the Y(4630) in decaying into $\Lambda_c^+ \Lambda_c^-$ reported by BELLE
- Energy-dependence of $|G_E / G_M|$ reveals an oscillation feature, which may imply a non-trivial structure of the lightest charmed baryon.

The Z_c family at BESIII

Here is a set of the set of the

38

- It is crucial that different experiments, such as BESIII, LHCb and Belle II, exchange information in the efforts of amplitude analyses
 - Sharing the knowledge on analysis tools
 eg, TF-PWA (talks given inside BESIII and LHCb) <u>https://github.com/jiangyi15/tf-pwa</u>
 - \checkmark Constraints on properties of the hadronic states
- A few cases:
 - Zc/Zcs productions (e+e- annihilations or b-hadron decays) and decays (to open or hidden charm states)

BEPCII-U in 2024

- ✓ Detailed studies of the known $X/Y/Z_{c(s)}$ states and search for `black swans` in the higher energy region within a considerable amount of data sets.
- ✓ Cover all the ground-state charmed baryons: production & decays, CPV search

Summary

- BESIII is successfully operating since 2008, and will continue to run for 5–10 years

 – collect large data samples in the energy range 2.0~5.6 GeV
- Accomplish many precision measurements and new observations
 - \checkmark Charmed mesons and baryons
 - \checkmark XYZ states and light hadron spectroscopy
 - \checkmark Form factors of the nucleon and hyperons
 - ✓ Low-Q² QCD studies: R value, multi-meson production, fragmentation function, ...
 - ✓ CPV search, rare decays and new physics search
 ✓ ...
- Future goals:

50M D0, 50M D+, 15M Ds, 2M Λc , high-lumi. fine scan between 3.8 GeV and 5.6 GeV

→ BEPCII-U: 3x upgrade on luminosity

Thank you!! 谢谢!

Name	Name Mass(MeV/c^2)		Journal	arXiv	
N(2570)	2570 ₋₁₀₋₁₀ ⁺¹⁹⁺³⁴	250-24-21+14+69	PhysRevLett.110, 022001	1207.0223	
N(2300)	2300-30-0+40+109	$340_{-30-58}^{+30+110}$	PhysRevLett.110, 022001	1207.0223	
X(1870)	$1877.3 \pm 6.3_{-7.4}^{+3.4}$	$57\pm12_{-4}^{+19}$	PhysRevLett.107, 182001	1107.1806	
X(1840)	$1842.2 \pm 4.1_{-2.6}^{+7.1}$	83±14±11	PhysRevD.88.091502	1305.5333	
X(2500)	2470-19-23+15+101	230-35-33+64+56	PhysRevD.93.112011	1602.01523	
X(2262)	2262±4±28	72±5±43	PhysRevD.104.052006	2104.08754	
X(2120)	2122.4±6.7 _{-2.7} +4.7	$83\pm16_{-11}^{+31}$	PhysRevLett.106.072002	1012.3510	
X(2370)	$2376.3 \pm 8.7_{-4.3}^{+3.2}$	$83 \pm 17_{-6}^{+44}$	PhysRevLett.106.072002	1012.3510	
X(2600)	$2617.8 \pm 2.1_{-1.9}^{+18.2}$	$200\pm8_{-17}^{+20}$	PhysRevLett. 129, 042001	2201.10796	
X(2356)	2356±7±17	304±28±54		2211.10755	
f0(2480)	$2470 \pm 4_{-6}^{+4}$	$75\pm 9_{-8}^{+11}$	PhysRevD 105, 072002	2201.09710	
omega(2250)	2223±16±11	51±29±21	PhysRevD.105.032005	2112.15076	
a0(1817)+-0	$1817 \pm 8 \pm 20$	97 ±22±15	PhysRevLett.129.182001	2204.09614	
eta1(1855)	1855±9 ₋₁ +16	$188 \pm 18_{-8}^{+3}$	PhysRevLett. 129, 192002	2202.00621	
Y(4390)	4391.6 _{-6.9} ^{+6.3} ±1.0	139.5 ₋ _{20.6} ^{+16.2} ±0.6	PhysRevLett. 118, 092002	1610.07044	
Y(4320)	4320.0±10.4±7.0	1101.4- _{19.7} +25.3±10.2	PhysRevLett. 118, 092001	1611.01317	
Y(4230)	4222.0±3.1±1.4	44.1±4.3±2.0	PhysRevLett. 118, 092001	1611.01317	
Y(4790)	4793.3±7.5	27.1±7.0		2305.10789	
psi2(3823)	$3821.7 \pm 1.3 \pm 0.7$	<16	PhysRevLett.115.011803	1503.08203	
Y(4500)	4484.7±13.3±24.1	111.1±30.1±15.2	Chin.Phys.C,46,111002	2204.07800	
Zc(3900)+-	3899.0±3.6±4.9	46±10±20	PhysRevLett.110.252001	1303.5949	
Zc(3900)0	3894.8±2.3±3.2	29.6±8.2±8.2	PhysRevLett.115.112003	1506.06018	
$7_{c}(4020) \pm$		$70 \pm 27 \pm 26$	PhysRevLett.111.242001/	1309.1896/	
20(4020)	$7022.7 \pm 0.0 \pm 2.7$	1.7 ± 2.1 ± 2.0	PhysRevLett.112.132001	1308.2760	
Zc(4020)0	4023.9±2.2±3.8	7.9(Fixed)	PhysRevLett.113.212002	1409.6577	
Zcs(3985)+-	$3982_{-26}^{+1.8}\pm 2.1$	12.8 $4^{+5.3}\pm3.0$	PhysRevLett.126.102001	2011.07855	

