LHCb实验测量对格点QCD的需求

何吉波(中国科学院大学) 2023年10月7日

Large Hadron Collider

27 km

CMS

Proton energy: up to 7 TeV (10¹² eV) speed: 0.999999991 c

ATLA

ALICE

The LHCb experiment

Indirect search for New Physics

- Precision measurement of heavy hadron decays
 - Flavour-Changing NC
 - Flavour-Changing CC
- Probe New Physics at high energy scale

Indirect search for NP (cont.)

• Overconstrain the CKM triangle

Branching fraction of $b \rightarrow s \mu^+ \mu^-$

• Pattern of tensions seen, theoretical uncertainty?

BR of $\Lambda_h^0 \to \Lambda(1520)\mu^+\mu^-$

• First measurement, w/ all data

[arXiv:2302.08262, accepted by PRL]

Lepton flavor universality

• In SM, three lepton families (e, μ, τ) have identical couplings to the gauge bosons

Lepton flavor universality violation? New Physics!

LFU in $b \rightarrow c \ell \nu$ decays

Deviations from SM seen by Babar/Belle/LHCb

Systematic uncertainty of R(D*)

[LHCb, PRD 108 (2023) 012018]

TABLE V. Summary of relative systematic uncertainties on the ratio $\mathcal{K}(D^{*-})$.

Source	Systematic uncertainty (%)		
Signal decay template shape	1.8		
Signal decay efficiency	0.9		
Fractions of signal τ^+ decays	0.3		
Possible contributions from	1.0		
other τ^+ decays			
Fixing the $\bar{D}^{**}\tau^+\nu_{\tau}$ and $D_s^{**+}\tau^+\nu_{\tau}$ fractions	+1.8		
Normalization mode PDF choice	1.0		
Knowledge of the $D_s^+ \rightarrow 3\pi X$ decay model	1.0		
Specifically the $D_s^+ \rightarrow a_1 X$ fraction	1.5		
$B \to D^{*-}D_s^+(X)$ template shapes	0.3		
$B \rightarrow D^{*-}D^{0}(X)$ template shapes	1.2		
$B \rightarrow D^{*-}D^+(X)$ template shapes	+2.2		
Fixing $B \to D^{*-}D_s^+(X)$ background model	-0.8 1.1		
parameters			
Fixing $B \to D^{*-}D^{0}(X)$ background model	1.5		
parameters			

The simulated $B^0 \rightarrow D^{*-}\tau^+\nu_{\tau}$ decays are weighted with form factors using the Caprini-Lellouch-Neubert parametrization [35] and these are used to produce signal templates for the fit. The systematic uncertainty due to the limited knowledge of the form factors is estimated by changing the baseline to the Boyd-Grinstein-Lebed parametrization [36] and this causes a 1.8% relative change in the signal yield and a 0.9% deviation in the signal efficiency. The fraction

Hunting for the charming beauty tetraquark T_{bc} : LHCb meets theory Thursday 5 Oct 2023, 13:30 → 18:00 Europe/Zurich 4/S-030 (CERN) 9 **14:00** → 14:30 Search for isoscalar $bc\bar{u}\bar{d}$ tetraquarks using lattice QCD () 30m Speaker: Dr Padmanath Madanagopalan (The Institute of mathematical Sciences Chennai) Padmanath_LHCbT... **Prospects for Tbc searches in Run3** 14:30 → 15:00 () 30m Speaker: Ivan Polyakov (CERN) Tbc_Search.pdf Tcc and its quark mass dependence from lattice QCD **15:00** → 15:30 () 30m Speaker: Sasa Prelovsek prelovsek_Tbc.pdf **Coffee break** 15:30 → 15:50 () 20m Lattice QCD studies of doubly heavy tetraguarks **15:50** → 16:20 () 30m Speakers: Randy Lewis, William Parrott (University of Glasgow) LHCb2023talk.pdf Current status of Tbc and othe tetraquarks with one or more heavy quarks in lattice QCD 16:20 → 16:50 () 30m Speaker: Pedro Bicudo Talk_LHCb2023_Te... 16:50 → 17:20 Mass predictions from the guark model and the Born-Oppenheimer approximation in QCD () 30m Speaker: Luciano Maiani (Sapienza Universita e INFN, Roma I (IT)) TheDoublyHeavyTe...

https://indico.cern.ch/event/1324964

W mass

- CDF results demand more measurements at LHC
- Anti-correlation of PDF at GPD/LHCb

Prospects

• LHCb upgrades

(2025: 23 fb⁻¹, Upgrade-II: 300 fb⁻¹)

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins	2				
$R_K \ (1 < q^2 < 6 { m GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	-
$R_{K^*} \ (1 < q^2 < 6 { m GeV}^2 c^4)$	0.1 [275]	0.031	0.032	0.008	-
R_{ϕ},R_{pK},R_{π}	_	0.08,0.06,0.18	-	0.02, 0.02, 0.05	-
CKM tests					
γ , with $B_s^0 \to D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ [136]	4°	-	1°	-
γ , all modes	$(^{+5.0}_{-5.8})^{\circ}$ [167]	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \to J/\psi K_{ m s}^0$	0.04 [606]	0.011	0.005	0.003	
ϕ_s , with $B_s^0 \to J/\psi \phi$	$49 \mod [44]$	$14 \mathrm{mrad}$	-	$4 \mathrm{mrad}$	22 mrad [607]
ϕ_s , with $B_s^0 o D_s^+ D_s^-$	170 mrad [49]	35 mrad	-	9 mrad	_
$\phi_s^{s\bar{s}s}$, with $B_s^0 o \phi \phi$	154 mrad [94]	39 mrad	-	$11 \mathrm{mrad}$	Under study [608]
$a_{ m sl}^s$	33×10^{-4} [211]	$10 imes 10^{-4}$	-	$3 imes 10^{-4}$	
$ert V_{ub} ert / ert V_{cb} ert$	6% [201]	3%	1%	1%	—
$B^0_s, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)} / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	90% [264]	34%	-	10%	21% [609]
$\tau_{B^0 \rightarrow \mu^+ \mu^-}$	22% [264]	8%	-	2%	_
$S_{\mu\mu}^{-s}$	<u> </u>	-	-	0.2	-
$b \to c \ell^- \bar{\nu}_l { m LUV} { m studies}$					
$\overline{R(D^*)}$	0.026 [215, 217]	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 [220]	0.071	_	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK - \pi\pi)}$	8.5×10^{-4} [610]	$1.7 imes 10^{-4}$	$5.4 imes 10^{-4}$	$3.0 imes 10^{-5}$	_
$A_{\Gamma} (\approx x \sin \phi)$	2.8×10^{-4} 240	$4.3 imes 10^{-5}$	$3.5 imes10^{-4}$	$1.0 imes 10^{-5}$	_
$x \sin \phi$ from $D^0 \to K^+ \pi^-$	13×10^{-4} 228	$3.2 imes 10^{-4}$	$4.6 imes 10^{-4}$	$8.0 imes 10^{-5}$	_
$x\sin\phi$ from multibody decays	<u> </u>	$(K3\pi) 4.0 \times 10^{-5}$	$(K_{ m S}^0\pi\pi)~1.2 imes10^{-4}$	$(K3\pi) \ 8.0 \times 10^{-6}$	1.00

Summary

- LQCD inputs eagerly needed by LHCb, e.g.,
 - $-V_{cb}, V_{ub}$ $-b \rightarrow s\mu^+\mu^- BR$
 - $-\mathcal{R}_{D^*}$
 - Spectroscopy
 - W mass
- Such inputs become more important with LHCb upgrade (50 fb⁻¹) & upgrade-II (300 fb⁻¹)