Quark masses and low energy constants in the continuum from CLQCD ensembles

Yi-Bo Yang

Collaborators: Zhi-Cheng Hu, Bo-Lun Hu, Ji-Hao Wang, Ming Gong, Liuming Liu, Peng Sun, Wei Sun, Wei Wang, and Dian-Jun Zhao

CLQCD ensembles

CLQCD choice and informations

• Features:

- Maximum lattice size $48^3 \times 144$,
- Clover fermion action with stout smearing,
- Similar pion mass and volume at different lattice spacing:
- Cost:

a

- That of an independent configuration (per 10 traj.'s with $\tau = 1.0$, converted to A100 GPU hours) is shown on the figure;
- Needs ~1,000 configurations per ensemble;
- Currently used 658k A100 hours, equals to 3.3M Chinese Yuan with the market price.
- Working on the Sugon machines to avoid the \bigcirc embargo of A100 GPU.

CLQCD ensembles Published/accepted works with the CLQCD ensembles

CLQCD ensembles

• At a = 0.105(3) fm, we have

after the

Nucleon mass v.s. pion mass

- $m_{\pi} = 135.5(1.6)$ MeV, 1.20 $M_N = 0.939 \,{\rm GeV}$ = 0.1053 fm0.1053fm a = 0.0775 fm1.15 a = 0.0519 fm0.0775fm 0.0519fm continuum $m_N = 890(10)$ MeV. 1.10 $m_{\pi}^2 = (0.135 \text{GeV})^2$ M_N(GeV) • m_N are ~5% smaller than the 0.95 physical value, 0.90 and can reach the 0.85 physical value 0.02 0.04 0.08 0.06 0.00 m_{π}^2 (GeV²) continuum
 - extrapolation.

0.10

Background Chiral symmetry breaking in the clover fermion

Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, 2310.00814

- Due to the additive α_s/a correction, the dimensionless bare quark mass $\tilde{m}_{q}^{b} = m_{q}^{b}a$ is negative.
- The renormalized quark mass should be defined as $m_q^R = Z_m (m_q^b - m_{crti})$, where m_{crti} is defined as the $m_a^{\rm b}$ which vanishes the pion mass.
- One can avoid this difficulty by defining the quark mass through PCAC relation:

$$\langle 0 | \partial_4 A_4 | PS \rangle = (m_q^{PC} + m_{\bar{q}}^{PC}) \langle 0 | P | PS \rangle$$

T. Ishikawa, et.al., JLQCD, Phys.Rev.D78 (2008) 011502

• And then m_a^{PC} is always positive and can be renormalized as $m_a^R = Z_P / Z_A m_a^{PC}$.

-0.16

Renormalization and final results

- Non-perturbative renormalization to $\overline{\text{MS}}$ 2 GeV eliminates the regularization scale 1/a dependence of m_{π}^2/m_a .
- m_{π}^2/m_q using the clover fermion also turns out to be consistent with that using the overlap fermion.
- The large uncertainty of the renormalized m_{π}^2/m_q majorly comes from the missing higher order effect of the perturbative matching

$$\frac{Z_P^{\overline{\text{MS}}}}{Z_P^{\text{MOM}}} = 1 + 0.4244\alpha_s + 1.007\alpha_s^2 + 2.722\alpha_s^3 + 8.263\alpha_s^4 + \mathcal{O}(\alpha_s^5)$$
$$= \frac{1 - 2.611\alpha_s - 0.2813\alpha_s^2 - 0.3349\alpha_s^3}{1 - 3.036\alpha_s} + \mathcal{O}(\alpha_s^5),$$
J.A. Gracey, Eur.Phys.J.C83 (2023) 181

and can be highly suppressed after the continuum extrapolation.

D. J. Zhao, et. al., χ QCD & CLQCD, in preparation

Chiral symmetry breaking and renormalization **Restore of chiral symmetry in the continuum**

- spacings:
- •

• Renormalized quark mass $m_q^R = Z_A/Z_P m_q^{PC}$ with 317 MeV pion mass at three lattice

• The intermediate renormalization scheme dependence is 3.1(1.5)%.

RI/MOM scheme has smaller discretization error.

• Feynman-Hellman theorem can extract $g_{S,\pi}$ as

$$g_{S,\pi}^{\rm FH} = \frac{1}{2} \frac{\partial m_{\pi}(m_q)}{\partial m_q} \simeq \frac{Z_P}{Z_A} \frac{m_{\pi}}{4m_q^{\rm PC}} + \mathcal{O}(m_q, a^2)$$

which is 4.04(6)(12) for $m_{\pi} = 317$ MeV in the continuum.

Renormalized $g_{S,\pi}^{R,ME} = Z_S \frac{\langle \pi | S | \pi \rangle_{conn}}{\langle \pi | \pi \rangle}$ based on the direct calculation:

• The intermediate renormalization scheme dependence is 7.6(2.3)% (linear a^2 correction) or 2.0(5.8)% ($a^2 + a^4$ corrections).

• $g_{S,\pi}^{\rm ME}$ using RI/MOM scheme has smaller discretization error, and agree with $g_{S,\pi}^{
m R,FH}$ within 2σ at all the lattice spacings. Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, 2310.00814

Chiral symmetry breaking and renormalization **Global fit of the pion mass**

H	FLAG 2021
	CT14 314
	ETM 21A
нн	FTM 14
1	FLAG 2021
	CLQCD 23
	ALPHA 19
	RBC/UKQCD 14B
+	RBC/UKQCD 12
	Laiho 11
HOH)	BMW 10A, 10B
	MILC 10A
+ + - + - + - + - + - + - + - + - +	RBC/UKQCD 10A
•	MILC 09A
•	MILC 09
-	HPQCD 05
4 26 20	

- Present CLQCD prediction of the u-d averaged light quark masses is consistent with the lattice averages within 5% uncertainty.
- Most of the uncertainties come from the nonperturbative renormalization and further improvements are in progress.
- All the finite volume, discretization and sea quark mass effects have been taken into account.

Renormalization and final results

Global fit of the low energy constants

F(MeV)		
	FLAG 2021	
	ETM 21A ETM 21	
	FLAG 2021	
	CLQCD 23	
⊖•	RBC/UKQCD 15E RBC/UKQCD 14B BMW 13 Borsanyi 12	
	NPLQCD 11 MILC 10	
	MILC 10A MILC 09A, SU(3)-fit	
	MILC 09A, 50(2)-IIC MILC 09	
1	FLAG 2021 Engel 14 Brandt 13 QCDSF 13 ETM 09C	
1	ЕТМ 08 92 94 96	
$y_{ m v}-y_{ m s}){ m ln}(2y_{ m v})$	$(y_{ m v}-y_{ m s})]$	
$-2y_{ m s}N_f(2lpha_6$ –	$- \alpha_4) \big\}$	
$c_s^\pi (m_{\eta_s}^2 - m_r^2)$	$\left[\frac{2}{\beta_s, \text{phys}} \right] $ $\Lambda_{\chi} = 4$	$\pi F, y = \frac{\Sigma m}{F^2 \Lambda_{\chi}^2}$
$)\ln(y_{ m v}+y_{ m s})+$	$-y_{ m v}lpha_5+y_{ m s}N_flpha_4)$	
$d^{\pi}(m^2 - m^2)$	[2, 1]	

Global fit of all the ensembles to obtain the quark mass dependence of m_{π} and f_{π} in the continuum and infinite volume limit, which allows us to extract the χ PT low energy constants.

Chiral symmetry breaking and renormalization **Global fit of the kaon mass**

val sea val

sea

P.Zyla et,al, PTEP(2020)083C01 (PDG2020):

• $m_p = 938.27 \text{ MeV} = m_{p,\text{OCD}} + 1.00(16) \text{ MeV} + \dots;$

- $m_n = 939.57$ MeV;
- $m_{\pi}^0 = 134.98$ MeV;
- $m_{\pi}^+ = 139.57 \text{ MeV} = m_{\pi}^0 + 4.53(6) \text{ MeV} + \dots;$

• $m_K^0 = 497.61(1) \text{ MeV} = m_{K,\text{OCD}}^0 + 0.17(02) \text{ MeV} + \dots;$ • $m_{K}^{+} = 493.68(2) \text{ MeV} = m_{K,\text{OCD}}^{+} + 2.24(15) \text{ MeV} + \dots$

Z.C. Hu, B.L. Hu, J.H. Wang, et. al., CLQCD, 2310.00814

Renormalization and final results Quark mass of three light flavors

Explore heavy flavors

Discretization error

- The heavy quark with mass m_Q will have additional $\mathcal{O}(m_Q^n a^n)$ discretization errors.
- And the one would need $m_h^{bare} a \sim 9$ to reach the physical bottom quark mass at a = 0.105 fm.
- The situation can be significantly improved when the lattice spacing becomes smaller.

Explore heavy flavors

- and the hyperfine splitting to be 50% (charm) and 95% (bottom) smaller.

Charmonium and Bottomium

• At a = 0.105 fm, the discretization error can make the 1P-1S fine splitting to be ~10% larger,

• The situation can also be significantly improved when the lattice spacing becomes smaller.

Explore heavy flavors Another choice: anisotropic lattices

2 味轻海夸克

Size		β	$a_s/{ m fm}$		ξ_{g}	5	ξ_f		$m_{\pi}/$	${ m 'MeV}$	Tra	aj
$16^3 \times 12$	28	2.0	0.1361	.(18)	5.	036(10)	4.97	78(16)	416.	0(5.7)	60	0
$16^3 \times 12$	28	2.0	0.1361	.(18)	5.	060(11)	4.95	56(22)	359.	3(5.0)	60	0
$16^3 \times 12$	28	2.0	0.1361	.(18)	5.	022(10)	4.95	56(25)	304.	7(4.6)	60	0
$24^3 \times 19$)2	2.0	0.1361	.(18)	5.	044(5)	5.04	43(18)	305.	4(4.2)	40	2
$16^3 \times 12$	28	2.0	0.1361	.(18)	5.	050(10)	5.02	L7(42)	245.	7(4.6)	60	0
$24^3 \times 19$)2	2.0	0.1361	.(18)	5.	014(8)	4.96	56(60)	237.	9(4.8)	25	2
$24^3 \times 19$	$\partial 2$	2.2	≈ 0.10)8							调	狈
5	Size		β	a _s /fr	n	ξ_g	ξ_f	m_{π}/N	ЛеV	Traj. :	#	
1	16^{3} :	$\times 128$	2.0	0.15	17	4.95	5.30	349.2		70045		
2	24^3	$\times 192$	2.0	0.15	17	4.95	5.30	349.2		28000		

1味 strange 海夸克

Size	β	$a_s/{ m fm}$	ξ_g	ξ_f	$m_{ m \it ps}/{ m MeV}$	Traj. #
$16^3 \times 128$	2.4	0.148	5.0	5.0	686 (strange)	18000

- It is much more efficient to reach small lattice space in the time \bullet direction only, with the anisotropic lattices.
- While obtain the renormalized quark mass is more challenging.

Summary

- We chose the clover fermion and Symanzik gauge actions to generate the Lattice QCD ensembles at multiple lattice spacing, pion mass and volume, and figured out the proper renormalization to restore the chiral symmetry at 5% level.
- Current prediction of quark masses and low energy constants agree with the lattice averages within 5%, and more accurate studies are on-going.
- The heavy quark can have huge discretization error at coarse lattice spacings, while further improvement on the fermion action is also on-going.

