Inverse Problem Approach －－A novel non－perturbative QCD method

Fu－Sheng Yu
Lanzhou University

Based on［Ao－Sheng Xiong（熊傲昇），Ting Wei（魏婷），FSY，arXiv：2211．13753］

1. Motivation: non-perturbative approaches

-Lattice QCD: the only recognized first-principle method
-QCD sum rules, Dyson-Schwinger Equation, Chiral perturbation theory, Holographic QCD, Light-front quantization, Other EFTs and phenomenological models
-Each of them has its advantages and shortcomings.

- It is always welcome to develop a new theoretical method for non-perturbation, to make complimentary predictions what are difficult by the above methods.
- Inverse problem is such a new method. Its development is learning Lattice QCD. It might collaborate with Lattice QCD.

The main idea of the inverse problem approach

2.ill-posedness of the inverse problem

-Dispersion relation: first-class Fredholm integration equation

$$
\text { If } s>\Lambda, \quad \mathcal{P} \int_{0}^{\Lambda} \frac{\mathcal{I} m\left[\Pi\left(s^{\prime}\right)\right]}{s-s^{\prime}} d s^{\prime}=\pi \mathcal{R e}[\Pi(s)]-\mathcal{P} \int_{\Lambda}^{\infty} \frac{\mathcal{I} m\left[\Pi\left(s^{\prime}\right)\right]}{s+s^{\prime}} d s^{\prime}
$$

$$
\int_{a}^{b} \frac{f(x)}{y-x} \mathrm{~d} x=g(y), \quad y \in[c, d], \quad c>b, \quad a>0
$$

2.ill-posedness of the inverse problem

-The operator $K: X \rightarrow Y, \quad K x=y, \quad x \in X, \quad y \in Y$

- Inverse problem: solve x by known of K and $y, \quad x=K^{-1} y$

$$
\int_{a}^{b} \frac{f(x)}{y-x} \mathrm{~d} x=g(y)
$$

-Definition of well-posedness:
Define: \quad The operator equation (3.1) is called well-posed if the following holds [8]:
1.Existence: For every $g \in G$ there is (at least one) $f \in F$ such that $K f=g$;
2.Uniqueness: For every $g \in G$ there is at most one $f \in F$ with $K f=g$;
3.Stability: The solution f depends continuously on g; that is, for every sequence $\left(f_{n}\right) \subset F$ with $K f_{n} \rightarrow K f(n \rightarrow \infty)$, it follows that $f_{n} \rightarrow f(n \rightarrow \infty)$

- III-posedness: At least one of the above conditions is not satisfied
- If well-posed, K^{-1} must be a bounded or continuous operator, otherwise ill-posed.

2. Proof of the ill-posedness

Proof of uniqueness:

$$
\int_{a}^{b} \frac{f(x)}{y-x} \mathrm{~d} x=g(y), \quad y \in[c, d], c>b, a>0
$$

Proof. Since K is a linear operator, we know that $K f_{1}-K f_{2}=K\left(f_{1}-f_{2}\right)=0$. Setting $f=f_{1}-f_{2}$, we just need to prove that $K f=0$ implies $f(x)=0$, a. e. $x \in[a, b]$.

It is easy to obtain that $K f=\int_{a}^{b} \frac{1}{y-x} f(x) d x=\int_{a}^{b}\left(\frac{1}{y} \sum_{k=0}^{\infty}\left(\frac{x}{y}\right)^{k}\right) f(x) d x$. Since $x \in[a, b], y \in[c, d]$, $c>b$, we know $\left|\frac{x}{y}\right| \leq\left|\frac{b}{c}\right|<1$, which implies that $\left|\sum_{k=0}^{\infty}\left(\frac{x}{y}\right)^{k} f(x)\right| \leq \sum_{k=0}^{\infty}\left(\frac{b}{c}\right)^{k}|f(x)|$ for all $x \in[a, b]$. Combined with $\int_{a}^{b}|f(x)| d x<+\infty$ and the control convergence theorem, we have

$$
\begin{equation*}
y \int_{a}^{b} \frac{1}{y-x} f(x) d x=\sum_{k=0}^{\infty} \frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x=0, \quad y \in[c, d] \tag{3.4}
\end{equation*}
$$

If $d=+\infty$, by using (3.4), we have

$$
\begin{equation*}
\int_{a}^{b} f(x) d x+\frac{1}{y} \int_{a}^{b} x f(x) d x+\cdots+\frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x+\cdots=0, \quad y \in(c,+\infty) \tag{3.5}
\end{equation*}
$$

Letting $y \rightarrow+\infty$ in (3.5), we have $\int_{a}^{b} f(x) d x=0$. Then multiplying y on both sides of (3.5) and letting $y \rightarrow+\infty$, we also have $\int_{a}^{b} x f(x) d x=0$. Repeating above process, we can obtain that

$$
\begin{equation*}
\int_{a}^{b} x^{k} f(x) d x=0, \quad k=0,1,2 \tag{3.6}
\end{equation*}
$$

If $d<+\infty$, taking $z \in D:=\{z \in \mathbb{C}:|z| \geq c\}$, we have

$$
\left|\sum_{k=0}^{\infty} \frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x\right| \leq \sum_{k=0}^{\infty} \frac{1}{c^{k}}\left|\int_{a}^{b} x^{k} f(x) d x\right| \leq \sum_{k=0}^{\infty} \frac{b^{k}}{c^{k}} \int_{a}^{b}|f(x)| d x<+\infty
$$

which implies that the series $\sum_{k=0}^{\infty} \frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x$ is convergent uniformly on D. Since $\frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x$ is analytic on D for each k and use the Weierstrass theorem, we conclude that the series $\sum_{k=0}^{\infty} \frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x$ is analytic on D. Further, we know $\sum_{k=0}^{\infty} \frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x$ is real analytic on $y \in(c,+\infty)$. Combined with the analytic continuation, we know that (3.4) holds for $y>c$, i. e.

$$
\sum_{k=0}^{\infty} \frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x=0, \quad y \in(c,+\infty)
$$

Similar to the proof process of the case $d=+\infty$, we also conclude that $\int_{a}^{b} x^{k} f(x) d x=0, k=0,1,2, \cdots$ for $d<+\infty$.

2. Proof of the ill-posedness

Proof of uniqueness:

$$
\int_{a}^{b} \frac{f(x)}{y-x} \mathrm{~d} x=g(y), \quad y \in[c, d], c>b, a>0
$$

$$
\begin{aligned}
& \text { Proof. Since } K \text { is a linear operator, we know that } K f_{1}-K f_{2}=K\left(f_{1}-f_{2}\right)=0 . \text { Setting } f=f_{1}-f_{2} \text {, we } \\
& \text { just need to prove that } K f=0 \text { implies } f(x)=0 \text {, a. e. } x \in[a, b] .
\end{aligned}
$$

Since $C[a, b]$ is dense in $L^{2}(a, b)$, then for $f(x) \in L^{2}(a, b)$ and any $\epsilon>0$, there exists $\tilde{f}(x) \in C[a, b]$, such that $\|f-\tilde{f}\|_{L^{2}(a, b)}<\epsilon$. On the other hand, for $\tilde{f}(x) \in C[a, b]$, there exists a polynomial $Q_{n}(x)$ of degree $n \in \mathbb{N}$, such that $\left\|\tilde{f}-Q_{n}\right\|_{C[a, b]}<\epsilon$ by the Weierstrass theorem. Therefore, we have

$$
\begin{aligned}
\left\|f-Q_{n}\right\|_{L^{2}(a, b)} & \leq\|f-\tilde{f}\|_{L^{2}(a, b)}+\left\|\tilde{f}-Q_{n}\right\|_{L^{2}(a, b)} \\
& \leq \epsilon+\sqrt{b-a}\left\|\tilde{f}-Q_{n}\right\|_{C[a, b]} \\
& <\epsilon+\epsilon \sqrt{b-a},
\end{aligned}
$$

By using (3.6), we know that $\int_{a}^{b} f(x) Q_{n}(x) d x=0$. Combined with the Cauchy inequality, we have

$$
\begin{aligned}
\|f\|_{L^{2}(a, b)}^{2} & =\int_{a}^{b} f^{2}(x) d x=\int_{a}^{b}\left(f^{2}(x)-f(x) Q_{n}(x)\right) d x \\
& \leq \int_{a}^{b}|f(x)| \cdot\left|f(x)-Q_{n}(x)\right| d x \\
& \leq\left(\int_{a}^{b} f^{2}(x) d x\right)^{\frac{1}{2}}\left(\int_{a}^{b}\left|f(x)-Q_{n}(x)\right|^{2} d x\right)^{\frac{1}{2}} \\
& =\|f\|_{L^{2}(a, b)}\left\|f-Q_{n}\right\|_{L^{2}(a, b)} \\
& \leq(\epsilon+\epsilon \sqrt{b-a})\|f\|_{L^{2}(a, b)},
\end{aligned}
$$

2. Proof of the ill-posedness

Proof of instability:

$$
\int_{a}^{b} \frac{f(x)}{y-x} \mathrm{~d} x=g(y), \quad y \in[c, d], c>b, a>0
$$

We show the instability of the inverse problem of dispersion relation by the special case. Taking $a=0, b=1, c=2, d=3, f_{2}(x)=f_{1}(x)+\sqrt{n} \cos (n \pi x)$, and $f_{1,2}$ are the solutions of $g_{1,2}$ with $g_{i}(y)=\int_{0}^{1} \frac{1}{y-x} f_{i}(x) d x$. As $n \rightarrow \infty$, it is obvious that

$$
\begin{equation*}
\left\|f_{2}-f_{1}\right\|_{L^{2}(0,1)}=\left(\int_{0}^{1}(\sqrt{n} \cos (n \pi x))^{2} d x\right)^{1 / 2}=\frac{\sqrt{n}}{\sqrt{2}} \rightarrow \infty, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g_{2}-g_{1}\right\|_{L^{2}(2,3)}=\frac{1}{\sqrt{n} \pi}\left(\int_{2}^{3}\left(\int_{0}^{1}\left(\frac{1}{y-x}\right)^{2} \sin (n \pi x) d x\right)^{2} d y\right)^{1 / 2} \leq \frac{1}{\sqrt{n} \pi} \rightarrow 0 . \tag{3.8}
\end{equation*}
$$

That means the solutions could be changed infinitely even though the noise of the input data is approaching to vanish. So the inverse problem is unstable.

2. Proof of the ill-posedness

The inverse problem of dispersion relation is ill-posed See 2211.13753

Can we find a good solution? And how?

3. Regularization method

Define: A regularization strategy is a family of linear and bounded operators $R_{\alpha}: G \rightarrow F, \alpha>0$, such that $\lim _{\alpha \rightarrow 0} R_{\alpha} K f=f$ for all $f \in F$, where the α is the regularization parameter [8].
-Construct a bounded operator which is approximate to K^{-1},

- Ill-posed problem => well-posed approximate problem, so that $f_{\alpha}^{\delta}=R_{\alpha} g^{\delta}$
- f_{α}^{δ} is the approximate solution related to both α and δ.
- An effective regularization strategy is to satisfy $f_{\alpha}^{\delta} \rightarrow f$, as $\left\|g^{\delta}-g\right\| \leq \delta \rightarrow 0$

$$
\begin{aligned}
\left\|f_{\alpha}^{\delta}-f\right\|_{F} & \leq\left\|R_{\alpha} g^{\delta}-R_{\alpha} g\right\|_{F}+\left\|R_{\alpha} g-f\right\|_{F} \quad K f=g, f \in F, g \in G \\
& \leq\left\|R_{\alpha}\right\|\left\|g^{\delta}-g\right\|_{G}+\left\|R_{\alpha} K f-f\right\|_{F} \\
& \leq \delta\left\|R_{\alpha}\right\|+\left\|R_{\alpha} K f-f\right\|_{F}
\end{aligned}
$$

$\lim _{\alpha \rightarrow 0} R_{\alpha} K f=f$

3. Tikhonov Regularization

$$
\alpha \rightarrow 0
$$

$$
f_{\alpha}^{\delta}=R_{\alpha} g^{\delta} \quad R_{\alpha}:=\left(\alpha I+K^{*} K\right)^{-1} K^{*}: G \rightarrow F \quad \alpha f_{\alpha}^{\delta}+K^{*} K f_{\alpha}^{\delta}=K^{*} g^{\delta}
$$

$$
f_{\alpha}^{\delta}=\underset{f \in L^{2}(a, b)}{\arg \min } J(f), \quad J(f)=\frac{1}{2}\left\|K f-g^{\delta}\right\|_{L^{2}(c, d)}^{2}+\frac{\alpha}{2}\|f\|_{L^{2}(a, b)}^{2}
$$

A priori condition: $f=K^{*} v, v \in G,\|v\|_{G} \leq E \quad\left\|f_{\alpha}^{\delta}-f\right\|_{F} \leq \frac{\delta}{2 \sqrt{\alpha}}+\frac{\sqrt{\alpha} E}{2}$

Take $\alpha=\delta / E$

$$
\left\|f_{\alpha}^{\delta}-f\right\|_{F} \leq \sqrt{\delta E} \rightarrow 0, \delta \rightarrow 0
$$

-The most important: the uncertainty converges to vanishing as $\delta \rightarrow 0$.
-It exists an upper limit!
The uncertainty must be controllable.

3. Selection rules of the Regularization parameter

A-priori methods are always difficult to use in practice.
A-posterior methods can be tried.

L-curve method:

$$
\alpha=\underset{f_{\alpha}^{\delta} \in L^{2}(a, b)}{\arg \min }\left(\left\|f_{\alpha}^{\delta}\right\|_{F}\left\|g^{\delta}-K f_{\alpha}^{\delta}\right\|_{G}\right)
$$

Both of $\left\|f_{\alpha}^{\delta}\right\|$ and $\left\|g^{\delta}-K f_{\alpha}^{\delta}\right\|$ should be minimized together,

$$
\text { considering } \quad f_{\alpha}^{\delta}=\underset{f \in L^{2}(a, b)}{\arg \min } J(f), \quad J(f)=\frac{1}{2}\left\|K f-g^{\delta}\right\|_{L^{2}(c, d)}^{2}+\frac{\alpha}{2}\|f\|_{L^{2}(a, b)}^{2}
$$

4. Test: Importance of regularization

The solutions without any regularization:

- It can be clearly seen that the solutions are unstable and far from the true values.
- The ill-posed inverse problems can not be solved without any regularization.

4. Test: Impact of improved regularization method

-The regularization method works well for the three models

- Non-stationary Tikhonov regularization for model 3
(1) Compute $r_{k}^{\delta}=g^{\delta}-K f_{k}$
(2) Solve $h_{k}=\min \left\{\frac{1}{2}\left\|K h-r_{k}^{\delta}\right\|_{L^{2}}+\frac{\alpha_{k}}{2}\|h\|_{H^{1}}\right\}$
(3) Update $f_{k+1}=f_{k}+h_{k}$
(4) Stop by the L-curve method

model 2

model 3

Input errors:
30%

10\%
1%

4. Test: Insensitivity to α and Λ

- Solutions are insensitive to the regularization parameter and the separation scale.
-The uncertainties of the inverse problem can be well controlled.

4. Test: Constrained data

-This method can combine with experiments and Lattice QCD to improve the precision of predictions

- Original uncertainty directly from inputs Data from experiments or Lattice QCD

Improved uncertainty considering data

- If there is an experimental data or lattice data with much smaller uncertainty than the original solutions, we can use it to constrain the solution to be more precise in the whole range.

Criteria of a good theoretical approach

(1) Well defined in mathematics \longrightarrow Dispersion relation + proof of ill-posedness
(2) Realization in numerical calculations \longrightarrow Regularization methods
(3) Can be systematically improved \longrightarrow Errors converge to vanishing as $\delta \rightarrow 0$
(4) Simple at the beginning \longrightarrow Tikhonov regularization

Inverse problem approach has a potential to be a first-principle approach

5. Physical perspectives

(1) The whole non-perturbative region is solved simultaneously.

- Advantage for the excited states. Even higher precision by combination with experiments or Lattice QCD for the ground states.
(2) Modifying the QCD sum rules, with excited states and density function solved directly, without the assumption from global quark-hadron duality.
-Can calculate whatever QCD sum rules did, but with reasonable uncertainties.
-Advantage for the low q^{2} region of transition form factors of $B \rightarrow K^{(*)}$ by lightcone QCD sum rules.
(3) Might solve the inverse problem in the Lattice QCD. And many others...

Summary

- We propose a novel method to calculate the non-perturbative quantities.
- With the dispersion relation of QFT, the non-perturbative quantities are obtained by solving the inverse problem with the perturbative calculations as inputs.
- The precision of the predictions can be systematically improved, without any artificial assumptions.
- The mathematical basis has been provided.
- Physical applications are expected.

Backups

-Firstly proposed to solve the problem of understanding of $D^{0}-\bar{D}^{0}$ mixing [H.n.Li, H.Umeeda, FSY, F.Xu, 2001.04079]
-Physical applications:
-muon g-2 [H.n.Li, H.Umeeda, 2004.06451]
-modifying the QCD sum rules [H.n.Li, H.Umeeda, 2006.16593]

- glueballs [H.n.Li, 2109.04956]
-pion distribution amplitudes [H.n.Li, 2205.06746]
-neutral meson mixings [H.n.Li, 2208.14798]
-understandings of fermion masses and EW masses [H.n.Li, 2302.01761, 2304.05921, 2306.03463]
-Its mathematical basis should be provided [A.S.Xiong, T.Wei, FSY, 2211.13753].

Inverse problem in Lattice QCD

Rothkopf, 2211.10680

Spectral function reconstruction from Euclidean lattices

Inverse problem in Lattice QCD

Hadronic on the Lattice

Lattice QCD: Euclidean field theory using the path-integral formalism: time-dependent matrix
elements are problematic.

$$
W_{\mu \nu}=\frac{1}{4 \pi} \int d^{4} z e^{i q \cdot z}\langle p, s|\left[\underline{J_{\mu}^{\dagger}(z) J_{\nu}(0)}\right]|p, s\rangle
$$

Euclidean hadronic tensor:

$$
\tilde{W}_{\mu \nu}\left(\vec{p}, \vec{q}, \tau=t_{2}-t_{1}\right)=\sum_{\vec{x}_{2} \vec{x}_{1}} e^{-i \vec{q} \cdot\left(\vec{x}_{2}-\vec{x}_{1}\right)}\langle p, s| J_{\mu}^{\dagger}\left(\vec{x}_{2}, t_{2}\right) J_{\nu}\left(\vec{x}_{1}, t_{1}\right)|p, s\rangle
$$

Back to Minkowski space by solving the inverse problem:

$$
\tilde{W}_{\mu \nu}(\boldsymbol{p}, \boldsymbol{q}, \tau)=\int d \nu W_{\mu \nu}(\boldsymbol{p}, \boldsymbol{q}, \nu) e^{-\nu \tau}
$$

Maximum entropy method (MEM)

$$
D(\tau)=\int_{0}^{\infty} K(\tau, w) A(w) d w
$$

- MEM is a method to circumvent these difficulties by making a statistical inference of the most probable SPF (or sometimes called the image in the following) as well as its reliability on the basis of a limited number of noisy data.
- Its basis is Bayes' Theorem:

$$
P[X \mid Y]=\frac{P[Y \mid X] P[X]}{P[Y]}
$$

From Bayes' Theorem, we can get :

$$
P[A \mid D H]=\frac{P[D \mid A H] P[A \mid H]}{P[D \mid H]} .
$$

The most probable image is $A(w)$ that satisfies the condition: $\frac{\delta P[A \mid D H]}{\delta A}=0$.
(1) Firstly, they make:

$$
\begin{aligned}
P[D \mid A H] & =\frac{1}{Z_{L}} e^{-L}, \\
L & =\frac{1}{2} \sum_{i, j}\left(D\left(\tau_{i}\right)-D_{A}\left(\tau_{i}\right)\right) C_{i j}^{-1}\left(D\left(\tau_{j}\right)-D_{A}\left(\tau_{j}\right)\right),
\end{aligned}
$$

In the case where $P[A \mid H]=0$, maximizing $P[A \mid D H]$ is equivalent to standard $\chi^{2}-$ fitting. However, the $\chi^{2}-f i t t i n g$ does not work.

The precision can be systematically improved

Without any beyond-control assumptions, the precision can be systematically improved:
(1) Suitable regularization method and selection rule of the regulators
(2) Higher precision of input data
(3) Combination with higher precise data of experiments or Lattice QCD.

1. The main idea of the inverse problem approach

$$
\text { If } s>\Lambda, \quad \mathcal{P} \int_{0}^{\Lambda} \frac{\mathcal{I} m\left[\Pi\left(s^{\prime}\right)\right]}{s-s^{\prime}} d s^{\prime}=\pi \mathcal{R e}[\Pi(s)]-\mathcal{P} \int_{\Lambda}^{\infty} \frac{\mathcal{I} m\left[\Pi\left(s^{\prime}\right)\right]}{s \mp s^{\prime}} d s^{\prime}
$$

-With the dispersion relation of QFT, the non-perturbative quantities are obtained by solving the inverse problem with the perturbative calculations as inputs.
-Using the regularization method, the solutions are stable, and can be converged to the true value as the input errors approaching zero.
-The precision of the predictions can be systematically improved, without any artificially assumptions.

1. Dispersion relations and inverse problems

Dispersion relation:

- Based on Quantum Field Theory and correlation functions
- Analyticity of QFT, relation between a physical point and the curves, or relation between the real and imaginary parts

$$
\begin{aligned}
& \Pi\left(q^{2}\right)=i \int d^{4} x e^{i q \cdot x}\langle O(x) O(0)\rangle \\
& \operatorname{Re}[\Pi(s)]=\frac{1}{\pi} \int_{0}^{\infty} \frac{\operatorname{Im}\left[\Pi\left(s^{\prime}\right)\right]}{s-s^{\prime}} d s^{\prime}
\end{aligned}
$$

-The above formula is just an example. Any dispersion relation would be studied similarly.

1. Dispersion relations and inverse problems

$$
\text { If } s>\Lambda, \quad \mathcal{P} \int_{0}^{\Lambda} \frac{\mathcal{I} m\left[\Pi\left(s^{\prime}\right)\right]}{s-s^{\prime}} d s^{\prime}=\pi \mathcal{R e [\Pi (s)] - \mathcal { P } \int _ { \Lambda } ^ { \infty } \frac { \mathcal { I } m [\Pi (s ^ { \prime })] } { s s ^ { \prime } } d s ^ { \prime } . \quad \text { calculable }} \text { To be solved }
$$

"charge distribution" at low s

2. ill-posedness of the inverse problem

$$
\cdot K x=y=x=K^{-1} y . \text { Discretization? }
$$

$$
\left.\begin{array}{l}
\begin{cases}2 x_{1}+3 x_{2}=5 \\
1.9999 x_{1}+3.0001 x_{2}=5\end{cases} \\
\begin{cases}2 x_{1}+3 x_{2}=5 \\
1.9999 x_{1}+3.0001 x_{2}=5.01\end{cases}
\end{array} \quad x_{1}=1, x_{2}=1\right\}
$$

- A very small noise might cause a large change of solutions

2. ill-posedness of the inverse problem

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 x_{1}+3 x_{2}=5 \\
1.9999 x_{1}+3.0001 x_{2}=5
\end{array}\right. \\
& \left\{\begin{array}{l}
2 x_{1}+3 x_{2}=5 \\
1.9999 x_{1}+3.0001 x_{2}=5.01
\end{array}\right. \\
& \Rightarrow \quad x_{1}=1, x_{2}=1 \\
& \Rightarrow x_{1}=-59, x_{2}=41
\end{aligned}
$$

- A very small noise might cause a large change of solutions

$$
K=\left(\begin{array}{cc}
2 & 3 \\
1.9999 & 3.0001
\end{array}\right), \quad|K|=0.0005, \quad K^{-1}=\frac{K^{*}}{|K|}=\left(\begin{array}{cc}
6000.2 & -6000 \\
-3999.8 & 4000
\end{array}\right)
$$

- In the continuum limit, K^{-1} is unbounded. The problem is ill-posed.

2. ill-posedness of the inverse problem

-The operator $K: X \rightarrow Y, \quad K x=y, \quad x \in X, \quad y \in Y$

- The inverse problem of dispersion relation must be ill-posed.
- K is a linear bounded compact operator. It doesn't have a bounded inverse operator in the infinite dimensional space.

Proof. It is easily to check that $K f_{1}+K f_{2}=K\left(f_{1}+f_{2}\right)$ and $\alpha K f=K(\alpha f)$ so the $K: F \rightarrow G$ operator is
a linear operator. For any $f \in L^{2}(a, b)$, by the Cauchy inequality, we have

$$
\begin{aligned}
& \|K f\|_{L^{2}(c, d)}^{2}=\int_{c}^{d}(K f)^{2} d y=\int_{c}^{d}\left(\int_{a}^{b} \frac{1}{y-x} f(x) d x\right)^{2} d y \\
& \leq \int_{c}^{d} \int_{a}^{b}\left(\frac{1}{y-x}\right)^{2} d x \int_{a}^{b} f^{2}(x) d x d y \leq\left(\frac{1}{c-b}\right)^{2}(b-a)(d-c)\|f\|_{L^{2}(a, b)}^{2}=M\|f\|_{L^{2}(a, b)}^{2}<+\infty
\end{aligned}
$$

where $M>0$ is a constant. Thus, from the form of the equation (3.2), we easily know $K: F \rightarrow G$ is a bounded operator.

Since $c>b$, the m th order derivative of $K f$ exists for any $m \in \mathbb{N}$ and by the Cauchy inequality, we have

$$
\begin{equation*}
\left\|\frac{\partial^{m}(K f)}{\partial y^{m}}\right\|_{L^{2}(c, d)}^{2}=\int_{c}^{d}\left(\int_{a}^{b} \frac{(-1)^{m} m!}{(y-x)^{m+1}} f(x) d x\right)^{2} d y \leq C\|f\|_{L^{2}(a, b)}^{2} \tag{3.3}
\end{equation*}
$$

where $C>0$ is a constant depending on a, b, c, d only. Therefore, $K f \in H^{m}(c, d)$ for any $m \in \mathbb{N}$. Since m is arbitrary, by the embedding theorem, we know $K f \in C^{\infty}[c, d]$. And since $H^{1}(c, d)$ is embedded into $L^{2}(c, d)$ compactly, we know the operator K is a compact opgrator. The proof is completed

4. Test of Toy Models

-Questions on the inverse problem approach:
(1) Regularization: How important are the regularization methods?

Can the solutions be systematically improved by the regularization method and the method of selecting the regularization parameter?
(2) Impact of input uncertainties: What is the dependence of the errors of solutions on the uncertainties of inputs? Larger, smaller or similar?
(3) Impact of α and Λ : How sensitive are the solutions to the parameters α and Λ ?

Does it exist a plateau?
(4) Impact of more conditions: Can the solutions be improved if we known more conditions?

4. Test of Toy Models

-Simple at the beginning: Tikhonov regularization + L-curve method for the regulator

- They are simple in mathematics and in practice and thus are very helpful to develop the new approach in the future.
- Uncertainties are the most important issue. $\quad b_{i}=\mu_{i} \pm \sigma_{i}$

$$
f(x)=a_{1} f_{1}(x)+a_{2} f_{2}(x) \quad g^{\delta}(y)=b_{1} g_{1}(y)+b_{2} g_{2}(y) \quad g_{i}(y)=\int_{a}^{b} \frac{f_{i}(x)}{y-x} d x
$$

Model 1: a monotonic function as $f_{1}(x)=\sin (\pi x), f_{2}(x)=e^{x}$;
Model 2: a simple non-monotonic function as $f_{1}(x)=x e^{-x}, f_{2}(x)=0$;
Model 3: an oscillating function as $f_{1}(x)=\sin (2 \pi x), f_{2}(x)=x$.

They are either helpful to clarify the properties of inverse problems or close to the real physical problem

4. Test: Importance of regularization

The solutions without any regularization:

- It can be clearly seen that the solutions are unstable and far from the true values.
- The ill-posed inverse problems can not be solved without any regularization.

4. Test: Importance of regularization

The solutions with Tikhonov regularization:

4. Test: Importance of regularization

The solutions with Tikhonov regularization:

- It can be seen clearly that some values of regularization parameters can give good results.
-The ill-posed inverse problems can be solved by regularization.
- The regularization parameter can be neither too small (not enough for regularization), nor too large (dominate over the original problem)
- But α still works by ranging several orders of magnitude.
- The regularization methods are very important in solving the inverse problems.

4. Test: Impact of input uncertainties

- The most important issue is to control the uncertainties!
- The uncertainties of the solutions are almost at the same level of the input errors.
- The smaller the input errors are, the more precise the solutions are.
- The precision of the predictions can be systematically improved by lowering down the input errors.

Input errors: 30\%

10%

1\%

4. Test: Plateaus of the regularization parameter α

There exist plateaus. Solutions are insensitive to regularization parameter. L-curve method is suitable. The inverse problem approach works for the non-perturbative calculations.

4. Test: Plateaus of the separation scale Λ

- There exist plateaus.
- Solutions are insensitive to the separation scale for monotonic and simple non-monotonic functions.
- The continuous condition at Λ might be even more helpful.

$D^{0}-\bar{D}^{0}$ Mixing

- The time evolution

$$
i \frac{\partial}{\partial t}\binom{D^{0}(t)}{\bar{D}^{0}(t)}=\left(\mathbf{M}-\frac{i}{2} \boldsymbol{\Gamma}\right)\binom{D^{0}(t)}{\bar{D}^{0}(t)}
$$

- Mixing parameters: Mass and Width differences

$$
x \equiv \frac{\Delta m}{\Gamma}=\frac{m_{1}-m_{2}}{\Gamma} \quad y \equiv \frac{\Delta \Gamma}{2 \Gamma}=\frac{\Gamma_{1}-\Gamma_{2}}{2 \Gamma}
$$

- Useful to search for new physics,
- but less understood in the Standard Model

Falk, et al, '02; Cheng, Chiang, '10
$y_{\mathrm{PP}+\mathrm{PV}}=(3.6 \pm 2.6) \times 10^{-3}$

- Before 2017, exclusive approach is hopeful

- After 2017, exclusive approach is dying

$$
\begin{aligned}
& y_{\mathrm{PP}+\mathrm{PV}}=(2.1 \pm 0.7) \times 10^{-3} \\
& \text { Jiang, FSY, Qin, Li, Lü, '17 }
\end{aligned}
$$

No theoretical methods work for D0 mixing No theoretical predictions for indirect CP violation

Inclusive Approach

quark level
Short-distance

Theory / Exp. comparison (for inclusive)

 NLO QCD Golowich and Petrov 2005$$
\mathrm{SM}\left\{\begin{array}{l}
x \simeq 6 \times 10^{-7} \\
y \simeq 6 \times 10^{-7}
\end{array}\right.
$$

Suppressed by GIM
B_{d} meson

Artuso, Borissov and Lenz, 2016
$\left\{\begin{array}{l}\mathrm{SM}\left\{\begin{array}{l}\Delta M_{s}=(18.3 \pm 2.7) \mathrm{ps}^{-1} \\ \Delta \Gamma_{s}=(0.088 \pm 0.020) \mathrm{ps}^{-1}\end{array}\right.\end{array}\right.$
$\left\{\begin{array}{l}\Delta M_{d}=(0.528 \pm 0.078) \mathrm{ps}^{-1} \\ \Delta \Gamma_{d}=(2.61 \pm 0.59) \cdot 10^{-3} \mathrm{ps}^{-1}\end{array}\right.$

HFLAV
$\left\{\begin{array}{l}\Delta M_{d}=(0.5055 \pm 0.0020) \mathrm{ps}^{-1} \\ \Delta \Gamma_{d}=0.66(1 \pm 10) \cdot 10^{-3} \mathrm{ps}^{-1}\end{array}\right.$

- For B_{s}, B_{d} mesons, the data are reproduced within 1σ.
- For D meson, the order of magnitude is not reproduced within leading-power.

Inverse Problem

$$
D^{0}-\bar{D}^{0} \text { mixing }
$$

$$
\left.D^{0}\right\}, \xi D^{0}
$$

$$
\int_{0}^{\Lambda} d s^{\prime} \frac{y\left(s^{\prime}\right)}{s-s^{\prime}}=\pi x(s)-\int_{\Lambda}^{\infty} d s^{\prime} \frac{y\left(s^{\prime}\right)}{s-s^{\prime}} \equiv \omega(s)
$$

parametrization:

$$
y(s)=\frac{N s\left[b_{0}+b_{1}\left(s-m^{2}\right)+b_{2}\left(s-m^{2}\right)^{2}\right]}{\left[\left(s-m^{2}\right)^{2}+d^{2}\right]^{2}}
$$

Li, Umeeda, Xu, FSY, PLB(2020)

Predict indirect CPV

$$
q / p=1.0002 e^{i 0.006^{\circ}}
$$

A real prediction

FIG. 7: Behaviors of $x(s)$ (dotted line) and $y(s)$ (solid line) for $\Lambda=4.3 \mathrm{GeV}^{2}$.

Inverse problem: $\quad x\left(m_{D}^{2}\right)=\left(0.21_{-0.07}^{+0.04}\right) \%, \quad y\left(m_{D}^{2}\right)=(0.52 \pm 0.03) \%$.

Experiment: $\quad x=\left(0.44_{-0.15}^{+0.13}\right) \%, \quad y=(0.63 \pm 0.07) \%$,
H.n.Li, 2208.14798

- Perspective: Using the Tikhonov regularization could provide more reasonable uncertainties.

muon g-2

- Muon g-2: 4.2 σ deviation from the SM Muon g-2, PRL(2021)

- Dominate uncertainty of the SM prediction: hadronic vacuum polarization (HVP) Aoyama, et al, Phys.Rept(2020)

- Inverse Problem:

$$
\int_{\lambda_{r}}^{\Lambda_{r}} d s^{\prime} \frac{\operatorname{Im} \Pi_{r}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}+s\right)}-\pi \frac{\Pi_{r}(0)}{s}=-\pi \frac{\Pi_{r}(-s)}{s}-\int_{\Lambda_{r}}^{\infty} d s^{\prime} \frac{\operatorname{Im}_{r}\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}+s\right)} \quad r=\rho, \omega, \phi
$$

- Result: Inverse problem: $a_{\mu}^{\mathrm{HVP}}=\left(641_{-63}^{+65}\right) \times 10^{-10}$
H.n.Li, Umeeda, 2004.06451

Non-perturbative properties can be revealed from asymptotic QCD by solving an inverse problem.

muon g-2

- Perspective: 4-loop pQCD combined with experimental data at reliable regions might solve the BABAR-KLOE problem and lower down the uncertainty of predictions.

QCD sum rules

- Conventional QCD sum rules $\quad \Pi_{\mu \nu}\left(q^{2}\right)=i \int d^{4} x e^{i q \cdot x}\langle 0| T\left[J_{\mu}(x) J_{\nu}(0)\right]|0\rangle$

Dispersion relation: $\quad \Pi\left(q^{2}\right)=\frac{1}{2 \pi i} \oint d s \frac{\Pi(s)}{s-q^{2}}=\frac{1}{\pi} \int_{t_{m i n}}^{\infty} d s \frac{\operatorname{Im} \Pi(s)}{s-q^{2}-i \epsilon}$

$$
\operatorname{Im} \Pi\left(q^{2}\right)=\pi f_{V}^{2} \delta\left(q^{2}-m_{V}^{2}\right)+\pi \rho^{h}\left(q^{2}\right) \theta\left(q^{2}-s_{h}\right)
$$

Quark-hadron duality: $\rho^{h}(s)=\frac{1}{\pi} \operatorname{Im} \Pi^{\text {pert }}(s) \theta\left(s-s_{0}\right)$

$$
\int_{S_{h}}^{\infty} d s \frac{\rho^{h}(s)}{s-q^{2}}=\frac{1}{\pi} \int_{s_{0}}^{\infty} d s \frac{\operatorname{Im} \Pi^{\mathrm{pert}}(s)}{s-q^{2}}
$$

- Uncertainty sources: quark-hadron duality. Results are very sensitive to the effective threshold s_{0}

QCD sum rules

- Excited states and continuum spectrum can be directly solved by the inverse problem.
- Avoid the quark-hadron duality

$$
\begin{gathered}
\operatorname{Im} \Pi\left(q^{2}\right)= \\
\quad \pi f_{\rho}^{2} \delta\left(q^{2}-m_{\rho}^{2}\right)+\pi f_{\rho(1450)}^{2} \delta\left(q^{2}-m_{\rho(1450)}^{2}\right)+\pi f_{\rho(1700)}^{2} \delta\left(q^{2}-m_{\rho(1700)}^{2}\right) \\
+\pi f_{V}^{2} \delta\left(q^{2}-m_{V}^{2}\right)+\pi \rho^{h}\left(q^{2}\right), \\
m_{\rho(770)}\left(m_{\rho(1450)}, m_{\rho(1700)}, m_{\rho(1900)}\right) \approx 0.78(1.46,1.70,1.90) \mathrm{GeV} \\
f_{\rho(770)}\left(f_{\rho(1450)}, f_{\rho(1700)}, f_{\rho(1900)}\right) \approx 0.22(0.19,0.14,0.14) \mathrm{GeV}
\end{gathered}
$$

H.n.Li, Umeeda, 2006.16593

- Perspective: Inverse problem modifies the QCD sum rules.
- Provide under-controlled uncertainties.
- Calculate whatever calculated.
- Advantage to excited states, no matter how much the pole contributes.

Light-cone distribution amplitudes

- Theoretical uncertainties on baryon CPV are dominated by the baryon LCDAs.
- Limited knowledge for nucleons. VERY very limited for all the others, especially for HIGH TWISTs.
- LaMET and Lattice QCD

```
Z.F.Deng, C.Han, W.Wang, J.Zeng, J.L.Zhang, 2304.09004
Hua, et al, 2021
```


- Inverse Problem can give very high moments.

$$
\begin{aligned}
& \left.\left(a_{2}^{\pi}, a_{4}^{\pi}, a_{6}^{\pi}, a_{8}^{\pi}, a_{10}^{\pi}, a_{12}^{\pi}, \cdots, a_{32}^{\pi}, a_{34}^{\pi}\right)\right|_{\mu=2 \mathrm{GeV}} \quad \mathrm{H.n.Li}, 2205.06746 \\
= & \left(0.1775_{-0.0040}^{+0.0036}, 0.0957_{-0.0012}^{+0.0011}, 0.0762_{-0.0003}^{+0.0006}, 0.0688_{-0.0012}^{+0.0016}, 0.0643_{-0.0017}^{+0.0021}, 0.0603_{-0.0019}^{+0.0024}\right. \\
& \left.\cdots, 0.0089_{-0.0006}^{+0.0004}, 0.0028_{-0.0003}^{+0.0001}\right),
\end{aligned}
$$

- Perspective: Tikhonov regularization could provide more reasonable uncertainties.

反问题是什么？

－反问题：

例：

小学期间	x 和 K 是整数	求 $y=K x$
中学期间	x 是实数 K 是映射或函数	求 $y=K(x)$
大学期间	x 是向量 K 是矩阵	求 $y=K * x$
	$x=x(t)$ 是函数 K 是积分运算求 $y(t)=\int \frac{x(s)}{t-s} d s$	
泛函：算子方程	x 是函数空间 K 是算子	求 $y=K x$

$$
\begin{gathered}
\text { 反问题 } \\
x=\frac{1}{K} * y \\
\text { 隐函数定理 } \\
x=K^{-1} y \\
? \\
x=K^{-1} y
\end{gathered}
$$

反问题是什么？

－反问题：

$$
\underset{\substack{\text { 原因或输入 }}}{\boldsymbol{r}} \rightarrow \underset{\substack{\text { 过程或模型 }}}{\boldsymbol{K}} \underset{\substack{\text { 结果或输出 }}}{\boldsymbol{y}}
$$

例：

反问题是什么？

－反问题：

$$
\underset{\substack{\boldsymbol{x} \\ \text { 原因或输入 }}}{\boldsymbol{x}} \underset{\substack{\text { 过程或模型 }}}{\boldsymbol{K}} \quad \underset{\substack{\text { 结果或输出 }}}{\boldsymbol{y}}
$$

例：

$$
\text { 积分方程 } \quad \int_{0}^{1} \frac{f(x)}{y-x} d x=g(y), y \in[2,3] \text { 知道 } g(y) \text {, 求 } f(x)=\text { ? }
$$

存在性未知；唯一性未知；但不稳定

正问题 \longrightarrow

$$
\int_{a}^{b} \frac{f(x)}{y-x} \mathrm{~d} x=g(y), \quad y \in[c, d], c>b, a>0
$$

Proof. Since K is a linear operator, we know that $K f_{1}-K f_{2}=K\left(f_{1}-f_{2}\right)=0$. Setting $f=f_{1}-f_{2}$, we just need to prove that $K f=0$ implies $f(x)=0$, a. e. $x \in[a, b]$.

It is easy to obtain that $K f=\int_{a}^{b} \frac{1}{y-x} f(x) d x=\int_{a}^{b}\left(\frac{1}{y} \sum_{k=0}^{\infty}\left(\frac{x}{y}\right)^{k}\right) f(x) d x$. Since $x \in[a, b], y \in[c, d]$, $c>b$, we know $\left|\frac{x}{y}\right| \leq\left|\frac{b}{c}\right|<1$, which implies that $\left|\sum_{k=0}^{\infty}\left(\frac{x}{y}\right)^{k} f(x)\right| \leq \sum_{k=0}^{\infty}\left(\frac{b}{c}\right)^{k}|f(x)|$ for all $x \in[a, b]$. Combined with $\int_{a}^{b}|f(x)| d x<+\infty$ and the control convergence theorem, we have

$$
\begin{equation*}
y \int_{a}^{b} \frac{1}{y-x} f(x) d x=\sum_{k=0}^{\infty} \frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x=0, \quad y \in[c, d] . \tag{3.4}
\end{equation*}
$$

If $d=+\infty$, by using (3.4), we have

$$
\begin{equation*}
\int_{a}^{b} f(x) d x+\frac{1}{y} \int_{a}^{b} x f(x) d x+\cdots+\frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x+\cdots=0, \quad y \in(c,+\infty) \tag{3.5}
\end{equation*}
$$

Letting $y \rightarrow+\infty$ in (3.5), we have $\int_{a}^{b} f(x) d x=0$. Then multiplying y on both sides of (3.5) and letting $y \rightarrow+\infty$, we also have $\int_{a}^{b} x f(x) d x=0$. Repeating above process, we can obtain that

$$
\begin{equation*}
\int_{a}^{b} x^{k} f(x) d x=0, \quad k=0,1,2, \cdots \tag{3.6}
\end{equation*}
$$

Proof of uniqueness:

If $d<+\infty$, taking $z \in D:=\{z \in \mathbb{C}:|z| \geq c\}$, we have

$$
\left|\sum_{k=0}^{\infty} \frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x\right| \leq \sum_{k=0}^{\infty} \frac{1}{c^{k}}\left|\int_{a}^{b} x^{k} f(x) d x\right| \leq \sum_{k=0}^{\infty} \frac{b^{k}}{c^{k}} \int_{a}^{b}|f(x)| d x<+\infty,
$$

which implies that the series $\sum_{k=0}^{\infty} \frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x$ is convergent uniformly on D. Since $\frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x$ is analytic on D for each k and use the Weierstrass theorem, we conclude that the series $\sum_{k=0}^{\infty} \frac{1}{z^{k}} \int_{a}^{b} x^{k} f(x) d x$ is analytic on D. Further, we know $\sum_{k=0}^{\infty} \frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x$ is real analytic on $y \in(c,+\infty)$. Combined with the analytic continuation, we know that (3.4) holds for $y>c$, i. e.

$$
\sum_{k=0}^{\infty} \frac{1}{y^{k}} \int_{a}^{b} x^{k} f(x) d x=0, \quad y \in(c,+\infty) .
$$

Similar to the proof process of the case $d=+\infty$, we also conclude that $\int_{a}^{b} x^{k} f(x) d x=0, k=0,1,2, \cdots$ for $d<+\infty$.

Proof of uniqueness:
Since $C[a, b]$ is dense in $L^{2}(a, b)$, then for $f(x) \in L^{2}(a, b)$ and any $\epsilon>0$, there exists $\tilde{f}(x) \in C[a, b]$, such that $\|f-\tilde{f}\|_{L^{2}(a, b)}<\epsilon$. On the other hand, for $\tilde{f}(x) \in C[a, b]$, there exists a polynomial $Q_{n}(x)$ of degree $n \in \mathbb{N}$, such that $\left\|\tilde{f}-Q_{n}\right\|_{C[a, b]}<\epsilon$ by the Weierstrass theorem. Therefore, we have

$$
\begin{aligned}
\left\|f-Q_{n}\right\|_{L^{2}(a, b)} & \leq\|f-\tilde{f}\|_{L^{2}(a, b)}+\left\|\tilde{f}-Q_{n}\right\|_{L^{2}(a, b)} \\
& \leq \epsilon+\sqrt{b-a}\left\|\tilde{f}-Q_{n}\right\|_{C[a, b]} \\
& <\epsilon+\epsilon \sqrt{b-a},
\end{aligned}
$$

By using (3.6), we know that $\int_{a}^{b} f(x) Q_{n}(x) d x=0$. Combined with the Cauchy inequality, we have

$$
\begin{aligned}
\|f\|_{L^{2}(a, b)}^{2} & =\int_{a}^{b} f^{2}(x) d x=\int_{a}^{b}\left(f^{2}(x)-f(x) Q_{n}(x)\right) d x \\
& \leq \int_{a}^{b}|f(x)| \cdot\left|f(x)-Q_{n}(x)\right| d x \\
& \leq\left(\int_{a}^{b} f^{2}(x) d x\right)^{\frac{1}{2}}\left(\int_{a}^{b}\left|f(x)-Q_{n}(x)\right|^{2} d x\right)^{\frac{1}{2}} \\
& =\|f\|_{L^{2}(a, b)}\left\|f-Q_{n}\right\|_{L^{2}(a, b)} \\
& \leq(\epsilon+\epsilon \sqrt{b-a})\|f\|_{L^{2}(a, b)},
\end{aligned}
$$

$$
\int_{a}^{b} \frac{f(x)}{y-x} \mathrm{~d} x=g(y), \quad y \in[c, d], c>b, a>0
$$

We show the instability of the inverse problem of dispersion relation by the special case. Taking $a=0, b=1, c=2, d=3, f_{2}(x)=f_{1}(x)+\sqrt{n} \cos (n \pi x)$, and $f_{1,2}$ are the solutions of $g_{1,2}$ with $g_{i}(y)=\int_{0}^{1} \frac{1}{y-x} f_{i}(x) d x$. As $n \rightarrow \infty$, it is obvious that

$$
\begin{equation*}
\left\|f_{2}-f_{1}\right\|_{L^{2}(0,1)}=\left(\int_{0}^{1}(\sqrt{n} \cos (n \pi x))^{2} d x\right)^{1 / 2}=\frac{\sqrt{n}}{\sqrt{2}} \rightarrow \infty, \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|g_{2}-g_{1}\right\|_{L^{2}(2,3)}=\frac{1}{\sqrt{n} \pi}\left(\int_{2}^{3}\left(\int_{0}^{1}\left(\frac{1}{y-x}\right)^{2} \sin (n \pi x) d x\right)^{2} d y\right)^{1 / 2} \leq \frac{1}{\sqrt{n} \pi} \rightarrow 0 . \tag{3.8}
\end{equation*}
$$

That means the solutions could be changed infinitely even though the noise of the input data is approaching to vanish. So the inverse problem is unstable.

Numerical Method of Tikhonov Regularization

$\varphi_{i}(x)=\left\{\begin{array}{l}\frac{x-x_{i-1}}{h}, x \in\left[x_{i-1}, x_{i}\right], \\ -\frac{x-x_{i+1}}{h}, x \in\left[x_{i}, x_{i+1}\right], \\ 0, \text { otherwise },\end{array}\right.$

$$
f_{\alpha}^{\delta}=\underset{f \in L^{2}(a, b)}{\arg \min } J(f)=\underset{f \in L^{2}(a, b)}{\arg \min }\left(\frac{1}{2}\left\|K f-g^{\delta}\right\|_{L^{2}(c, d)}^{2}+\frac{\alpha}{2}\|f\|_{L^{2}(a, b)}^{2}\right)
$$

$\varphi_{0}(x)=\left\{\begin{array}{l}-\frac{x-x_{1}}{h}, x \in\left[x_{0}, x_{1}\right] \\ 0, \text { otherwise }\end{array}\right.$

$$
f_{\alpha, n}^{\delta}(x)=\sum_{i=0}^{n} c_{i} \varphi_{i}(x)
$$

$\varphi_{n}(x)=\left\{\begin{array}{l}\frac{x-x_{n-1}}{h}, x \in\left[x_{n-1}, x_{n}\right] \\ 0, \text { otherwise } .\end{array}\right.$

$$
\begin{aligned}
& J\left(f_{\alpha, n}^{\delta}\right)=\frac{1}{2}\left\|\sum_{i=0}^{n} c_{i} K \varphi_{i}-g^{\delta}\right\|_{L^{2}(c, d)}^{2}+\frac{\alpha}{2}\left\|\sum_{i=0}^{n} c_{i} \varphi_{i}\right\|_{L^{2}(a, b)}^{2} \\
& =\frac{1}{2} \sum_{i, j=0}^{n} c_{i} c_{j}\left(K \varphi_{i}, K \varphi_{j}\right)_{L^{2}(c, d)}-\sum_{i=0}^{n} c_{i}\left(K \varphi_{i}, g^{\delta}\right)_{L^{2}(c, d)}+\frac{1}{2}\left(g^{\delta}, g^{\delta}\right)_{L^{2}(c, d)}+\frac{\alpha}{2} \sum_{i, j=0}^{n} c_{i} c_{j}\left(\varphi_{i}, \varphi_{j}\right)_{L^{2}(a, b)}
\end{aligned}
$$

$X_{n}=\operatorname{span}\left\{\varphi_{0}, \varphi_{1}, \cdots, \varphi_{n}\right\}$

$$
A_{i j}=\left(K \varphi_{i}, K \varphi_{j}\right)_{L^{2}(c, d)} \quad B_{i j}=\left(\varphi_{i}, \varphi_{j}\right)_{L^{2}(a, b)} \quad C=\left(c_{0}, c_{1}, \cdots, c_{n}\right)^{T}
$$

$$
f_{\alpha, n}^{\delta}(x)=\sum_{i=0}^{n} c_{i} \varphi_{i}(x)
$$

$$
(A+\alpha B) C=D \quad D_{i}=\left(K \varphi_{i}, g^{\delta}\right)_{L^{2}(c, d)}
$$

Theorem 4.3. If the noise δ and the regularization parameter α are fixed, we have $\left\|f_{\alpha, n}^{\delta}-f_{\alpha}^{\delta}\right\|_{L^{2}(a, b)} \rightarrow$

5. Physical applications: neutral meson mixing

$$
\frac{\left(s-s_{1}\right)\left(s_{1}-s_{2}\right)\left(s_{2}-s\right)}{2 \pi} \int_{s_{t h}}^{\Lambda} \frac{\Gamma_{12}\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{1}\right)\left(s^{\prime}-s_{2}\right)} d s^{\prime}
$$

$$
=\left(s_{1}-s_{2}\right) M_{12}(s)+\left(s_{2}-s\right) M_{12}\left(s_{1}\right)+\left(s-s_{1}\right) M_{12}\left(s_{2}\right)
$$

$$
-\frac{\left(s-s_{1}\right)\left(s_{1}-s_{2}\right)\left(s_{2}-s\right)}{2 \pi} \int_{\Lambda}^{\infty} \frac{\Gamma_{12}\left(s^{\prime}\right)}{\left(s^{\prime}-s\right)\left(s^{\prime}-s_{1}\right)\left(s^{\prime}-s_{2}\right)} d s^{\prime}
$$

$$
\Gamma_{21}^{q}=\frac{1}{2 M_{B_{q}}} \operatorname{Disc}\left\langle\bar{B}_{q}\right| i \int d^{4} x T\left(\mathcal{H}_{e f f}^{\Delta B=1}(x) \mathcal{H}_{e f f}^{\Delta B=1}(0)\right)\left|B_{q}\right\rangle
$$

