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1. Motivation: non-perturbative approaches

•Lattice QCD: the only recognized first-principle method

•QCD sum rules, Dyson-Schwinger Equation, Chiral perturbation 
theory, Holographic QCD, Light-front quantization, Other EFTs and 
phenomenological models

•Each of them has its advantages and shortcomings.

•It is always welcome to develop a new theoretical method for non-perturbation, 
to make complimentary predictions what are difficult by the above methods.

•Inverse problem is such a new method. Its development is learning Lattice QCD. 
It might collaborate with Lattice QCD. 
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 The main idea of the inverse problem approach 

If s > Λ,

To be solved calculable
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•Dispersion relation: first-class Fredholm integration equation

Existence of solution ? Uniqueness of the solution ?? Stability of the solution ???

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0

4

2.ill-posedness of the inverse problem



• The operator ，K : X → Y Kx = y, x ∈ X, y ∈ Y

• Inverse problem: solve  by known of  and ,x K y

• Definition of well-posedness:

• Ill-posedness: At least one of the above conditions is not satisfied

2.ill-posedness of the inverse problem

Define:

• If well-posed,  must be a bounded or continuous operator, otherwise ill-posed.K−1

x = K−1y
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∫
b

a

f(x)
y − x

dx = g(y)



Proof of uniqueness:

2. Proof of the ill-posedness

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0
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∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0Proof of uniqueness:

2. Proof of the ill-posedness
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2. Proof of the ill-posedness

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0Proof of instability:
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1) Existence

2) Uniqueness

3) Stability

The inverse problem of dispersion relation is ill-posed

Can we find a good solution? And how?

2. Proof of the ill-posedness

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0
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f(x) g(y)

uniquenessInstability

See 2211.13753



•Construct a bounded operator which is approximate to , 

•Ill-posed problem => well-posed approximate problem, so that  

•  is the approximate solution related to both  and .

•An effective regularization strategy is to satisfy  , as 

K−1

f δ
α = Rαgδ

f δ
α α δ

f δ
α → f ∥gδ − g∥ ≤ δ → 0

3. Regularization method
Define:
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3. Tikhonov Regularization

A priori condition: f = K*v, v ∈ G, ∥v∥G ≤ E ∥f δ
α − f∥F ≤ δ

2 α
+

αE
2

Take α = δ/E

∥f δ
α − f∥F ≤ δE → 0, δ → 0

•The most important: the uncertainty 
converges to vanishing as .

•It exists an upper limit !  
The uncertainty must be controllable.  

δ → 0
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f δ
α = Rαgδ

lim
α→0

RαKf = f



3. Selection rules of the Regularization parameter

L-curve method:

A-priori methods are always difficult to use in practice.
A-posterior methods can be tried. 

Both of  and  should be minimized together,∥f δ
α∥ ∥gδ − Kf δ

α∥

considering
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4. Test: Importance of regularization

• It can be clearly seen that the solutions are unstable and far from the true values.
• The ill-posed inverse problems can not be solved without any regularization.

The solutions without any regularization:

model 1 model 2 model 3
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4. Test: Impact of improved regularization method

•The regularization method 
works well for the three 
models

30% 10% 1% Input errors:
14

model 1

model 2

model 3

• Non-stationary Tikhonov 
regularization for model 3



4. Test: Insensitivity to  and α Λ
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•Solutions are insensitive to the 
regularization parameter and the 
separation scale.

•The uncertainties of the inverse 
problem can be well controlled.
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4. Test: Constrained data

•If there is an experimental data or lattice data 
with much smaller uncertainty than the original 
solutions, we can use it to constrain the 
solution to be more precise in the whole range. 
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•This method can combine with experiments and Lattice QCD to improve the precision of predictions

Original uncertainty directly from inputs

Data from experiments or Lattice QCD

Improved uncertainty considering data



Criteria of a good theoretical approach

(1) Well defined in mathematics

(2) Realization in numerical calculations

(3) Can be systematically improved

(4) Simple at the beginning

 Dispersion relation + proof of ill-posedness

 Regularization methods

 Errors converge to vanishing as 

 Tikhonov regularization

δ → 0
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Inverse problem approach has a potential to be a first-principle approach



5. Physical perspectives 

(1) The whole non-perturbative region is solved simultaneously. 

•Advantage for the excited states. Even higher precision by combination with 
experiments or Lattice QCD for the ground states.

(2) Modifying the QCD sum rules, with excited states and density function solved 
directly, without the assumption from global quark-hadron duality.

•Can calculate whatever QCD sum rules did, but with reasonable uncertainties. 

•Advantage for the low  region of transition form factors of  by light-
cone QCD sum rules. 

(3) Might solve the inverse problem in the Lattice QCD. And many others…

q2 B → K(*)
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Summary

• We propose a novel method to calculate the non-perturbative quantities. 

• With the dispersion relation of QFT, the non-perturbative quantities are obtained 
by solving the inverse problem with the perturbative calculations as inputs. 

• The precision of the predictions can be systematically improved, without any 
artificial assumptions.

• The mathematical basis has been provided. 

• Physical applications are expected.
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Thank you!



Backups



•Firstly proposed to solve the problem of understanding of  mixing [H.n.Li, 
H.Umeeda, FSY, F.Xu, 2001.04079] 

•Physical applications:
•muon g-2 [H.n.Li, H.Umeeda, 2004.06451]
•modifying the QCD sum rules [H.n.Li, H.Umeeda, 2006.16593]
•glueballs [H.n.Li, 2109.04956]
•pion distribution amplitudes [H.n.Li, 2205.06746]
•neutral meson mixings [H.n.Li, 2208.14798]
•understandings of fermion masses and EW masses [H.n.Li, 2302.01761, 2304.05921, 
2306.03463]

•Its mathematical basis should be provided [A.S.Xiong, T.Wei, FSY, 2211.13753].

D0 − D0
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Inverse problem in Lattice QCD

Rothkopf, 2211.10680

Spectral function reconstruction from Euclidean lattices
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Inverse problem in Lattice QCD

Jian Liang’s talk @ 2nd EicC CDR workshop
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hep-lat/0011040
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The precision can be systematically improved

(1) Suitable regularization method and selection rule of the regulators

(2) Higher precision of input data

(3) Combination with higher precise data of experiments or Lattice QCD.

Without any beyond-control assumptions, the precision can be systematically improved:
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1. The main idea of the inverse problem approach

•With the dispersion relation of QFT, the non-perturbative quantities are obtained by solving 
the inverse problem with the perturbative calculations as inputs. 

•Using the regularization method, the solutions are stable, and can be converged to the 
true value as the input errors approaching zero. 

•The precision of the predictions can be systematically improved, without any artificially 
assumptions.
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1. Dispersion relations and inverse problems

 Dispersion relation:

• Based on Quantum Field Theory and correlation functions

• Analyticity of QFT, relation between a physical point and the curves, 
or relation between the real and imaginary parts
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• The above formula is just an example. Any dispersion relation would be studied similarly.  

Re[Π(s)] = 1
π ∫

∞

0

Im[Π(s′ )]
s − s′ 

ds′ 



If s > Λ,

calculableTo be solved

⊕
⊖

⊖
⊕ φ( ⃗x) = 1

4πε0 ∫ ρ( ⃗x′ )
| ⃗x − ⃗x′ |

dV′ 

1. Dispersion relations and inverse problems
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•    ==>   .  Discretization? Kx = y x = K−1y

2x1 + 3x2 = 5
1.9999x1 + 3.0001x2 = 5

x1 = 1, x2 = 1{
2x1 + 3x2 = 5
1.9999x1 + 3.0001x2 = 5.01

x1 = − 59, x2 = 41{
•A very small noise might cause a large change of solutions

2.  ill-posedness of the inverse problem
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2.  ill-posedness of the inverse problem

2x1 + 3x2 = 5
1.9999x1 + 3.0001x2 = 5

x1 = 1, x2 = 1{
2x1 + 3x2 = 5
1.9999x1 + 3.0001x2 = 5.01

x1 = − 59, x2 = 41{
•A very small noise might cause a large change of solutions

|K | = 0.0005,K = ( 2 3
1.9999 3.0001), K−1 = K*

|K |
= ( 6000.2 −6000

−3999.8 4000 )
 enhances the errorsK−1
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•In the continuum limit,  is unbounded. The problem is ill-posed. K−1



• The operator ，K : X → Y Kx = y, x ∈ X, y ∈ Y

2.  ill-posedness of the inverse problem

• The inverse problem of dispersion relation must be ill-posed. 

• K is a linear bounded compact operator. It doesn’t  have a bounded inverse operator in the infinite 
dimensional space.
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4. Test of Toy Models

•Questions on the inverse problem approach:

(1) Regularization: How important are the regularization methods?  
Can the solutions be systematically improved by the regularization method and 
the method of selecting the regularization parameter?

(2) Impact of input uncertainties: What is the dependence of the errors of solutions 
on the uncertainties of inputs? Larger, smaller or similar? 

(3) Impact of  and : How sensitive are the solutions to the parameters  and ? 
Does it exist a plateau?

(4) Impact of more conditions: Can the solutions be improved if we known more 
conditions?

α Λ α Λ
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4. Test of Toy Models

• They are simple in mathematics and in practice and thus are very helpful to develop the new approach 
in the future.

•Simple at the beginning: Tikhonov regularization + L-curve method for the regulator 

•Uncertainties are the most important issue.  

They are either helpful to clarify the properties of inverse problems or close to the real physical problem
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4. Test: Importance of regularization

• It can be clearly seen that the solutions are unstable and far from the true values.
• The ill-posed inverse problems can not be solved without any regularization.

The solutions without any regularization:

model 1 model 2 model 3
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4. Test: Importance of regularization

The solutions with Tikhonov regularization:

model 2

α =

model 3
35



4. Test: Importance of regularization

• It can be seen clearly that some values of 
regularization parameters can give good results.

• The ill-posed inverse problems can be solved by  
regularization.

• The regularization parameter can be neither too 
small (not enough for regularization), nor too large 
(dominate over the original problem)

• But  still works by ranging several orders of 
magnitude. 

• The regularization methods are very important in 
solving the inverse problems.

α

The solutions with Tikhonov regularization:

model 1

α =
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4. Test: Impact of input uncertainties

• The most important issue is 
to control the uncertainties! 

30% 10% 1% Input errors:

• The uncertainties of the solutions are almost 
at the same level of the input errors. 

• The smaller the input errors are, the more 
precise the solutions are.

• The precision of the predictions can be 
systematically improved by lowering 
down the input errors.
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4. Test: Plateaus of the regularization parameter α
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There exist plateaus. Solutions are insensitive to regularization parameter. L-curve method is suitable.
The inverse problem approach works for the non-perturbative calculations.

∥f δ
α − f∥H1
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4. Test: Plateaus of the separation scale Λ

Λ

model 1 model 2 model 3

• There exist plateaus. 
• Solutions are insensitive to the separation scale for monotonic and simple non-monotonic functions. 
• The continuous condition at  might be even more helpful. Λ
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Mixing

• The time evolution 

• Mixing parameters: Mass and Width differences

• Useful to search for new physics, 
• but less understood in the Standard Model

40



Exp

yD

yPP+PV before 2017

yPP+PV after 2017

• Before 2017, exclusive approach is hopeful

• After 2017, exclusive approach is dying

 Jiang, FSY, Qin, Li, Lü, ’17

 Falk, et al, ’02; Cheng, Chiang, ’10

Inclusive approach 
doesn’t work

No theoretical methods work for D0 mixing
No theoretical predictions for indirect CP violation

HFLAV, ’16

Lenz, et al, ’12

yPP+PV = (3.6 ± 2.6) × 10−3

yexp = (6.1 ± 0.8) × 10−3

yPP+PV = (2.1 ± 0.7) × 10−3

yincl ∼ 10−7
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quark level

Short-distance

Inclusive 
Approach
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 mixingD0 − D0
multiple solutions

Predict indirect CPV consistent with data

Additional conditions:

data of x and y as inputs

parametrization:

Li, Umeeda, Xu, FSY, PLB(2020)

 Inverse Problem 

q/p = 1.0002ei0.006∘
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A real prediction

H.n.Li, 2208.14798 

Inverse problem:

Experiment:
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• Perspective: Using the Tikhonov regularization could provide more reasonable uncertainties.



muon g-2 

• Muon g-2: 4.2  deviation from the SMσ

• Dominate uncertainty of the SM prediction: hadronic vacuum polarization (HVP)

Muon g-2, PRL(2021)

Aoyama, et al, Phys.Rept(2020)

• Inverse Problem:

H.n.Li, Umeeda, 2004.06451• Result: Inverse problem:

Non-perturbative properties can be revealed from asymptotic QCD by solving an inverse problem.
45
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muon g-2 

• Perspective: 4-loop pQCD combined with experimental data at reliable regions  
might solve the BABAR-KLOE problem and lower down the uncertainty of predictions.  

Zhiqing Zhang’s slides



QCD sum rules 

• Conventional QCD sum rules

• Uncertainty sources: quark-hadron duality. Results are very sensitive to the effective threshold s0

Dispersion relation:

Quark-hadron duality:
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• Excited states and continuum spectrum can be directly solved by the inverse problem.

• Avoid the quark-hadron duality

H.n.Li, Umeeda, 2006.16593
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QCD sum rules 

• Perspective: Inverse problem modifies the QCD sum rules. 
• Provide under-controlled uncertainties. 
• Calculate whatever calculated. 
• Advantage to excited states, no matter how much the pole contributes.



• Theoretical uncertainties on baryon CPV are dominated by the baryon LCDAs.

• Limited knowledge for nucleons. VERY very limited for all the others, especially for 
HIGH TWISTs.  

49

Z.F.Deng, C.Han, W.Wang, J.Zeng, J.L.Zhang, 2304.09004
Hua, et al, 2021

• LaMET and Lattice QCD

• Inverse Problem can give very high moments. 

Light-cone distribution amplitudes

H.n.Li, 2205.06746 

• Perspective: Tikhonov regularization could provide more reasonable uncertainties.
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(()) = )2 *(+) = ,(

(()) = )2 + sin(10-)) * = ,(

正问题
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Proof of uniqueness: ∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0
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Proof of uniqueness:
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Proof of uniqueness:
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∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0Proof of instability:
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Numerical Method of Tikhonov Regularization
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K0 − K0

5. Physical applications: neutral meson mixing 

1/τKS

ΔΓK = 2 |Γ12 |

(s − s1)(s1 − s2)(s2 − s)
2π ∫

Λ

sth

Γ12(s′ )
(s′ − s)(s′ − s1)(s′ − s2)

ds′ 

− (s − s1)(s1 − s2)(s2 − s)
2π ∫

∞

Λ

Γ12(s′ )
(s′ − s)(s′ − s1)(s′ − s2)

ds′ 

= (s1 − s2)M12(s) + (s2 − s)M12(s1) + (s − s1)M12(s2)
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