

TMD Wave Functions of Pion from Lattice QCD

arXiv:2302.09961; JHEP.08.172(2023)

华俊 华南师范大学

2023.10.08

第三届中国格点量子色动力学研讨会

Soft Function

TMDWFs by LaMET

 PDFs: the probability distribution of partons (quarks and gluons) within a hadron —— Inclusive process

• LCDAs: the probability amplitude for partons within a hadron

Soft Function

TMDWFs by LaME

> One dimensional LCDA > Three dimensional TMDWF **₩ ₩ ₩ ₩ ...** $\widehat{}$... $\psi(\mathbf{x},k_{\perp}^2) \times \text{GeV}^2$ 0 k_{\perp}^2/GeV^2 1.6 0.5 1.2 $(x)_{Hb}^{1.2}$ 2 0.4 00 0.25 0.0 0.75 0.2 0.4 0.6 0.8 1.0 0.0 х Х C.D.Roberts et.al. PPNP.120, 138883 (2021)

Soft Function

TMDWFs by LaMET

Outlook and Summar

> Large Momentum Effective Theory:

LaMET is capable for Entire x dependence distributions

Soft Function

TMDWFs by LaME

Outlook and Summar

Recent Progress on LCDA

R.Zhang et.al. PRD. 125, 094519(2020) Pion LCDA with 3 lattice spacings

X.Ji et.al. NPB.964,115311(2021) A hybrid renormalization scheme

(LPC) J.Hua et.al. PRL.127, 062002(2021) *K*^{*}, φ LCDA at physical with hybrid

(LPC) Y.K.Huo et.al. NPB. 969, 115443 (2021) Solve linear divergence by self renormalization

(LPC) J.Hua et.al. PRL.129,132001 (2022) π , K LCDA with self renormalization

R.Zhang et.al. RPB.844,138081(2023) Resummation to improve endpoint region

Soft Function

TMDWFs by LaME⁻

Outlook and Summary

Recent Progress on TMDWF

(LPC) Q.A. Zhang et.al. PRL. 125, 192001 (2020) Soft function and CS kernel (First)

M. Schlemmer et.al. JHEP.08,004(2021) CS kernel by different TMDs

P. Shanahan et.al. PRD.104, 114502(2021) CS kernel from quasi-TMDPDFs (1-loop)

L.Yuan, X.Feng et.al. PRL. 128, 062002 (2022) Twists' effects on soft function

(LPC) K.Zhang PRL.129,082002 (2022) Renormalization of TMDs on lattice

(LPC) M.H.Chu et.al. PRD.106, 034509 (2022) CS kernel from quasi-TMDWFs (1-loop)

A. Avkhadiev et.al. arXiv2307.12359 (2023) CS kernel at physical pion mass

TMDWFs by LaMET

11

TMD Factorization in LaMET

- $H^{\pm}(\zeta_z, \overline{\zeta}_z, \mu^2)$: Matching coefficient,
- $K(b_{\perp}, \mu)$: Collins-Soper kernel,
- $\Psi^{\pm}(x, b_{\perp}, \mu, \zeta)$: TMDWF.

MDWFs by LaMET

Outlook and Summar

Lattice ensembles

$L^3 \times T$	a (fm)	m_{π}^{sea} (MeV)	m_{π}^{v} (MeV)
$24^3 \times 64$	0.12	310	670
			measurement
			1053×4

$L^3 \times T$	a (fm)	m_{π}^{sea} (MeV)	m_{π}^{ν} (MeV)
$48^3 \times 48$	0.098	333	662
			measurement
			952×4

- 2+1+1 flavors of HISQ action (MILC)
- Momenta: 1.72, 2.15, 2.58, 3.01GeV
- Coulomb gauge fixed wall source

- 2+1 flavors of Symanzik gauge action (CLS)
- Momenta: 1.58, 2.11, 2.64, 3.16GeV
- Coulomb gauge fixed wall source

Motivation & Recent Progress Soft Function

TMDWFs by LaMET Outlook and Summary

13

Soft Function by LaMET

Four quark form factor:

 $F(b_{\perp},P_1,P_2,\Gamma,\mu)=rac{\langle P_2|ar{q}(b_{\perp})\Gamma q(b_{\perp})ar{q}(0)\Gamma'q(0)|P_1
angle}{ig\langle 0|ar{q}(0)\gamma^\mu\gamma^5q(0)|P_1ig
angle\langle P_2|ar{q}(0)\gamma_\mu\gamma^5q(0)|0ig
angle}$

Normalization factor: $f_{\pi}^2 P_1 P_2$

Factorization of form factor:

 $S_I(b_\perp,\mu)=rac{F(b_\perp,P_1,P_2,\Gamma,\mu)}{\int dx_1 dx_2 H(x_1,x_2,\Gamma) ilde{\Psi}^{\pm st}(x_2,b_\perp,\zeta^z) ilde{\Psi}^{\pm}(x_1,b_\perp,\zeta^z)}$

MDWFs by LaMET

Soft Function by LaMET

Soft Function

MDWFs by LaME

Outlook and Summa

Soft Function by LaMET

Operator mixing in Soft function:

Y.Li et.al. PRL.128, 062002 (2022)

By Fierz rearrangement analysis, these combination can suppress high twists contribution:

$$\sum F(\Gamma = \gamma^{\mu}) + F(\Gamma = \gamma^{\mu}\gamma_{5})$$

$$= (\bar{\psi}_{a}\gamma^{x,y}\psi_{b})(\bar{\psi}_{c}\gamma_{x,y}\psi_{d}) + (\bar{\psi}_{a}\gamma^{x,y}\gamma_{5}\psi_{b})(\bar{\psi}_{c}\gamma_{x,y}\gamma_{5}\psi_{d})$$

$$= \bar{\psi}_{c}\gamma^{\mu}\gamma_{5}\psi_{b}\bar{\psi}_{a}\gamma_{\mu}\gamma_{5}\psi_{d} + \bar{\psi}_{c}\gamma^{\mu}\psi_{b}\bar{\psi}_{a}\gamma_{\mu}\psi_{d}$$

$$F(\Gamma = I) - F(\Gamma = \gamma_{5})$$

$$= (\bar{\psi}_{a}\psi_{b})(\bar{\psi}_{c}\psi_{d}) - (\bar{\psi}_{a}\gamma_{5}\psi_{b})(\bar{\psi}_{c}\gamma_{5}\psi_{d})$$

$$= \frac{1}{2}\bar{\psi}_{c}\gamma^{\mu}\gamma_{5}\psi_{b}\bar{\psi}_{a}\gamma_{\mu}\gamma_{5}\psi_{d} - \frac{1}{2}\bar{\psi}_{c}\gamma^{\mu}\psi_{b}\bar{\psi}_{a}\gamma_{\mu}\psi_{d}$$

• The UV divergence in the I and γ_5 form factor. can be removed by the renormalization constant of scalar density operator Z.F.Deng et.al. JHEP.09, 046 (2022)

$$Z_S = 1 + \frac{\alpha_s C_F}{4\pi} \frac{3}{\epsilon_{\rm UV}}.$$
(59)

TMDWFs by LaMET Outlook and Summary

Soft Function by LaMET

> Pz dependence of soft function for 2 combination:

Soft Function

MDWFs by LaMET

Outlook and Summar

Soft Function by LaMET

- 1-loop matching soft function extracted by MILC and CLS ensemble
- Consistent for '+/-' cases: soft function is universal
- Discrete effects are significant

Soft Function

MDWFs by LaMET

CS-Kernel by LaMET

Collins-Soper kernel: describe the evolution for rapidity scale:

$$2\zeta rac{\mathrm{d}}{\mathrm{d}\zeta} \ln \Psi(x,b_{\perp},\mu,\zeta) = K(b_{\perp},\mu),$$

In LaMET factorization, CS-kernel can be extracted by ratio:

$$K(b_{\perp},\mu,x,P_1^z,P_2^z) = \frac{1}{\ln(P_1^z/P_2^z)} \ln \frac{H^{\pm}(xP_2^z,\mu)\tilde{\Psi} \pm (x,b_{\perp},\mu,P_1^z)}{H^{\pm}(xP_1^z,\mu)\tilde{\Psi}^{\pm}(x,b_{\perp},\mu,P_2^z)},$$

Soft Function

/IDWFs by LaMET

Outlook and Summary

CS-Kernel by LaMET

1-loop CS-kernel on CLS ensemble

Soft Function

TMDWFs by LaMET

Outlook and Summary

— Quasi TMDWFs

> Quasi TMDWF in Euclidean lattice:

$$\tilde{\Psi}^{\pm}(x,b_{\perp},\mu,\zeta^{z}) = \lim_{L\to\infty} \int \frac{P^{z}dz}{2\pi} e^{ixzP^{z}} \\
\times \frac{\langle 0 | \bar{q} (z\hat{n}_{z} + b_{\perp}\hat{n}_{\perp}) \gamma^{t}\gamma_{5}U_{c\pm}q(0) | \pi (P^{z}) \rangle}{\sqrt{Z_{E} (2L \pm z, b_{\perp},\mu)} Z_{O}(1/a,\mu,\Gamma)}$$

 $\widetilde{\Psi}^{\pm}:$ q(0) q(0) q(0) q(1+z,0) p^{z} $Z_{E}:$ 2L+z b_{\perp} Linear; Pink pole

> Staple-shaped gauge-link:

$$U_{c\pm} = U_z^{\dagger}(z\hat{n}_z + b_{\perp}\hat{n}_{\perp}; L)U_{\perp}(\pm L\hat{n}_z + z\hat{n}_z; b_{\perp})$$

 $\times U_z(0\hat{n}_z; \pm L + z).$

Logarithm divergence

20

Soft Function

TMDWFs by LaMET

Outlook and Summary

📒 Quasi TMDWFs

Quark Wilson line vertex renormalization:

 $Z_O(1/a,\mu) = \frac{\tilde{\Psi}^{\pm,0} \left(z_0, b_{\perp 0}, \zeta^z = 0, L \right)}{\sqrt{Z_E \left(2L + |z_0|, b_{\perp 0}, \mu \right)} \tilde{\psi}^{\overline{\mathrm{MS}}} \left(z_0, b_{\perp 0}, \mu \right)}.$

(LPC) K.Zhang PRL.129,082002 (2022)

21

TMDWFs by LaMET

Quasi TMDWFs

$$ilde{\Psi}^{\pm}(x,b_{\perp},\mu,\zeta^z) = \lim_{L o\infty}\int rac{P^z dz}{2\pi} e^{ixzP^z} rac{ig\langle 0ig| ar{q}(z \hat{n}_z+b_{\perp} \hat{n}_{\perp}) \gamma^t \gamma_5 U_{c\pm} q(0)ig| \pi(P^z)ig
angle}{\sqrt{Z_E(2L\pm z,b_{\perp},\mu)} Z_O(1/a,\mu,\Gamma)}$$

- > Quasi TMDWF in coordinate space and extrapolation in large λ
- > Physical based parameterization :

$$ilde{\Psi}(z,b_{\perp},\mu,P^z)=f(b_{\perp})igg[rac{c_1}{(-i\lambda)^d}+e^{i\lambda}rac{c_2}{(i\lambda)^d}igg]e^{-rac{\lambda}{\lambda_0}}$$

Quasi TMDWFs

TMDWFs by LaMET

$$\tilde{\Psi}^{\pm}(x,b_{\perp},\mu,\zeta^{z}) S_{I}^{\frac{1}{2}}(b_{\perp},\mu) = H^{\pm}(x,\zeta^{z},\mu) \exp\left[\frac{1}{2}K(b_{\perp},\mu)\ln\frac{\pm\zeta^{z}+i\epsilon}{\zeta}\right] \Psi^{\pm}(x,b_{\perp},\mu,\zeta)$$

$$\begin{split} H^{\pm}(x,\zeta^{z},\mu) \\ &= 1 + \frac{\alpha_{s}C_{F}}{4\pi} \left(-\frac{5\pi^{2}}{6} - 4 + l_{\pm} + \bar{l}_{\pm} - \frac{1}{2} \left(l_{\pm}^{2} + \bar{l}_{\pm}^{2} \right) \right) \\ &l_{\pm} = \ln[(-x\zeta^{z} \pm i\epsilon)/\mu^{2}] \end{split}$$

- > Pz dependence of TMDWF after mathing
 - Pz extrapolation:

$$\Psi^{\pm}(x,P_z)=\Psi^{\pm}(x,P_z
ightarrow\infty)+rac{c_2(x)}{P_z^2}+\mathcal{O}iggl(rac{1}{P_z^4}iggr)$$

TMDWFs by LaMET

Soft Function

TMDWFs by LaMET

Outlook and Summa

TMDWFs by LaMET

➢ Decay behavior of b⊥ at x = 0.5
➢ A comparison with a phenomenological model at x = 0.5

$$\Psi(x,b_{\perp}) = 6x(1-x)igg[1+rac{3}{2}a_{2}^{\pi}igl(5(2x-1)^{2}-1igr)igg] \expigg[-rac{x(1-x)b_{\perp}^{2}}{4a^{2}}igg]$$

C.D.Lv et.al. PRD75,094020 (2007)

Summary *. Fierz rearrangement *****. We calculate the one-loop analysis can be adopted to intrinsic soft function and suppress high twist's effect in **TMDWF** with LaMET on MILC soft function. and CLS ensembles. *. The MILC and CLS results *. Future calculations with show good agreement, but more b_{\perp} on smaller lattice discrete errors are still spacings are necessary to get more complete TMDWF relatively significant in current results. results.

Thanks for your attentions!