

Machine Learning for Lattice Field Theory

Lingxiao Wang(王凌霄) (FIAS/RIKEN)

arXiv:2303.15136; Phys. Rev. D 106, L051502 (2022), Comput. Phys. Commun. 282, 108547 (2023); Chin. Phys. Lett. 39, 120502 (2022), Phys. Rev. D 107, 056001 (2023), arXiv:2309.17082.

Collaborators: Kai Zhou(FIAS), Shuzhe Shi(THU), Shile Chen(THU), Yin Jiang(BeihangU), Gert Aarts(Swansea U), ...

2023年10月9日, 第三届中国格点量子色动力学研讨会, 北京

Outline

- <u>Why ML?</u>
- Inverse Problems
 - Spectral Reconstruction
- <u>Generative models</u>
 - <u>Autoregressive Networks</u>
 - Fourier-Flow Model
- Diffusion Models
- <u>Summary</u>

What is ML?

Machine Learning (from Data)

Big Data + Deep Models ↓ GPU

Machine Learning (ML) is a subset of artificial intelligence that involves the creation of algorithms that allow computers to learn from and make decisions or predictions based on data. It's essentially a way for computers to "learn" from data without being explicitly programmed to do so.

-- ChatGPT4

Successful Deep Learning!

Why ML?

arXiv:2303.15136 (invited review on PPNP)

Vacuum

Baryon Chemical Potential

- Heavy-lon Collisions : Large number of data! Complicated simulations!
- •Neutron Star : Accumulating observations! Poor signal-noise ratio!
- Lattice QCD : Computationally consuming! Data analysis!

Inverse Problems

Inverse Problems

ω

2023年10月9日, 第三届中国格点量子色动力学研讨会, 北京

р

Spectral reconstruction

Why ill-posed?

- In practice, the Euclidean correlations have finite number of points and with finite precision;
- The ill-posedness of the spectral reconstruction fundamentally exists even for continuous correlation functions(infinite observations);
- It's caused by the numerical inaccuracy of the correlation measurements (induced high degeneracy in solution space).

Comput. Phys. Commun. 282, 108547

J. Phys. A: Math. Gen., Vol. 11, No. 9, 1978. Printed in Great Britain.

Spectral Functions

Methodology

Classical methods

Truncated Singular Value Decomposition (TSVD)

Tikhonov regularization, ...

Inverse and Ill-Posed Problems (Academic Press, Boston, 1987).

Baysian methods

Maximum Entropy Method(MEM)

Maximum Entropy Analysis of the Spectral Functions in Lattice QCD, Progress in Particle and Nuclear Physics **46**, 459 (2001).

Bayesian Reconstruction(BR)

Phys. Rev. Lett. 111, 182003 (2013); arXiv:2208.13590.

Forward process Model Physical rules/properties, unclear Measurements, data

• Supervised Learning the inverse mapping

Phys. Rev. B **98**, 245101 (2018). Phys. Rev. D **102**, 096001 (2020). Phys. Rev. Lett. **124**, 056401 (2020).

New developments

Gausian process

Phys. Rev. D 105, 036014 (2022).

Sparse modeling method JHEP07(2020)007

Radial Basis Functions(RBF) Phys. Rev. D 104, 076011

sVAE(Variational AutoEncoder) arXiv:2110.13521; PoS LATTICE2021 (2022) 148

Prior \rightarrow **Regularization**

AD Framework

Automatic differentiation

王凌霄

Phys. Rev. D 106, L051502

Benchmark

Phys. Rev. D 106, L051502

Mock data

Reconstruction performance increases with noise decreasing

NN-P2P gets the best consistency <u>near the zero-frequency</u>

NN can represent a more diverse spectrum in double-peak case

2023年10月9日, 第三届中国格点量子色动力学研讨会,北京

Regularization Why NN helps

• Neural Networks (e.g., NN representation)

$$\rho_a \equiv \rho(\omega_a)$$

- Output layer, $\rho_a=\,{\rm DM}_a\,\sigma^{(l)}(f_a^{(l)})$
- Default Model(DM), DM_a
- Activation functions, $f_a^{(n)} = \sigma^{(n)}(x_a^{(n)})$
- Hidden layers, $x_a^{(n)} = \sum_{ab} W_{ab}^{(n)} f_b^{(n-1)}$ width $a = 1, 2, \dots, N^{(n)}; n = 1, 2, \dots, l$
- Set-ups
 - Width, $N^{(0)} = 1, N^{(l)} = N_{\omega}$
 - Input layer, $a_1^{(0)} = 1$
 - Hidden layer, no activation functions
 - Output layer, $\sigma^{(l)}(x) = \sigma(x)$, $f_a \equiv f_a^{(l)}$

. L2 regulation,
$$L_2\equiv \alpha\Delta\omega\sum_{l,a,b}{\left(W^{(l)}_{ab}\right)^2}$$

non-local constraints from NN!

$$= \int_{a}^{b} \int$$

Comput. Phys. Commun. 282, 108547

 $\alpha f (1 + e^{-f_a}) = DM \left(\sum f^2 \right)^{l-1} \sum \Lambda_k K_k$

12/38

Results

Other cases

1. Single-peak functions

2. Non-positive-definite SPs

3. Lattice QCD mock data (see arXiv:2110.13521)

Summary I

- Inverse Problems
 - Neural network
 - Flexible representations and regularizations
 - Auto-differentiation framework
 - High-effcient gradient-based optimization
- Future works
 - Open codes [github1, github2]
 - Easy-to-use Python packages
 - Real Lattice QCD data !
 - HAL QCD collaboration
 - Omega, Xi, Lambda,...
 - FASTSUM collaboration

arXiv:2303.15136 (invited review on PPNP)

2023年10月9日, 第三届中国格点量子色动力学研讨会, 北京

Generative models

Generative Models

for Lattice calculations

Lattice calculations → physical distributions, sampling

 \rightarrow underlying distributions in data

Markov-Chain MC

Revisiting

- Generate configurations ϕ_i independently from,

$$p(\phi) = \frac{e^{-\beta E(\phi)}}{Z}$$

- Metropolis Method
- Shortcomings
 - Local update, low-effciency
 - Critical Slowing Down [U. Wolff, Nucl. Phys. B 17, 93 (1990)]
- Need global update (proposal)!

Monte Carlo-Metropolis Algorithm for 2D Ising Model (L=10)

Generative Models

for Lattice calculations

$$p(\phi) = e^{-S(\phi)}/Z$$
$$\langle O \rangle \approx \frac{1}{N} \sum_{i} O_{i}$$

→ physical distribution, sampling through Generative Moodels

Lattice QCD © Derek Leinweber/CSSM/University of Adelaide

Implicit Likelihood Estimation (needs training data-set)

• VAEs and GANs

D. Giataganas, et al., New J. Phys. 24, 043040 (2022).

K. Zhou, et al., Phys. Rev. D 100, 011501 (2019).

- J. M. Pawlowski and J. M. Urban, MLST 1, 045011 (2020).
- J. Singh, et al., SciPost Phys. 11, 043 (2021).
- Diffusion Models (arXiv: 2309.17082)

Explicit Likelihood Estimation

Autoregressive models

D. Wu, et al., Phys. Rev. Lett. 122, 080602 (2019).

L. Wang, et al., CPL 39, 120502 (2022).

P. Białas, P. Korcyl, and T. Stebel, CPC 281, 108502 (2022).

Flow-based models

M. S. Albergo, G. Kanwar, and P. E. Shanahan, Phys. Rev. D 100, 034515 (2019).

G. Kanwar, et al., Phys. Rev. Lett. 125, 121601 (2020).

K. A. Nicoli, et al., Phys. Rev. Lett. 126, 032001 (2021).

L. Del Debbio, et al., Phys. Rev. D 104, 094507 (2021).

M. Caselle, et al., J. High Energ. Phys. 2022, 15 (2022).

- R. Abbott et al., Phys. Rev. D 106, 074506 (2022).
- A. Singha, et al., Phys. Rev. D 107, 014512 (2023).
- S. Chen, et al., Phys. Rev. D 107, 056001(2023).

Hands-on notebook

M. S. Albergo et al., arXiv:2101.08176.

Review

K. Cranmer, G. Kanwar, S. Racanière, D. J. Rezende, and P. E. Shanahan, Advances in Machine-Learning-Based Sampling Motivated by Lattice Quatum Chromodynamics, Nat Rev Phys 1 (2023).

CANs

Continuous Autoregressive Networks

- Autoregressive Networks can model probability distribution $q_{\theta}(s)$ explicitly
- Optimization
 - Loss function, variational free energy

$$F_q = \sum_{s} q_{\theta}(s)(E(s) + (\ln q_{\theta}(s))/\beta)$$

• Kullback-Leibler (KL) divergence

$$D_{KL}(q_{\theta} \quad p) = \sum_{s} q_{\theta}(s) ln(\frac{q_{\theta}(s)}{p(s)}) = \beta(F_q - F) \ge 0$$

• Neural network parameters θ

$$q_{\theta}(s) \rightarrow p(s) = \frac{e^{-E(s)}}{Z}$$

CANs for 2D XY model

• 2-dimensional(2D) XY model

$$H = -J\sum_{\langle i,j \rangle} s_i s_j = -J\sum_{\langle i,j \rangle} \cos(\phi_i - \phi_j)$$

- Neural network: **PixelCNN**
- Joint distribution:

$$q_{\theta}(s) = \prod_{i=1}^{N} f(s_i \ s_1, \dots, s_{i-1})$$

- Kosterlitz-Thouless(KT) transition
 - Vortices

Output	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Hidden Layer	\bigcirc	0	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	0	\bigcirc	\bigcirc	
Hidden Layer	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Input	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Autoregressive properties@DeepMind Blog

Chinese Phys. Lett. 39, 120502 (2022)

Probability Distributions from CANs

Vortices

Flow-Based Model

• Flow-based model build a bijective transformation *T*

$$q_{\theta}(\mathbf{x}) = p_0(\mathbf{z}) \det J_T(\mathbf{z})^{-1}$$

Jacobian

Invertible and tractable

Loss function
 Kullback-Leibler (KL) divergence

 $D_{KL}(q_{\theta} \ p) \ p(\phi) = e^{-S(\phi)}/Z$

- Optimization
 - Trainable parameters θ
 - Gradient-based algorithms

Flow-Based Models

Mode-collapse

• Why do we need learn in a new representation?

Flow-based models will encounter **multimodaldistribution**, but the model perfers to choose **one mode of target distributions**,

"Mode-Collapse"

comprehensive discussions in arXiv:2107.00734, arXiv:2302.14082.

DFT

Fourier-Flow Model

Mode-collapse

iDFT \boldsymbol{k}_0 \boldsymbol{k}_i \boldsymbol{z}_0 Fourier Frequency(Matsubara) Space $z_0 \sim p_0(z_0)$ $\mathbf{x} \sim q(\mathbf{x})$ **Coordinate Space** More priors. More stable! Translation: $n \rightarrow n + 1$ for training neural networks Discrete Fourier transformation (DFT): $X_k = \sum_{k=1}^{N-1} e^{-i\frac{2\pi}{N}kn} x_n$ Inversion: $n \rightarrow -n$ Inverse DFT (iDFT): $x_n = \frac{1}{N} \sum_{n=1}^{N-1} e^{i\frac{2\pi}{N}kn} X_k$ Periodicity: $n \rightarrow n + N$

2023年10月9日, 第三届中国格点量子色动力学研讨会, 北京

F-Flow Model

for anharmonic oscillator

• 1-dimensional(1D) double-well potential

$$S_E(\{x_n\}) = \frac{\beta}{N} \sum_{n=0}^{N-1} \left[\frac{m(x_{n+1} - x_n)^2}{2a^2} + \lambda(x_n^2 - f^2)^2 \right]$$
$$m = 0.5, \lambda = 1$$

- No analytical solution!
 - MCMC

[S. Mittal et al., Eur. J. Phys. 41, 055401 (2020)]

- Moment methods [R. Blankenbecler et al., Phys. Rev. D 21, 1055 (1980)]
- Ground state: $E_0=3\lambda\langle x^4\rangle-4\lambda f^2\langle x^2\rangle+\lambda f^4$
- Excited states

$$\begin{split} E_1 - E_0 &= -\lim_{\tau \to \infty} \frac{d \log G_2(\tau)}{d\tau}, \\ E_2 - E_0 &= -\lim_{\tau \to \infty} \frac{d \log G_4(\tau)}{d\tau} \end{split}$$

Phys. Rev. D 107, 056001

Phys. Rev. D 107, 056001

F-Flow Model

Matsubara frequency

full frequency modes

The kinetic term decouples in Matsubara frequency sapce

Quantum fluctuations

Summary II

- Generative Models
 - Improve MCMC performance
 - Continuous autoregressive networks can reproduce KT phase transition
 - F-Flow model can handle multi-mode systems
- Future works
 - F-Flow in reduced frequency space
 - Super-resolution
 - Few-body systems
 - From SU(2) to QCD

Denoising Diffusion Models

- Forward diffusion process gradually adds noise to input
- Reverse denoising process learns to generate data by denoising
- Probabilistic Models
 to learn how to denoise
 from a simple distribution
 to a target distribution

Space Opera

Jason Allen via Midjourney

Stochastic Differential Equation(SDE)

- Forward Diffusion SDE
 - Drift term: pulls towards mode
 - Diffusion term: injects noise
- Reverse Generative Diffusion SDE
 - Drift term is adjusted with a "Score Function"
 - But how to get the score function ?

$$\frac{d\phi}{d\xi} = f(\phi, \xi) + g(\xi)\eta(\xi)$$

$$\frac{d\phi}{dt} = \left[f(\phi, t) - g^2(t) \nabla_{\phi} \log p_t(\phi) \right] + g(t)\bar{\eta}(t)$$

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Anderson, in Stochastic Processes and their Applications, 1982

Stochastic Differential Equation(SDE)

- Forward Diffusion SDE
 - Drift term: pulls towards mode
 - Diffusion term: injects noise
- Reverse Generative Diffusion SDE
 - Drift term is adjusted with a "Score Function"
 - But how to get the score function ?

Model the score function with neural networks!

$$\frac{d\phi}{dt} = \left[f(\phi, t) - g^2(t)\mathbf{s}_{\hat{\theta}}(\phi, t)\right] + g(t)\bar{\eta}(t)$$

Ho et al, NeurIPS, 2020 Song et al., NeurIPS, 2021 Kingma et al., NeurIPS, 2021 Vahdat et al., NeurIPS, 2021 Huang et al., NeurIPS, 2021 Karras et al., arXiv, 2022

$$\frac{d\phi}{d\xi} = f(\phi, \xi) + g(\xi)\eta(\xi)$$

$$\frac{d\phi}{dt} = \left[f(\phi, t) - g^2(t) \nabla_{\phi} \log p_t(\phi) \right] + g(t)\bar{\eta}(t)$$

王凌霄

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Anderson, in Stochastic Processes and their Applications, 1982

Score-based model

Forward Diffusion SDE

- Drift term: pulls towards mode
- Diffusion term: injects noise
- Reverse Generative Diffusion SDE
 - Drift term is adjusted with a "Score Function"
 - But how to get the score function ?

Model the score function with neural networks!

$$\frac{d\phi}{dt} = -\sigma^{2t} \mathbf{s}_{\hat{\theta}}(\phi, t) + \sigma^t \bar{\eta}(t)$$

$$\mathscr{L}_{\theta} = \sum_{i=1}^{N} \sigma_{i}^{2} \mathbb{E}_{p_{0}(\phi_{0})} \mathbb{E}_{p_{i}(\phi_{i}|\phi_{0})} \left[\left\| \mathbf{s}_{\theta}(\phi_{i},\xi) - \nabla_{\phi_{i}} \log p_{i}(\phi_{i} \ \phi_{0}) \right\|_{2}^{2} \right]$$

$$\frac{d\phi}{d\xi} = f(\phi, \xi) + g(\xi)\eta(\xi)$$

$$\frac{d\phi}{dt} = \left[f(\phi, t) - g^2(t) \nabla_{\phi} \log p_t(\phi) \right] + g(t)\bar{\eta}(t)$$

Variance Expanding

$$f(\phi, \xi) = 0$$

 $g(\xi) = \sigma^{\xi}$
 $\xi \in [0,T]$

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Anderson, in Stochastic Processes and their Applications, 1982

Lattice Field Theory

Scalar ϕ^4 field

• Euclidean action of bare fields

$$S_E = \int d^d x d\tau \left(\frac{1}{2} (\partial^2 \phi_0^2 + m^2 \phi_0^2) - \frac{\lambda_0}{4!} \phi_0^4 \right)$$

Action on discrete lattice

$$S_{\mathsf{E}} = \sum_{x} a^{d} \left[\sum_{\mu=1}^{d} \frac{(\phi_{0}(x+a\hat{\mu})-\phi_{0}(x))^{2}}{a^{2}} + \frac{m_{0}^{2}}{2}\phi_{0}^{2} + \frac{\lambda_{0}}{4!}\phi_{0}^{4} \right]$$

• Dimensionless form

$$S_{\mathsf{E}} = \sum_{x} \left[-2\kappa \sum_{\mu=1}^{d} \phi(x)\phi(x+\hat{\mu}) + (1-2\lambda)\phi(x)^{2} + \lambda\phi(x)^{4} \right]$$
$$a^{\frac{d-2}{2}}\phi_{0} = (2\kappa)^{1/2}\phi$$
$$(am_{0})^{2} = \frac{1-2\lambda}{\kappa} - 2d, \quad a^{-d+4}\lambda_{0} = \frac{6\lambda}{\kappa^{2}}$$

• Hopping parameter κ , Coupling constant λ

arXiv: 2309.17082

Phase Transition

 \mathbb{Z}_2 symmetry spontaneously broken above the critical point

 $\kappa_{\mathbf{C}}(\lambda) = \frac{1 - 2\lambda}{2d}$

Order parameter: magnetization

<u>Phase diagram</u> at d = 2 @Julian Urban

Lattice Field Theory

DM in Different Phases

- Diffusion models
 - $T = 1.0, \sigma = 25$
- Data generation
 - 2-d 32×32 lattice; Hamiltonian Monte Carlo(HMC); 5120 configurations for training.
 - Broken phase: $\kappa = 1.0$, $\lambda = 0.022$
 - Symmetric phase: $\kappa = 0.21$, $\lambda = 0.022$

arXiv: 2309.17082

data-set	$\langle M angle$	χ_2	U_L		
Training(HMC)	0.0012 ± 0.0007	2.5160 ± 0.0457	0.1042 ± 0.0367		
Testing(HMC)	0.0018 ± 0.0015	2.4463 ± 0.1099	-0.0198 ± 0.1035		
Generated(DM)	$0.0017 {\pm}~ 0.0015$	2.4227 ± 0.1035	0.0484 ± 0.0959		

Stochastic Quantization

Parisi G. and Wu Y. S., Sci. China, A 24, ASITP-80-004 (1980).
P. H. Damgaard and H. Hüffel, Stochastic Quantization, Phys. Rept. 152, 227 (1987).
M. Namiki, Basic Ideas of Stochastic Quantization, PTPS 111, 1 (1993).

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\frac{\delta S_E[\phi]}{\delta \phi(x,\tau)} + \eta(x,\tau)$$

 $\langle \eta(x,\tau) \rangle = 0, \quad \langle \eta(x,\tau)\eta(x',\tau') \rangle = 2\alpha \delta(x-x')\delta(\tau-\tau')$ τ : fictitious time, α : diffusion constant

• Fokker-Planck equation

$$\frac{\partial P[\phi,\tau]}{\partial \tau} = \alpha \int d^n x \left\{ \frac{\delta}{\delta \phi} \left(\frac{\delta}{\delta \phi} + \frac{\delta S_E}{\delta \phi} \right) \right\} P[\phi,\tau]$$

Equilibrium solution (long-time limit),

$$P_{\text{eq}}[\phi] \propto e^{-\frac{1}{\alpha}S_E[\phi]}$$

• Set the diffusion constant as $\alpha = \hbar$

$$P_{\text{eq}}[\phi] \sim e^{-\frac{1}{\hbar}S_E[\phi]} = P_{\text{quantum}}[\phi]$$

Thermal equilibrium limit \rightarrow Quantum distribution

1. No need gauge-fixing! 2. Can handle fermionic fields naturally \rightarrow (Complex Langevin method)

Stochastic Quantization

DMs as SQ

• Diffusion models(Reverse SDE):

$$\frac{d\phi}{dt} = -g(t)^2 \nabla_{\phi} \log p_t(\phi) + g(t)\bar{\eta}$$

• Define:
$$\tau \equiv T - t(d\tau \equiv -dt)$$

$$\frac{d\phi}{d\tau} = g_{\tau}^2 \nabla_{\phi} \log q_{\tau}(\phi) + g_{\tau} \bar{\eta}$$

$$\phi(\tau_{n+1}) = \phi(\tau_n) + g_\tau^2 \nabla_\phi \log q_{\tau_n}[\phi(\tau_n)] \Delta \tau + g_\tau \sqrt{\Delta \tau} \bar{\eta}(\tau_n)$$

introducing Noise scale: $\langle\bar\eta^2\rangle\equiv 2\bar\alpha$, time scale: $g_\tau^2\Delta\tau$

• FP equation

$$\frac{\partial p_{\tau}(\phi)}{\partial \tau} = \int d^{n}x \left\{ g_{\tau}^{2} \bar{\alpha} \frac{\delta}{\delta \phi} \left(\frac{\delta}{\delta \phi} + \frac{1}{\bar{\alpha}} \nabla_{\phi} S_{\mathsf{DM}} \right) \right\} p_{\tau}(\phi)$$
$$\nabla_{\phi} S_{\mathsf{DM}} \equiv -\nabla_{\phi} \log q_{\tau}(\phi)$$

 $p_{eq}(\phi) \propto e^{-\frac{S_{DM}}{\bar{\alpha}}}$

arXiv: 2309.17082

 $p_{\tau=T}(\phi) \rightarrow P[\phi, T]$

$$O(\bar{\alpha}) \sim O(\hbar)$$

The reverse mode of a well-trained diffusion model at $\tau \rightarrow T$ serves as the stochastic quantization for the input

Summary III

- $\begin{array}{c} d\phi = f(\phi,\xi)d\xi + g(\xi)\eta & \phi_T &$
- Diffusion models as SQ

Serve as an efficient sampler

- Future works
 - Gauge Field
 - Complex Langevin method(CLM) for fermions
 - Renormalization group(RG) flow

 $\frac{\partial \phi(x,\tau)}{\partial \tau} = -\frac{\delta S_E[\phi]}{\delta \phi(x,\tau)} + \eta(x,\tau)$

Q&A

- Lattice QFT
 - Theory
 - Stochastic Quantization
 - Configurations
 - Generative Modelbased MC

- Observables
 - Inverse Problems

 ϕ_0

 p_0

Future

ML meets LQFT, opportunities and challenges