Reconstruction of Shower Radius

Ji-Yuan CHEN, Zhen WANG 23 Feb 2023

Basic Set-up

- Particles: $\mu^{+}(100 \mathrm{GeV}), e^{+}(50 \mathrm{GeV}), \pi^{+}(50 \mathrm{GeV})$.
- Direction: $+z$.
o Detector: Only HCAL ($4 * 4 * 0.3 \mathrm{~cm}^{3}$ for scintillator, $72 * 72 * 0.2 \mathrm{~cm}^{3}$ for PCB, $72 * 72 * 2 \mathrm{~cm}^{3}$ for absorber; altogether 40 layers).
o Number of events: 10k each.

Reconstruction of Shower Radius

- Definition 1:
- Since the incident particles are in $+z$ direction, we assume that $+z$ is the event axis.
- Define the beginning and ending layers.
- Use $r=\sqrt{x^{2}+y^{2}}$ to represent the distance of each hit in these layers with respect to the origin of that layer.
- Finally, calculate RMS of these distances.
- These three particles can be effectively distinguished.
o(lf the incident particles are not in $+z$ direction, performing fit will be a must.)

Reconstruction of Shower Radius

- Definition 2:
- For each event, use all the hits, regardless of whether it is between the beginning and ending layers or not.
- Perform fit, and calculate the RMS distance of the hits in each event.
oThe result is similar to that in the Reference.
\circ (Difference in definition: hits in first 10 layers were used to fit in the Reference, while all the hits were used here.)

Reconstruction of Shower Radius

- Definition 3:
- It is a combination of Definitions $1 \& 2$, or an improved Definition 1.
- Define the beginning and ending layers.
- In between, use the positions of all the hits to perform fit, and obtain the distances between these hits and the fitted line.
- Finally, calculate RMS of these distances.
- Currently no result is obtained.
o For this set-up, the result is expected to be similar to that obtained from Definition 1.

Event Display (50 GeV π^{+}, All Hits)

Progress and To-Do

- Currently adding these two definitions to PIDTool (debugging).

