

Recent Progress in Nuclear Lattice EFT (B.9)

Ulf-G. Meißner, Univ. Bonn & FZ Jülich

- Ulf-G. Meißner, Recent Progress in NLEFT - talk, CRC110 WS, Rizhao, July 20-22, 2023 -

Contents

- Chiral EFT on a lattice
- Emergent geometry and duality in the carbon nucleus
- Towards heavy nuclei and nuclear matter in NLEFT
- Summary & outlook

Chiral EFT on a lattice

T. Lähde & UGM

Nuclear Lattice Effective Field Theory - An Introduction

Springer Lecture Notes in Physics 957 (2019) 1 - 396

More on EFTs

• Much more details on EFTs in light quark physics:

Effective Field Theories

AUTHORS:

Ulf-G Meißner, Rheinische Friedrich-Wilhelms-Universität Bonn and Forschungszentrum Jülich Akaki Rusetsky, Rheinische Friedrich-Wilhelms-Universität Bonn DATE PUBLISHED: August 2022 AVAILABILITY: Available FORMAT: Hardback ISBN: 9781108476980 Rate & review

https://www.cambridge.org/de/academic/subjects/physics/theoretical-physics-and-mathematical-physics/effective-field-theories

Nuclear lattice effective field theory

Frank, Brockmann (1992), Koonin, Müller, Seki, van Kolck (2000), Lee, Schäfer (2004), . . . Borasoy, Krebs, Lee, UGM, Nucl. Phys. **A768** (2006) 179; Borasoy, Epelbaum, Krebs, Lee, UGM, Eur. Phys. J. **A31** (2007) 105

- new method to tackle the nuclear many-body problem
- discretize space-time $V = L_s \times L_s \times L_s \times L_t$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb

 \rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. **81** (2009) 1773

• typical lattice parameters

$$p_{
m max} = rac{\pi}{a} \simeq 315 - 630\,{
m MeV}\,[{
m UV}\,{
m cutoff}]$$

• strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry

E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302

ullet physics independent of the lattice spacing for $a=1\dots 2$ fm

Alarcon, Du, Klein, Lähde, Lee, Li, Lu, Luu, UGM, EPJA 53 (2017) 83; Klein, Elhatisari, Lähde, Lee, UGM, EPJA 54 (2018) 121

Transfer matrix method

- Correlation-function for A nucleons: $Z_A(\tau) = \langle \Psi_A | \exp(-\tau H) | \Psi_A \rangle$ with Ψ_A a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]
- Transient energy

$$E_A(au) = -rac{d}{d au}\,\ln Z_A(au)$$

 \rightarrow ground state: $E_A^0 = \lim_{\tau \to \infty} E_A(\tau)$

 \bullet Exp. value of any normal–ordered operator ${\cal O}$

$$Z_A^{\mathcal{O}} = raket{\Psi_A} \exp(- au H/2) \, \mathcal{O} \, \exp(- au H/2) \ket{\Psi_A}$$

$$\lim_{ au o \infty} \, rac{Z_A^{\mathcal{O}}(au)}{Z_A(au)} = \langle \Psi_A | \mathcal{O} \, | \Psi_A
angle \, ,$$

Τf

Euclidean time

 \Rightarrow all *possible* configurations are sampled

- \Rightarrow preparation of *all possible* initial/final states
- \Rightarrow clustering emerges naturally

Auxiliary field method

• Represent interactions by auxiliary fields:

Computational equipment

• Present = JUWELS (modular system) + FRONTIER + ...

Emergent geometry and duality in the carbon nucleus

Short reminder of Wigner SU(4) symmetry

Wigner, Phys. Rev. C 51 (1937) 106

• If the nuclear Hamiltonian does not depend on spin and isospin, then it is obviously invariant under SU(4) transformations [really $U(4) = U(1) \times SU(4)$]:

$$egin{aligned} N o UN \,, & U \in SU(4) \,, & N = inom{p}{n} \ N \ \end{pmatrix} \ N o N + \delta N \,, & \delta N = i \epsilon_{\mu
u} \sigma^\mu au^
u \, N \,, & \sigma^\mu = (1, \sigma_i) \,, & au^\mu = (1, au_i) \end{aligned}$$

- LO pionless EFT: $\mathcal{L}_{\pi} = N^{\dagger} \left(i \partial_t + \frac{\vec{\nabla}^2}{2m_N} \right) N \frac{1}{2} \left(C_S (N^{\dagger}N)^2 + C_T (N^{\dagger}\vec{\sigma}N)^2 \right)$ Mehen, Stewart, Wise, Phys. Rev. Lett. 83 (1999) 931
- Partial wave LECs: $C({}^1S_0) = C_S 3C_T$, $C({}^3S_1) = C_S + C_T$

⇒ The operator $(N^{\dagger}N)^2$ is invariant under Wigner SU(4), but $(N^{\dagger}\vec{\sigma}N)^2$ is not ⇒ In the Wigner SU(4) limit, one finds: $C({}^1S_0) = C({}^3S_1) \rightarrow a_{np}^{S=0} = a_{np}^{S=1} \rightarrow \infty$ ⇒ The exact symmetry limit corresponds to a scale invariant non-relativistic system

Remarks on Wigner's SU(4) symmetry

• Wigner SU(4) spin-isospin symmetry is particularly beneficial for NLEFT

↔ suppression of sign oscillations Chen, Lee, Schäfer, Phys. Rev. Lett. 93 (2004) 242302

← provides a very much improved LO action when smearing is included Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B **797** (2019) 134863

 \hookrightarrow related to the unitary limit

König, Griesshammer, Hammer, van Kolck, Phys. Rev. Lett. 118 (2017) 202501

• Initimately related to α -clustering in nuclei

 → cluster states in ¹²C like the famous Hoyle state
 Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. **106** (2011) 192501

 \hookrightarrow nuclear physics is close to a quantum phase transition

Elhatisari et al., Phys. Rev. Lett. 117 (2016) 132501

Wigner's SU(4) symmetry and the carbon spectrum

Study of the spectrum of ¹²C Shen, Lähde, Lee, UGM, Eur. Phys.J. A 57 (2021) 276

 → spin-orbit splittings are known to be weak
 Hayes, Navratil, Vary, Phys. Rev. Lett. 91 (2003) 012502 Johnson, Phys. Rev. C 91 (2015) 034313

 \hookrightarrow start with cluster and shell-model configurations \rightarrow next slide

• Locally and non-locally smeared SU(4) invariant interaction:

$$\begin{split} V &= C_2 \sum_{n',n,n''} : \rho_{\rm NL}(n') f_{s_{\rm L}}(n'-n) f_{s_{\rm L}}(n-n'') \rho_{\rm NL}(n'') :, \quad f_{s_{\rm L}}(n) = \begin{cases} 1, & |n| = 0, \\ s_{\rm L}, & |n| = 1, \\ 0, & \text{otherwise} \end{cases} \\ \rho_{\rm NL}(n) &= a_{\rm NL}^{\dagger}(n) a_{\rm NL}(n) \\ a_{\rm NL}^{(\dagger)}(n) &= a^{(\dagger)}(n) + s_{\rm NL} \sum_{|n'|=1} a^{(\dagger)}(n+n'), \quad s_{\rm NL} = 0.2 \end{split}$$

 \hookrightarrow only two adjustable parameters (C_2, s_L) fitted to $E_{^4\mathrm{He}}$ & $E_{^{12}\mathrm{C}}$

 \hookrightarrow investigate the spectrum for a = 1.64 fm and a = 1.97 fm

Configurations

• Cluster and shell model configurations

Transient energies

• Transient energies from cluster and shell-model configurations

Spectrum of ¹²C

Shen, Lähde, Lee, UGM, Eur. Phys.J. A 57 (2021) 276 [arXiv:2106.04834]

• Amazingly precise description \rightarrow great starting point

 \rightarrow solidifies earlier NLEFT statements about the structure of the 0^+_2 and 2^+_2 states

A closer look at the spectrum of ^{12}C

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• Include also 3NFs:
$$V = \frac{C_2}{2!} \sum_{n} \tilde{\rho}(n)^2 + \frac{C_3}{3!} \sum_{n} \tilde{\rho}(n)^3$$

- Fit the four parameters:
 - C_2, C_3 ground state energies of ⁴He and ¹²C
 - $s_{\rm L}$ radius of ¹²C around 2.4 fm
 - *s*_{NL} best overall description of the transition rates
- Calculation of em transitions
 requires coupled-channel approach
 e.g. 0⁺ and 2⁺ states

Spectrum of ¹²C reloaded

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• Improved description when 3NFs are included, amazingly good

\rightarrow solidifies earlier NLEFT statements about the structure of the 0^+_2 and 2^+_2 states

Electromagnetic properties

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• Radii (be aware of excited states), quadrupole moments & transition rates

	NLEFT	FM	D α clus	ster B	EC	RXMC	Exp.		
$r_c(0^+_1)$ [fm]	2.53(1)	2.5	53 2.54	1 2	.53	2.65	2.47(2	2)	
$r(0^+_2)$ [fm]	3.45(2)	3.3	3.71	I 3	.83	4.00	-		
$r(0^+_3)$ [fm]	3.47(1)	4.6	62 4.75	5	_	4.80	-		
$r(2^+_1)$ [fm]	2.42(1)	2.5	50 2.37	7 2	.38	_	-		
$r(2^+_2)$ [fm]	3.30(1)	4.4	4.43	3	_	_	_		
			NLEFT	FMD	α	cluster	NCSM	Exp.	
$Q(2^+_1)$ [$e{ m fm}^2$	²]		6.8(3)	—		_	6.3(3)	8.1(2.3))
$Q(2^+_2)$ [$e{ m fm}^2$	²]		-35(1)	—		_	—	—	
$M(E0,0^+_1$ –	$ ightarrow 0^+_2)$ [e fm	ו ²]	4.8(3)	6.5		6.5	—	5.4(2)	
$M(E0,0^+_1$ –	$ ightarrow 0^+_3)$ [e fm	נ ²]	0.4(3)	—		_	—	—	
$M(E0,0^+_{2}$ –	$ ightarrow 0^+_3)$ [e fm	ו ²]	7.4(4)	—		_	—	—	
$B(E2,2^+_1-$	$ ightarrow 0^+_1)$ [e^2 fn	n ⁴]	11.4(1)	8.7		9.2	8.7(9)	7.9(4)	
$B(E2,2^+_1-$	$ ightarrow 0^+_2)$ $[e^2$ fn	n ⁴]	2.5(2)	3.8		0.8	_	2.6(4)	

Electromagnetic properties

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• Form factors and transition ffs [essentially parameter-free]:

Chernykh et al., Phys. Rev. Lett. 105 (2010) 022501

Emergence of geometry

• Use the pinhole algorithm to measure the distribution of α -clusters/matter:

• equilateral & obstuse triangles $\rightarrow 2^+$ states are excitations of the 0^+ states

Emergence of duality

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

• ¹²C spectrum shows a cluster/shell-model duality

• dashed triangles: strong 1p-1h admixture in the wave function

Sanity check

- Repeat the calculations w/ the time-honored N2LO chiral interaction
 - \hookrightarrow better NN phase shifts than the SU(4) interaction
 - \hookrightarrow but calculations are much more difficult (sign problem)

- spectrum as before (good agreement w/ data)
- density distributions as before (more noisy, stronger sign problem)

Towards heavy nuclei and nuclear matter in NLEFT

Towards heavy nuclei in NLEFT

- Two step procedure:
 - 1) Further improve the LO action
 - \hookrightarrow minimize the sign oscillations
 - \hookrightarrow minimize the higher-body forces
 - \hookrightarrow gain an understanding of the essentials of nuclear binding
 - \hookrightarrow essentially done \checkmark \rightarrow next slide
 - 2) Work out the corrections to N3LO
 - \hookrightarrow first on the level of the NN interaction \surd
 - \hookrightarrow new important technique: wave function matching \checkmark
 - \hookrightarrow second for the spectra/radii/... of nuclei (first results) \checkmark
 - \hookrightarrow third for nuclear reactions (nuclear astrophysics)

Essential elements of nuclear binding

Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B 797 (2019) 134863

• LO smeared SU(4) symmetric action with 2NFs and 3NFs:

• Masses of 88 nuclei up to A = 48, largest deviation about 4%

- Charge radii deviate by at most 5% (expect ³H)
- Neutron matter EoS also consistent w/ other calculations (APR, GCR, ...)

NN interaction at N3LO

Li et al., Phys. Rev. C **98** (2018) 044002; Phys. Rev. C **99** (2019) 064001 • np phase shifts including uncertainties for a = 1.32 fm (cf. Nijmegen PWA)

Wave function matching I

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

- $H_{\rm soft}$ has tolerable sign oscillations, good for many-body observables
- H_{χ} has severe sign oscillations, derived from the underlying theory
- \hookrightarrow can we find a unitary trafo, that creates a chiral H_{χ} that is pert. th'y friendly?

$$H'_{\chi} = U^{\dagger} \, H_{\chi} \, U$$

 \Box Let $|\psi^0_{
m soft}
angle$ be the lowest eigenstate of $H_{
m soft}$

 \Box Let $|\psi_{\chi}^{0}
angle$ be the lowest eigenstate of H_{χ}

 \Box Let $|\phi_{soft}\rangle$ be the projected and normalized lowest eigenstate of H_{soft} $|\phi_{soft}\rangle = \mathcal{P} |\psi_{soft}^0\rangle/||\psi_{soft}^0\rangle||$

 \Box Let $|\phi_{\chi}
angle$ be the projected and normalized lowest eigenstate of H_{χ} $|\phi_{\chi}
angle = \mathcal{P} |\psi_{\chi}^0
angle / ||\psi_{\chi}^0
angle ||$

$$\hookrightarrow U_{R',R} = \theta(r-R)\delta_{R',R} + \theta(R'-r)\theta(R-r)|\phi_{\chi}^{\perp}\rangle\langle\phi_{\rm soft}^{\perp}|$$

Wave function matching II

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

• Graphical representation of w.f. matching

• W.F. matching is a "Hamiltonian translator": eigenenergies from H_1 but w.f. from $H_2 = U^{\dagger}H_1U$ Elhatisari et al., [arXiv:2210.17488 [nucl-th]], L. Bovermann, PhD thesis

• W.F. matching for the light nuclei

Nucleus	$B_{ m LO}$ [MeV]	B _{N3LO} [MeV]	Exp. [MeV]
$E_{oldsymbol{\chi}, ext{d}}$	1.79	2.21	2.22
$ig \langle \psi_{ m soft}^0 H_{m{\chi}, { m d}} \psi_{ m soft}^0 angle $	0.45	0.62	
$\langle \psi^0_{ m soft} H^{\prime}_{\chi, m d} \psi^0_{ m soft} angle $	1.65	2.01	
$\langle \psi^0_{\text{soft}} H_{\chi, t} \psi^0_{\text{soft}} \rangle$	5.96(8)	5.91(9)	8.48
$\langle \psi^0_{ m soft} H'_{\chi, { m t}} \psi^0_{ m soft} angle $	7.97(8)	8.72(9)	
$ig \langle \psi_{ m soft}^0 H_{\chi,lpha} \psi_{ m soft}^0 angle $	24.61(4)	23.84(14)	28.30
$\langle \psi_{ m soft}^{0} H_{\chi,lpha}^{\prime} \psi_{ m soft}^{0} angle $	27.74(4)	29.21(14)	

- reasonable accuracy for the light nuclei
- Tjon-band recovered with H'_{χ}

Platter, Hammer, UGM, Phys. Lett. B 607 (2005) 254

 \hookrightarrow now let us go to larger nuclei....

Nuclei at N3LO

ullet Binding energies of nuclei for $a=1.32\,{
m fm}\,(p_{
m max}=470\,{
m MeV})$

→ systematic errors via history matching Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

Charge radii at N3LO

• Charge radii (a = 1.32 fm, statistical errors can be reduced)

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

Neutron & nuclear matter at N3LO

• EoS of pure neutron matter & nuclear matter (a = 1.32 fm)

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

Sanity check

• One referee asked us to do calculations outside the history matching interval

 \hookrightarrow so let us look at ⁵⁰Cr and ⁵⁸Ni:

Nucleus	$E_{ m N3LO}$ [MeV]	E_{exp} [MeV]	$R_{ m N3LO}$ [fm]	R_{exp} [fm]
⁵⁰ Cr	-425.32(943)	-435.05	3.6469(229)	3.6588
⁵⁸ Ni	-493.13(661)	-506.46	3.7754(202)	3.7752

 \hookrightarrow Energies within 2-3%, uncertainties on the 1-2% level

 \hookrightarrow Radii smack on, uncertainties can be improved

 \hookrightarrow Test passed \checkmark

Summary & outlook

- Nuclear lattice simulations: a new quantum many-body approach
 - \rightarrow based on the successful continuum nuclear chiral EFT
 - \rightarrow a number of highly visible results already obtained

Recent developments

- \rightarrow hidden spin-isospin exchange symmetry
 - ightarrow optimal cut-off $\Lambda \simeq 500$ MeV, validates Weinberg counting
- \rightarrow Wigner SU(4) symmetry in nuclear structure
 - \hookrightarrow emergence of geometry and duality in the ¹²C spectrum
- Towards heavier nuclei & higher precision
 - \rightarrow highly improved LO action based on SU(4)
 - \rightarrow NN interaction at N3LO, first promosing results for nuclei at N3LO
 - \hookrightarrow requires the new wave function matching technique
- Ab initio nuclear thermodynamics
 - \rightarrow partition function via the pinhole trace algorithm
 - \hookrightarrow first promising results for the phase diagram of nuclear matter at finite temperature
 - \hookrightarrow prediction of the vapor-liquid phase transition within reasonable accuracy

Lee et al., PRL **127** (2021) 062501

par matter at finite temperature

Lu et al., PRL 125 (2020) 192502

Summary & outlook

- Strangeness nuclear physics
 - \rightarrow treat hyperons as impurities, ILMC algorithm
 - \hookrightarrow first exploratory study, $t_{
 m CPU} \sim A$
 - \hookrightarrow developed the two-impurity formalism
 - \hookrightarrow hypernuclear landscape up to A=20 in the works
- Studies of the oxygen and calcium isotopic chains
 - ightarrow first results for oxygen from A=16 to A=26 \checkmark
 - \hookrightarrow calcium isotopes from A = 40 to A = 72
 - \hookrightarrow driplines, proton and neutron density distributions
- Studies of alpha cluster states
 - \rightarrow detailed studies of the four α -clusters in ¹⁶O
 - \hookrightarrow compute the spectrum & possible em transitions
 - \hookrightarrow map out all geometries of the cluster states, duality?
- and . . .

Bour et al., PRL **115** (2015) 185301 Frame et al., Eur. Phys. J. A **56** (2020) 248 Hildenbrand et al., Eur. Phys. J. A **58** (2022) 167

SPARES

The hidden spin-isospin exchange symmetry

Nucleon-nucleon interaction in large- N_C

Kaplan, Savage, Phys. Lett. 365B (1996) 244; Kaplan, Manohar, Phys. Rev. C 56 (1997) 96

• Performing the large- N_C analysis:

$$V_{\text{large}-N_c}^{2N} = V_C + W_S \, \vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2 + W_T \, S_{12} \vec{\tau}_1 \cdot \vec{\tau}_2 + \dots$$

- Leading terms are $\sim N_C$
- First corrections are $1/N_C^2$ suppressed, fairly strong even for $N_C = 3$
- Velocity-dependent corrections can be incorporated
- Based on spin-isospin exchange symmetry of the nucleon w.f. $d_\uparrow \leftrightarrow u_\downarrow$ or on the nucleon level $n_\uparrow \leftrightarrow p_\downarrow$
- Constraints on 3NFs: Phillips, Schat, PRC 88 (2013) 034002; Epelbaum et al., EPJA 51 (2015) 26

Hidden spin-isospin symmetry: Basic ideas

Lee, Bogner, Brown, Elhatisari, Epelbaum, Hergert, Hjorth-Jensen, Krebs, Li, Lu, UGM, Phys. Rev. Lett. 127 (2021) 062501 [2010.09420 [nucl-th]]

• $V_{large-N_c}^{2N}$ is not renomalization group invariant:

$$rac{dV_{\mu}(p,p')}{d\mu}
eq 0$$

 \simeq implicit setting of a preferred renormalization/resolution scale

- How does this happen?
 - high energies: corrections to the nucleon w.f. are $\sim v^2$
 - ightarrow these high-energy modes must be $\mathcal{O}(1/N_C^2)$ in our low-energy EFT
 - ightarrow momentum resolution scale $\Lambda \sim m_N/N_C \sim {\cal O}(1)$
 - ightarrow consistent with the cutoff in a Δ less th'y $\sim \sqrt{2m_N(m_\Delta-m_N)}$
 - low energies: the resolution scale must be large enough,
 - so that orbital angular momentum and spin are fully resolved
 - ightarrow as nucleon size is independent of N_C , so should be $\Lambda_{-}\sqrt{}$
- as will be shown, the optimal scale (where corrections are $\sim 1/N_C^2$) is:

 $\Lambda_{\mathrm{large}-N_c}\simeq 500\,\mathrm{MeV}$

Nucleon-nucleon phase shifts – lattice

Lee, Bogner, Brown, Elhatisari, Epelbaum, Hergert, Hjorth-Jensen, Krebs, Li, Lu, UGM, Phys. Rev. Lett. **127** (2021) 062501 [2010.09420 [nucl-th]]

• Use N3LO action (w/ TPE absorbed in contact interactions) at a=1.32 fm

 $\hookrightarrow \Lambda = \pi/a = 470 \, {\rm MeV}$

- \bullet compare S=0, T=1 w/ S=1, T=0
- S-waves: switch off the tensor force in 3S_1
- D-waves: average the spin-triplet channel
- NLEFT low-energy constants

ch., order	LEC (l.u.)	ch., order	LEC (l.u.)
${}^1\mathrm{S}_0, Q^0$	1.45(5)	$^{3}\mathrm{S}_{1},Q^{0}$	1.56(3)
$^1\mathrm{S}_0, Q^2$	-0.47(3)	$^3\mathrm{S}_1,Q^2$	-0.53(1)
${}^1\mathrm{S}_0, Q^4$	0.13(1)	$^3\mathrm{S}_1,Q^4$	0.12(1)
$^{1}\mathrm{D}_{2},Q^{4}$	-0.088(1)	$^{3}\mathrm{D_{all}},Q^{4}$	-0.070(2)

 \Rightarrow works pretty well

Nucleon-nucleon phase shifts – continuum

• Consider various (chiral) continuum potentials \rightarrow also works $\sqrt{}$

····· IDAHO N3LO

--- IDAHO N4LO ($\Lambda = 500$ MeV)

• - • - CD-Bonn Bochum N4⁺LO ($\Lambda = 400 - 550$ MeV)

• • • Nijmegen PWA

Entem, Machleidt, PRC **68** (2003) 041001 Entem, Machleidt, Nosyk PRC **96** (2017) 024004 Machleidt, PRC **63** (2001) 024001 eV) Reinert, Krebs, Epelbaum, EPJA **54** (2018) 86 Wiringa, Stoks, Schiavilla, PRC **51** (1995) 38

Two-nucleon matrix elements

 Consider the ME between any two-nucleon states A and B. Both have total spin S and total isospin T. Then (for isospin-inv. H):

$$M(S,T) = rac{1}{2S+1} \sum_{S_z=-S}^{S} \langle A; S, S_z; T, T_z | H | B; S, S_z; T, T_z
angle$$

- Spin-isospin exchange symmetry: $\left(M(S,T) = M(T,S) \right)$
- Ex: ³⁰P has 1 proton + 1 neutron in the $1s_{1/2}$ orbitals (minimal shell model)
- ightarrow if spin-isospin exchange symmetry were exact, the S=0, T=1 & S=1, T=0 states should be degenerate
- Data: The 1⁺ g.s. is 0.677 MeV below the 0⁺ excited state ($E_{g.s.} \simeq 220$ MeV)
- ightarrow fairly good agreement, consistent w/ $1/N_C^2$ corrections
- \rightarrow explanation: interactions of the np pair with the ²⁸Si core are suppressing spatial correlations of the 1⁺ w.f. caused by the tensor interaction

Two-nucleon matrix elements in the s-d shell

- Test the spin-isospin echange symmetry for general two-body MEs 1s-0d shell
- Use the spin-tensor analysis developed by Kirson, Brown et al. Kirson, PLB 47 (1973) 110; Brown et al., JPhysG 11 (1985) 1191; Ann. Phys. 182 (1988) 191
- Seven two-body MEs for (S,T) = (1,0) and (S,T) = (0,1)

ME	L_1	L_2	L_3	L_4	L_{12}	L_{34}
1	2	2	2	2	0	0
2	2	2	2	2	2	2
3	2	2	2	2	4	4
4	2	2	2	0	2	2
5	2	2	0	0	0	0
6	2	0	2	0	2	2
7	0	0	0	0	0	0

 L_1, L_2 : orbital angular momenta of the outgoing orbitals of A L_{12} : total angular momentum of state A L_3, L_4 : orbital angular momenta of the outgoing orbitals of B L_{34} : total angular momentum of state AME 7 corresponds to the $1s_{1/2}$ orbitals discussed before set $L_Z = (L_{12})_z = (L_{34})_z$, average over L_z 44

 \rightarrow Work out M(S,T) for various forces at $\Lambda = 2.0, 2.5, 3.0, 3.5$ fm⁻¹

Two-nucleon matrix elements in the s-d shell

• Results for the AV18 and N3LO chiral potentials

Two-nucleon matrix elements: Conclusions

- As anticipated:
 - The optimal resolution scale is obviously $\Lambda \sim 500\,\text{MeV}$
 - For $\Lambda < \Lambda_{\mathrm{large}-N_c}$, the (S,T)=(1,0) channel is more attractive
 - For $\Lambda > \Lambda_{\mathrm{large}-N_c}$, the (S,T)=(0,1) channel is more attractive
 - These results do not depend on the type of interaction, while AV18 is local, chiral N3LO has some non-locality (and similar for more modern interactions like chiral N4⁺LO)
 - \hookrightarrow consistent with the results for NN scattering

 \Rightarrow Validates Weinberg's power counting! \checkmark

Three-nucleon forces

• Leading central three-nucleon force at the optimal resolution scale:

$$\begin{split} V^{3\mathrm{N}}_{\mathrm{large}-N_c} &= V^{3\mathrm{N}}_C + [(\vec{\sigma}_1 \times \vec{\sigma}_2) \cdot \vec{\sigma}_3] [(\vec{\tau}_1 \times \vec{\tau}_2) \cdot \vec{\tau}_3] W^{3\mathrm{N}}_{123} \\ &+ \vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2 W^{3\mathrm{N}}_{12} + \vec{\sigma}_2 \cdot \vec{\sigma}_3 \vec{\tau}_2 \cdot \vec{\tau}_3 W^{3\mathrm{N}}_{23} \\ &+ \vec{\sigma}_3 \cdot \vec{\sigma}_1 \vec{\tau}_3 \cdot \vec{\tau}_1 W^{3\mathrm{N}}_{31} + \dots, \end{split}$$

• Subleading central 3N interactions are of size $1/N_C$, of type

 $ec{\sigma}_1\cdotec{\sigma}_2[(ec{ au}_1 imesec{ au}_2)\cdotec{ au}_3]\,, \qquad [(ec{\sigma}_1 imesec{\sigma}_2)\cdotec{\sigma}_3]ec{ au}_1\cdotec{ au}_2$

- ⇒ helps in constraining the many short-range three-nucleon interactions that appear at higher orders in chiral EFT
- The spin-isospin exchange symmetry of the leading interactions also severely limits the isospin-dependent contributions of the 3N interactions to the nuclear EoS
- ⇒ relevant for calculations of the nuclear symmetry energy and its density dependence in dense nuclear matter

Ab Initio Nuclear Thermodynamics

 B. N. Lu, N. Li, S. Elhatisari, D. Lee, J. Drut, T. Lähde, E. Epelbaum, UGM, Phys. Rev. Lett. **125** (2020) 192502 [arXiv:1912.05105]

Phase diagram of strongly interacting matter

- Ulf-G. Meißner, Recent Progress in NLEFT - talk, CRC110 WS, Rizhao, July 20-22, 2023 -

Pinhole trace algorithm (PTA)

- The pinhole states span the whole A-body Hilbert space
- The canonical partition function can be expressed using pinholes:

$$Z_A = \operatorname{Tr}_A \left[\exp(-\beta H) \right], \ \beta = 1/T$$
$$= \sum_{n_1, \dots, n_A} \int \mathcal{D}s \mathcal{D}\pi \langle n_1, \dots, n_A | \exp[-\beta H(s, \pi)] | n_1, \dots, n_A \rangle$$

 allows to study: liquid-gas phase transition → this talk thermodynamics of finite nuclei
 thermal dissociation of hot nuclei
 cluster yields of dissociating nuclei

New paradigm for nuclear thermodynamics

- The PTA allows for simulations with fixed neutron & proton numbers at non-zero T
- \hookrightarrow thousands to millions times faster than existing codes using the grand-canonical ensemble ($t_{
 m CPU} \sim V N^2$ vs. $t_{
 m CPU} \sim V^3 N^2$)
- \bullet Only a mild sign problem \rightarrow pinholes are dynamically driven to form pairs
- Typical simulation parameters:

up to N = 144 nucleons in volumes $L^3 = 4^3, 5^3, 6^3$ \hookrightarrow densities from 0.008 fm⁻³ ... 0.20 fm⁻³ a = 1.32 fm $\rightarrow \Lambda = \pi/a = 470$ MeV , $a_t \simeq 0.1$ fm consider $T = 10 \dots 20$ MeV

 \bullet use twisted bc's, average over twist angles \rightarrow acceleration to the td limit

• very favorable scaling for generating config's:

$$\Delta t \sim N^2 L^3$$

Chemical potential

• Calculated from the free energy: $\mu = (F(N+1) - F(N-1))/2$

[–] Ulf-G. Meißner, Recent Progress in NLEFT – talk, CRC110 WS, Rizhao, July 20-22, 2023 –

Equation of state

• Calculated by integrating: $dP = \rho \, d\mu$

• Crtitical point: $T_c = 15.8(1.6)$ MeV, $P_c = 0.26(3)$ MeV/fm³, $\rho_c = 0.089(18)$ fm⁻³

- Ulf-G. Meißner, Recent Progress in NLEFT - talk, CRC110 WS, Rizhao, July 20-22, 2023 -

3

0.06(2)

 $\rho_{\rm c}$

 $0.31(7) \text{MeV/fm}^3$ Experiment: T_c

Ъ_с fm

15.0(3) MeV,

Vapor-liquid phase transition

- Vapor-liquid phase transition in a finite volume $V \& T < T_c$
- \bullet the most probable configuration for different nucleon number ${\boldsymbol A}$

• the free energy

• chemical potential $\mu = \partial F / \partial A$

CENTER-of-MASS PROBLEM

 AFQMC calculations involve states that are superpositions of many different center-of-mass (com) positions

 $egin{aligned} Z_A(au) &= \langle \Psi_A(au) | \Psi_A(au)
angle \ &| \Psi_A(au)
angle &= \exp(-H au/2) | \Psi_A
angle \end{aligned}$

• but: translational invariance requires summation over all transitions

 $Z_A(au) = \sum_{i_{
m com}, j_{
m com}} \langle \Psi_A(au, i_{
m com}) | \Psi_A(au, j_{
m com})
angle, \ \ {
m com} = {
m mod}((i_{
m com} - j_{
m com}), L)$

 $i_{\rm com}~(j_{\rm com})=$ position of the center-of-mass in the final (initial) state

 \rightarrow density distributions of nucleons can not be computed directly, only moments

 \rightarrow need to overcome this deficieny

PINHOLE ALGORITHM

Solution to the CM-problem:

track the individual nucleons using the *pinhole algorithm*

 Insert a screen with pinholes with spin & isospin labels that allows nucleons with corresponding spin & isospin to pass = insertion of the A-body density op.:

$$egin{aligned} &
ho_{i_1,j_1,\cdots i_A,j_A}(\mathrm{n}_1,\cdots \mathrm{n}_A)\ &=:
ho_{i_1,j_1}(\mathrm{n}_1)\cdots
ho_{i_A,j_A}(\mathrm{n}_A): \end{aligned}$$

MC sampling of the amplitude:

$$\begin{array}{l} \text{MC sampling of the amplitude:} \\ A_{i_1,j_1,\cdots i_A,j_A}(\mathbf{n}_1,\ldots,\mathbf{n}_A,L_t) \\ = \langle \Psi_A(\tau/2) | \rho_{i_1,j_1,\cdots i_A,j_A}(\mathbf{n}_1,\ldots,\mathbf{n}_A) | \Psi_A(\tau/2) \rangle \end{array}$$

- Allows to measure proton and neutron distributions
- Resolution scale $\sim a/A$ as cm position $\mathbf{r_{cm}}$ is an integer $\mathbf{n_{cm}}$ times a/A

 $\tau_i = \tau$

 $\tau_i =$

Similarity renormalization group studies

Timoteo, Szpigel, Ruiz Arriola, Phys. Rev. C 86 (2012) 034002

• Investigation of Wigner SU(4) symmetry using the SRG, use AV18:

• At the scale $\lambda_{\text{Wigner}} \simeq 3 \text{ fm}^{-1}$ one has $V_{^{1}S_{0},\text{Wigner}}(p',p) \approx V_{^{3}S_{1},\text{Wigner}}(p',p)$