Recent Progress in Nuclear Lattice EFT (B.9)

Ulf-G. Meißner, Univ. Bonn \& FZ Jülich

by CAS, PIFI

by VolkswagenStftung

VolkswagenStiftung

$\because:$.
by ERC, EXOTIC
erc

European Research Counci
European Research Council
by NRW-FAIR

Contents

- Chiral EFT on a lattice
- Emergent geometry and duality in the carbon nucleus
- Towards heavy nuclei and nuclear matter in NLEFT
- Summary \& outlook

Chiral EFT on a lattice

T. Lähde \& UGM

Nuclear Lattice Effective Field Theory - An Introduction
Springer Lecture Notes in Physics 957 (2019) 1-396

- Much more details on EFTs in light quark physics:

Effective Field Theories

AUTHORS:

Ulf-G Meißner, Rheinische Friedrich-Wilhelms-Universität Bonn and Forschungszentrum Jülich

Akaki Rusetsky, Rheinische Friedrich-Wilhelms-Universität Bonn
DATE PUBLISHED: August 2022
AVAILABILITY: Available
FORMAT: Hardback
ISBN: 9781108476980
Rate \& review

Nuclear lattice effective field theory

- new method to tackle the nuclear many-body problem
- discretize space-time $V=L_{s} \times L_{s} \times L_{s} \times L_{t}$: nucleons are point-like particles on the sites
- discretized chiral potential w/ pion exchanges and contact interactions + Coulomb
\rightarrow see Epelbaum, Hammer, UGM, Rev. Mod. Phys. 81 (2009) 1773
- typical lattice parameters

$$
p_{\max }=\frac{\pi}{a} \simeq 315-630 \mathrm{MeV}[\mathrm{UV} \text { cutoff }]
$$

- strong suppression of sign oscillations due to approximate Wigner SU(4) symmetry E. Wigner, Phys. Rev. 51 (1937) 106; T. Mehen et al., Phys. Rev. Lett. 83 (1999) 931; J. W. Chen et al., Phys. Rev. Lett. 93 (2004) 242302
- physics independent of the lattice spacing for $a=1 . . .2 \mathrm{fm}$

Transfer matrix method

- Correlation-function for A nucleons: $\quad Z_{A}(\tau)=\left\langle\Psi_{A}\right| \exp (-\tau H)\left|\Psi_{A}\right\rangle$ with Ψ_{A} a Slater determinant for A free nucleons [or a more sophisticated (correlated) initial/final state]

Euclidean time

- Transient energy

$$
E_{A}(\tau)=-\frac{d}{d \tau} \ln Z_{A}(\tau)
$$

\rightarrow ground state: $\quad E_{A}^{0}=\lim _{\tau \rightarrow \infty} E_{A}(\tau)$

- Exp. value of any normal-ordered operator \mathcal{O}

$$
\begin{aligned}
& Z_{A}^{\mathcal{O}}=\left\langle\Psi_{A}\right| \exp (-\tau H / 2) \mathcal{O} \exp (-\tau H / 2)\left|\Psi_{A}\right\rangle \\
& \lim _{\tau \rightarrow \infty} \frac{Z_{A}^{\mathcal{O}}(\tau)}{Z_{A}(\tau)}=\left\langle\Psi_{A}\right| \mathcal{O}\left|\Psi_{A}\right\rangle
\end{aligned}
$$

Configurations

\Rightarrow all possible configurations are sampled
\Rightarrow preparation of all possible initial/final states
\Rightarrow clustering emerges naturally

Auxiliary field method

- Represent interactions by auxiliary fields:

$$
\exp \left[-\frac{C}{2}\left(N^{\dagger} N\right)^{2}\right]=\sqrt{\frac{1}{2 \pi}} \int d s \exp \left[-\frac{s^{2}}{2}+\sqrt{C} s\left(N^{\dagger} N\right)\right]
$$

Computational equipment

- Present $=$ JUWELS $($ modular system $)+$ FRONTIER $+\ldots$

Emergent geometry and duality in the carbon nucleus

Short reminder of Wigner SU(4) symmetry

- If the nuclear Hamiltonian does not depend on spin and isospin, then it is obviously invariant under $\operatorname{SU}(4)$ transformations [really $U(4)=U(1) \times S U(4)$]:

$$
\begin{aligned}
& N \rightarrow U N, \quad U \in S U(4), \quad N=\binom{p}{n} \\
& N \rightarrow N+\delta N, \quad \delta N=i \epsilon_{\mu \nu} \sigma^{\mu} \tau^{\nu} N, \quad \sigma^{\mu}=\left(1, \sigma_{i}\right), \quad \tau^{\mu}=\left(1, \tau_{i}\right)
\end{aligned}
$$

- LO pionless EFT: $\quad \mathcal{L}_{\star}=N^{\dagger}\left(i \partial_{t}+\frac{\vec{\nabla}^{2}}{2 m_{N}}\right) N-\frac{1}{2}\left(C_{S}\left(N^{\dagger} N\right)^{2}+C_{T}\left(N^{\dagger} \vec{\sigma} N\right)^{2}\right)$
- Partial wave LECs: $C\left({ }^{1} S_{0}\right)=C_{S}-3 C_{T}, \quad C\left({ }^{3} S_{1}\right)=C_{S}+C_{T}$
\Rightarrow The operator $\left(N^{\dagger} N\right)^{2}$ is invariant under Wigner SU(4), but $\left(N^{\dagger} \vec{\sigma} N\right)^{2}$ is not
\Rightarrow In the Wigner SU(4) limit, one finds: $C\left({ }^{1} S_{0}\right)=C\left({ }^{3} S_{1}\right) \rightarrow a_{n p}^{S=0}=a_{n p}^{S=1} \rightarrow \infty$
\Rightarrow The exact symmetry limit corresponds to a scale invariant non-relativistic system
- Wigner SU(4) spin-isospin symmetry is particularly beneficial for NLEFT
\hookrightarrow suppression of sign oscillations Chen, Lee, Schäfer, Phys. Rev. Lett. 93 (2004) 242302
\hookrightarrow provides a very much improved LO action when smearing is included
Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B 797 (2019) 134863
\hookrightarrow related to the unitary limit
König, Griesshammer, Hammer, van Kolck, Phys. Rev. Lett. 118 (2017) 202501
- Initimately related to α-clustering in nuclei
\hookrightarrow cluster states in ${ }^{12} \mathrm{C}$ like the famous Hoyle state
Epelbaum, Krebs, Lee, UGM, Phys. Rev. Lett. 106 (2011) 192501
\hookrightarrow nuclear physics is close to a quantum phase transition
Elhatisari et al., Phys. Rev. Lett. 117 (2016) 132501

Wigner's SU(4) symmetry and the carbon spectrum

- Study of the spectrum of ${ }^{12} \mathrm{C}$
\hookrightarrow spin-orbit splittings are known to be weak
Hayes, Navratil, Vary, Phys. Rev. Lett. 91 (2003) 012502 Johnson, Phys. Rev. C 91 (2015) 034313
\hookrightarrow start with cluster and shell-model configurations \rightarrow nextside
- Locally and non-locally smeared SU(4) invariant interaction:

$$
\begin{aligned}
& V=C_{2} \sum_{\mathrm{n}^{\prime}, \mathrm{n}, \mathrm{n}^{\prime \prime}}: \rho_{\mathrm{NL}}\left(\mathrm{n}^{\prime}\right) f_{s_{\mathrm{L}}}\left(\mathrm{n}^{\prime}-\mathrm{n}\right) f_{s_{\mathrm{L}}}\left(\mathrm{n}-\mathrm{n}^{\prime \prime}\right) \rho_{\mathrm{NL}}\left(\mathrm{n}^{\prime \prime}\right):, \quad f_{s_{\mathrm{L}}}(\mathrm{n})=\left\{\begin{array}{cc}
1, & |\mathrm{n}|=0, \\
s_{\mathrm{L}}, & |\mathrm{n}|=1, \\
0, & \text { otherwise }
\end{array}\right. \\
& \rho_{\mathrm{NL}}(\mathrm{n})=a_{\mathrm{NL}}^{\dagger}(\mathrm{n}) a_{\mathrm{NL}}(\mathrm{n}) \\
& a_{\mathrm{NL}}^{(\dagger)}(\mathrm{n})=a^{(\dagger)}(\mathrm{n})+s_{\mathrm{NL}} \sum_{\left|\mathrm{n}^{\prime}\right|=1} a^{(\dagger)}\left(\mathrm{n}+\mathrm{n}^{\prime}\right), s_{\mathrm{NL}}=0.2
\end{aligned}
$$

\hookrightarrow only two adjustable parameters $\left(\boldsymbol{C}_{2}, s_{L}\right)$ fitted to $\boldsymbol{E}_{4^{4} \mathrm{He}} \& \boldsymbol{E}_{1^{2} \mathrm{C}}$
\hookrightarrow investigate the spectrum for $a=1.64 \mathrm{fm}$ and $a=1.97 \mathrm{fm}$

Configurations

- Cluster and shell model configurations

- isoscele right triangle

S2

- "bent-arm" shape

- linear diagonal chain

S4

- acute isoscele triangle

- ground state $|\mathbf{O}\rangle$

$-2 p-2 h$ state, $J_{z}=0$

$-1 p-1 h$ state, $J_{z}^{(1)}=J_{z}^{(2)}=1$

Transient energies

- Transient energies from cluster and shell-model configurations

Spectrum of ${ }^{12} \mathrm{C}$

Shen, Lähde, Lee, UGM, Eur. Phys.J. A 57 (2021) 276 [arXiv:2106.04834]

- Amazingly precise description \rightarrow great starting point

\rightarrow solidifies earlier NLEFT statements about the structure of the 0_{2}^{+}and 2_{2}^{+}states

A closer look at the spectrum of ${ }^{12} \mathrm{C}$

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

- Include also 3NFs: $\quad V=\frac{C_{2}}{2!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^{2}+\frac{C_{3}}{3!} \sum_{\mathbf{n}} \tilde{\rho}(\mathbf{n})^{3}$
- Fit the four parameters:
C_{2}, C_{3} - ground state energies of ${ }^{4} \mathrm{He}$ and ${ }^{12} \mathrm{C}$
$s_{\mathrm{L}} \quad$ - radius of ${ }^{12} \mathrm{C}$ around 2.4 fm
$s_{\mathrm{NL}} \quad$ - best overall description of the transition rates
- Calculation of em transitions
requires coupled-channel approach
e.g. 0^{+}and 2^{+}states

Spectrum of ${ }^{12} \mathrm{C}$ reloaded

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

- Improved description when 3NFs are included, amazingly good

\rightarrow solidifies earlier NLEFT statements about the structure of the 0_{2}^{+}and 2_{2}^{+}states

Electromagnetic properties

Shen, Lähde, Lee, UGM, Nature Commun. 14 (2023) 2777

- Radii (be aware of excited states), quadrupole moments \& transition rates

	NLEFT	FMD	$\boldsymbol{\alpha}$ cluster	BEC	RXMC	Exp.
$\boldsymbol{r}_{\boldsymbol{c}}\left(\mathbf{0}_{1}^{+}\right)[\mathrm{fm}]$	$\mathbf{2 . 5 3 (1)}$	2.53	2.54	2.53	2.65	$\mathbf{2 . 4 7 (2)}$
$\boldsymbol{r}\left(\mathbf{0}_{2}^{+}\right)[\mathrm{fm}]$	$\mathbf{3 . 4 5 (2)}$	3.38	3.71	3.83	4.00	-
$\boldsymbol{r}\left(\mathbf{0}_{3}^{+}\right)[\mathrm{fm}]$	$\mathbf{3 . 4 7 (1)}$	4.62	4.75	-	4.80	-
$\boldsymbol{r}\left(\mathbf{2}_{1}^{+}\right)[\mathrm{fm}]$	$\mathbf{2 . 4 2 (1)}$	2.50	2.37	2.38	-	-
$\boldsymbol{r}\left(\mathbf{2}_{\mathbf{2}}^{+}\right)[\mathrm{fm}]$	$\mathbf{3 . 3 0 (1)}$	4.43	4.43	-	-	-

	NLEFT	FMD	α cluster	NCSM	Exp.
$\boldsymbol{Q}\left(\mathbf{2}_{1}^{+}\right)\left[e \mathrm{fm}^{2}\right]$	6.8(3)	-	-	6.3(3)	8.1(2.3)
$Q\left(2_{2}^{+}\right)\left[e \mathrm{fm}^{2}\right]$	-35(1)	-	-	-	-
$M\left(E 0,0_{1}^{+} \rightarrow 0_{2}^{+}\right)\left[e \mathrm{fm}^{2}\right]$	4.8(3)	6.5	6.5	-	5.4(2)
$M\left(E 0,0_{1}^{+} \rightarrow 0_{3}^{+}\right)\left[e \mathrm{fm}^{2}\right]$	0.4(3)	-	-	-	-
$M\left(E 0,0_{2}^{+} \rightarrow 0_{3}^{+}\right)\left[e \mathrm{fm}^{2}\right]$	7.4(4)	-	-	-	-
$B\left(E 2,2_{1}^{+} \rightarrow 0_{1}^{+}\right)\left[e^{2} \mathrm{fm}^{4}\right]$	11.4(1)	8.7	9.2	8.7(9)	7.9(4)
$\boldsymbol{B}\left(E 2,2_{1}^{+} \rightarrow \mathbf{0}_{2}^{+}\right)\left[e^{2} \mathrm{fm}^{4}\right]$	2.5(2)	3.8	0.8	-	2.6(4)

Electromagnetic properties

- Form factors and transition ffs [essentially parameter-free]:

Emergence of geometry

- Use the pinhole algorithm to measure the distribution of α-clusters/matter:

- equilateral \& obstuse triangles $\rightarrow 2^{+}$states are excitations of the 0^{+}states

Emergence of duality

- ${ }^{12} \mathrm{C}$ spectrum shows a cluster/shell-model duality

- dashed triangles: strong $1 \mathrm{p}-1 \mathrm{~h}$ admixture in the wave function

Sanity check

- Repeat the calculations w/ the time-honored N2LO chiral interaction \hookrightarrow better NN phase shifts than the SU(4) interaction
\hookrightarrow but calculations are much more difficult (sign problem)

- spectrum as before (good agreement w/ data)
- density distributions as before (more noisy, stronger sign problem)

Towards heavy nuclei and nuclear matter in NLEFT

Towards heavy nuclei in NLEFT

- Two step procedure:

1) Further improve the LO action
\hookrightarrow minimize the sign oscillations
\hookrightarrow minimize the higher-body forces
\hookrightarrow gain an understanding of the essentials of nuclear binding
\hookrightarrow essentially done $\sqrt{ } \rightarrow$ next sidde
2) Work out the corrections to N3LO
\hookrightarrow first on the level of the NN interaction $\sqrt{ }$
\hookrightarrow new important technique: wave function matching $\sqrt{ }$
\hookrightarrow second for the spectra/radii/... of nuclei (first results) $\sqrt{ }$
\hookrightarrow third for nuclear reactions (nuclear astrophysics)

Essential elements of nuclear binding

Lu, Li, Elhatisari, Lee, Epelbaum, UGM, Phys. Lett. B 797 (2019) 134863

- LO smeared SU(4) symmetric action with 2NFs and 3NFs:

- Masses of 88 nuclei up to $\boldsymbol{A}=48$, largest deviation about 4%
- Charge radii deviate by at most 5% (expect ${ }^{3} \mathrm{H}$)
- Neutron matter EoS also consistent w/ other calculations (APR, GCR, ...)

NN interaction at N3LO

Li et al., Phys. Rev. C 98 (2018) 044002; Phys. Rev. C 99 (2019) 064001

- np phase shifts including uncertainties for $a=1.32 \mathrm{fm}$ (cf. Nijmegen PWA)

Wave function matching I

- $\boldsymbol{H}_{\text {soft }}$ has tolerable sign oscillations, good for many-body observables
- \boldsymbol{H}_{χ} has severe sign oscillations, derived from the underlying theory
\hookrightarrow can we find a unitary trafo, that creates a chiral \boldsymbol{H}_{χ} that is pert. th'y friendly?

$$
\boldsymbol{H}_{\chi}^{\prime}=\boldsymbol{U}^{\dagger} \boldsymbol{H}_{\chi} \boldsymbol{U}
$$Let $\left|\psi_{\text {soft }}^{0}\right\rangle$ be the lowest eigenstate of $\boldsymbol{H}_{\text {soft }}$Let $\left|\psi_{\chi}^{0}\right\rangle$ be the lowest eigenstate of \boldsymbol{H}_{χ}Let $\left|\phi_{\text {soft }}\right\rangle$ be the projected and normalized lowest eigenstate of $\boldsymbol{H}_{\text {soft }}$

$$
\left.\left|\phi_{\text {soft }}\right\rangle=\mathcal{P}\left|\psi_{\text {soft }}^{0}\right\rangle / \| \psi_{\text {soft }}^{0}\right\rangle \|
$$

Let $\left|\phi_{\chi}\right\rangle$ be the projected and normalized lowest eigenstate of \boldsymbol{H}_{χ}

$$
\begin{gathered}
\left.\left|\phi_{\chi}\right\rangle=\mathcal{P}\left|\psi_{\chi}^{0}\right\rangle / \| \psi_{\chi}^{0}\right\rangle \| \\
\hookrightarrow \boldsymbol{U}_{R^{\prime}, R}=\theta(r-\boldsymbol{R}) \delta_{R^{\prime}, R}+\theta\left(\boldsymbol{R}^{\prime}-r\right) \theta(\boldsymbol{R}-r)\left|\phi_{\chi}^{\perp}\right\rangle\left\langle\phi_{\mathrm{soft}}^{\perp}\right|
\end{gathered}
$$

Wave function matching II

- Graphical representation of w.f. matching

- W.F. matching is a "Hamiltonian translator":
eigenenergies from H_{1} but w.f. from $H_{2}=\boldsymbol{U}^{\dagger} \boldsymbol{H}_{1} \boldsymbol{U}$

Wave function matching III

Elhatisari et al., [arXiv:2210.17488 [nucl-th]], L. Bovermann, PhD thesis

- W.F. matching for the light nuclei

Nucleus	$B_{\text {LO }}[\mathrm{MeV}]$	$B_{\text {N3LO }}[\mathrm{MeV}]$	Exp. [MeV]
$E_{\chi, \mathrm{d}}$	1.79	2.21	2.22
$\left\langle\psi_{\text {soft }}^{0}\right\| H_{\chi, \mathrm{d}}\left\|\psi_{\text {soft }}^{0}\right\rangle$	0.45	0.62	
$\left\langle\psi_{\text {soft }}^{0}\right\| H_{\chi, \mathrm{d}}^{\prime}\left\|\psi_{\text {soft }}^{0}\right\rangle$	1.65	2.01	
$\left\langle\psi_{\text {Soft }}^{0}\right\| H_{\chi, t}\left\|\psi_{\text {Soft }}^{0}\right\rangle$	5.96 (8)	5.91 (9)	8.48
$\left\langle\psi_{\text {Soft }}^{0}\right\| H_{\chi, t}^{\prime}\left\|\psi_{\text {Soft }}^{0}\right\rangle$	7.97 (8)	8.72 (9)	
$\left\langle\psi_{\text {soft }}^{0}\right\| H_{\chi, \alpha}\left\|\psi_{\text {soft }}^{0}\right\rangle$	24.61(4)	23.84(14)	28.30
$\left\langle\psi_{\text {soft }}^{0}\right\| H_{\chi, \alpha}^{\prime}\left\|\psi_{\text {Soft }}^{0}\right\rangle$	27.74(4)	29.21(14)	

- reasonable accuracy for the light nuclei

- Tjon-band recovered with $\boldsymbol{H}_{\chi}^{\prime}$

Platter, Hammer, UGM, Phys. Lett. B 607 (2005) 254
\hookrightarrow now let us go to larger nuclei....

Nuclei at N3LO

- Binding energies of nuclei for $a=1.32 \mathrm{fm}\left(p_{\max }=470 \mathrm{MeV}\right)$
\rightarrow systematic errors via history matching Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

Charge radii at N3LO

- Charge radii ($a=1.32 \mathrm{fm}$, statistical errors can be reduced)

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

Neutron \& nuclear matter at N3LO

- EoS of pure neutron matter \& nuclear matter ($a=1.32 \mathrm{fm}$)

Elhatisari et al., [arXiv:2210.17488 [nucl-th]]

Sanity check

- One referee asked us to do calculations outside the history matching interval \hookrightarrow so let us look at ${ }^{50} \mathrm{Cr}$ and ${ }^{58} \mathrm{Ni}$:

Nucleus	$\boldsymbol{E}_{\text {N3LO }}[\mathrm{MeV}]$	$\boldsymbol{E}_{\exp }[\mathrm{MeV}]$	$\boldsymbol{R}_{\text {N3LO }}[\mathrm{fm}]$	$\boldsymbol{R}_{\exp }[\mathrm{fm}]$
${ }^{50} \mathrm{Cr}$	$-425.32(943)$	-435.05	$3.6469(229)$	3.6588
${ }^{58} \mathrm{Ni}$	$-493.13(661)$	-506.46	$3.7754(202)$	3.7752

\hookrightarrow Energies within 2-3\%, uncertainties on the 1-2\% level
\hookrightarrow Radii smack on, uncertainties can be improved
\hookrightarrow Test passed

Summary \& outlook

- Nuclear lattice simulations: a new quantum many-body approach
\rightarrow based on the successful continuum nuclear chiral EFT
\rightarrow a number of highly visible results already obtained
- Recent developments
\rightarrow hidden spin-isospin exchange symmetry
Lee et al., PRL 127 (2021) 062501
\hookrightarrow optimal cut-off $\boldsymbol{\Lambda} \simeq 500 \mathrm{MeV}$, validates Weinberg counting
\rightarrow Wigner SU(4) symmetry in nuclear structure \hookrightarrow emergence of geometry and duality in the ${ }^{12} \mathrm{C}$ spectrum
- Towards heavier nuclei \& higher precision
\rightarrow highly improved LO action based on SU(4)
\rightarrow NN interaction at N3LO, first promosing results for nuclei at N3LO
\hookrightarrow requires the new wave function matching technique
- Ab initio nuclear thermodynamics

Lu et al., PRL 125 (2020) 192502
\rightarrow partition function via the pinhole trace algorithm
\hookrightarrow first promising results for the phase diagram of nuclear matter at finite temperature
\hookrightarrow prediction of the vapor-liquid phase transition within reasonable accuracy

Summary \& outlook

- Strangeness nuclear physics
\rightarrow treat hyperons as impurities, ILMC algorithm
\hookrightarrow first exploratory study, $\boldsymbol{t}_{\mathbf{C P U}} \sim \boldsymbol{A}$
Bour et al., PRL 115 (2015) 185301
Frame et al., Eur. Phys. J. A 56 (2020) 248
\hookrightarrow developed the two-impurity formalism Hildenbrand et al., Eur. Phys. J. A 58 (2022) 167
\hookrightarrow hypernuclear landscape up to $\boldsymbol{A}=\mathbf{2 0}$ in the works
- Studies of the oxygen and calcium isotopic chains
\rightarrow first results for oxygen from $A=16$ to $A=26 \sqrt{ }$
\hookrightarrow calcium isotopes from $A=40$ to $A=72$
\hookrightarrow driplines, proton and neutron density distributions
- Studies of alpha cluster states
\rightarrow detailed studies of the four α-clusters in ${ }^{16} \mathrm{O}$
\hookrightarrow compute the spectrum \& possible em transitions
\hookrightarrow map out all geometries of the cluster states, duality?
- and...

SPARES

The hidden spin-isospin exchange symmetry

Nucleon-nucleon interaction in large- \boldsymbol{N}_{C}

- Performing the large- \boldsymbol{N}_{C} analysis:

$$
V_{\mathrm{large}-N_{c}}^{2 \mathrm{~N}}=V_{C}+W_{S} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \vec{\tau}_{1} \cdot \vec{\tau}_{2}+W_{T} S_{12} \vec{\tau}_{1} \cdot \vec{\tau}_{2}+\ldots
$$

- Leading terms are $\sim N_{C}$
- First corrections are $1 / N_{C}^{2}$ suppressed, fairly strong even for $N_{C}=3$
- Velocity-dependent corrections can be incorporated
- Based on spin-isospin exchange symmetry of the nucleon w.f. $d_{\uparrow} \leftrightarrow u_{\downarrow}$ or on the nucleon level $n_{\uparrow} \leftrightarrow p_{\downarrow}$
- Constraints on 3NFs: Phillips, Schat, PRC 88 (2013) 034002; Epelbaum et al., EPJA 51 (2015) 26

Hidden spin-isospin symmetry: Basic ideas

- $V_{\text {large }-N_{c}}^{2 \mathrm{~N}}$ is not renomalization group invariant: $\frac{d V_{\mu}\left(p, p^{\prime}\right)}{d \mu} \neq 0$
\simeq implicit setting of a preferred renormalization/resolution scale
- How does this happen?
- high energies: corrections to the nucleon w.f. are $\sim v^{2}$
\rightarrow these high-energy modes must be $\mathcal{O}\left(1 / N_{C}^{2}\right)$ in our low-energy EFT
\rightarrow momentum resolution scale $\Lambda \sim m_{N} / N_{C} \sim \mathcal{O}(1)$
\rightarrow consistent with the cutoff in a Δ less th'y $\sim \sqrt{2 m_{N}\left(m_{\Delta}-m_{N}\right)}$
- Iow energies: the resolution scale must be large enough, so that orbital angular momentum and spin are fully resolved \rightarrow as nucleon size is independent of \boldsymbol{N}_{C}, so should be $\boldsymbol{\Lambda}$
- as will be shown, the optimal scale (where corrections are $\sim 1 / N_{C}^{2}$) is:

$$
\Lambda_{\text {large }-N_{c}} \simeq 500 \mathrm{MeV}
$$

Nucleon-nucleon phase shifts - lattice

- Use N3LO action (w/ TPE absorbed in contact interactions) at $a=1.32 \mathrm{fm}$

$$
\hookrightarrow \Lambda=\pi / a=470 \mathrm{MeV}
$$

- compare $S=0, T=1 \mathrm{w} / S=1, T=0$
- S-waves: switch off the tensor force in ${ }^{3} S_{1}$
- D-waves: average the spin-triplet channel
- NLEFT low-energy constants

ch., order	LEC (l.u.)	ch., order	LEC (I.u.)
${ }^{1} \mathbf{S}_{\mathbf{0}}, \boldsymbol{Q}^{0}$	$1.45(5)$	${ }^{3} \mathbf{S}_{1}, \boldsymbol{Q}^{0}$	$1.56(3)$
${ }^{1} \mathbf{S}_{0}, \boldsymbol{Q}^{2}$	$-0.47(3)$	${ }^{3} \mathbf{S}_{1}, \boldsymbol{Q}^{2}$	$-0.53(1)$
${ }^{1} \mathbf{S}^{1} \mathbf{S}_{0}, \boldsymbol{Q}^{4}$	$0.13(1)$	${ }^{3} \mathbf{S}_{1}, \boldsymbol{Q}^{4}$	$0.12(1)$
${ }^{1} \mathbf{D}_{\mathbf{2}}, \boldsymbol{Q}^{4}$	$-0.088(1)$	${ }^{3} \mathbf{D}_{\text {all }}, \boldsymbol{Q}^{4}$	$-0.070(2)$

\Rightarrow works pretty well

Nucleon-nucleon phase shifts - continuum

- Consider various (chiral) continuum potentials \rightarrow also works

Entem, Machleidt, PRC 68 (2003) 041001
Entem, Machleidt, Nosyk PRC 96 (2017) 024004
Machleidt, PRC 63 (2001) 024001
Bochum N4+LO $(\Lambda=400-550 \mathrm{MeV})$
Reinert, Krebs, Epelbaum, EPJA 54 (2018) 86
Nijmegen PWA
Wiringa, Stoks, Schiavilla, PRC 51 (1995) 38

Two-nucleon matrix elements

- Consider the ME between any two-nucleon states A and B. Both have total spin S and total isospin T. Then (for isospin-inv. \boldsymbol{H}):

$$
M(S, T)=\frac{1}{2 S+1} \sum_{S_{z}=-S}^{S}\left\langle A ; S, S_{z} ; T, T_{z}\right| H\left|B ; S, S_{z} ; T, T_{z}\right\rangle
$$

- Spin-isospin exchange symmetry: $M(S, T)=M(T, S)$
- Ex: ${ }^{30} \mathrm{P}$ has 1 proton +1 neutron in the $1 s_{1 / 2}$ orbitals (minimal shell model)
\rightarrow if spin-isospin exchange symmetry were exact, the $S=0, T=1 \& S=1, T=0$ states should be degenerate
- Data: The $\mathbf{1}^{+}$g.s. is 0.677 MeV below the $\mathbf{0}^{+}$excited state ($\boldsymbol{E}_{\text {g.s. }} \simeq \mathbf{2 2 0} \mathrm{MeV}$)
\rightarrow fairly good agreement, consistent w/ $1 / N_{C}^{2}$ corrections
\rightarrow explanation: interactions of the $n p$ pair with the ${ }^{28} \mathrm{Si}$ core are suppressing spatial correlations of the 1^{+}w.f. caused by the tensor interaction

Two-nucleon matrix elements in the s-d shell

- Test the spin-isospin echange symmetry for general two-body MEs 1s-0d shell
- Use the spin-tensor analysis developed by Kirson, Brown et al.

Kirson, PLB 47 (1973) 110; Brown et al., JPhysG 11 (1985) 1191; Ann. Phys. 182 (1988) 191

- Seven two-body MEs for $(S, T)=(1,0)$ and $(S, T)=(0,1)$

ME	$\boldsymbol{L}_{\mathbf{1}}$	$\boldsymbol{L}_{\mathbf{2}}$	$\boldsymbol{L}_{\mathbf{3}}$	$\boldsymbol{L}_{\mathbf{4}}$	$\boldsymbol{L}_{\mathbf{1 2}}$	$\boldsymbol{L}_{\mathbf{3 4}}$
1	2	2	2	2	0	0
2	2	2	2	2	2	2
3	2	2	2	2	4	4
4	2	2	2	0	2	2
5	2	2	0	0	0	0
6	2	0	2	0	2	2
7	0	0	0	0	0	0

$\boldsymbol{L}_{\mathbf{1}}, \boldsymbol{L}_{\mathbf{2}}$: orbital angular momenta of the outgoing orbitals of \boldsymbol{A}
L_{12} : total angular momentum of state \boldsymbol{A}
$\boldsymbol{L}_{\mathbf{3}}, \boldsymbol{L}_{\mathbf{4}}$: orbital angular momenta of the outgoing orbitals of \boldsymbol{B}
$\boldsymbol{L}_{\mathbf{3 4}}$: total angular momentum of state \boldsymbol{A}
ME 7 corresponds to the $\mathbf{1} \boldsymbol{s}_{\mathbf{1} / \mathbf{2}}$ orbitals discussed before
set $\boldsymbol{L}_{\boldsymbol{Z}}=\left(\boldsymbol{L}_{12}\right)_{\boldsymbol{z}}=\left(\boldsymbol{L}_{\mathbf{3 4}}\right)_{\boldsymbol{z}}$, average over $\boldsymbol{L}_{\boldsymbol{z}}$
\rightarrow Work out $M(S, T)$ for various forces at $\Lambda=2.0,2.5,3.0,3.5 \mathrm{fm}^{-1}$

Two-nucleon matrix elements in the s-d shell

- Results for the AV18 and N3LO chiral potentials

Two-nucleon matrix elements: Conclusions

- As anticipated:
- The optimal resolution scale is obviously $\Lambda \sim 500 \mathrm{MeV}$
- For $\Lambda<\Lambda_{\text {large }-N_{c}}$, the $(S, T)=(1,0)$ channel is more attractive
- For $\Lambda>\Lambda_{\text {large }-N_{c}}$, the $(S, T)=(0,1)$ channel is more attractive
- These results do not depend on the type of interaction, while AV18 is local, chiral N3LO has some non-locality (and similar for more modern interactions like chiral $\mathrm{N}^{+}+\mathrm{LO}$)
\hookrightarrow consistent with the results for NN scattering
\Rightarrow Validates Weinberg's power counting! $\sqrt{ }$

Three-nucleon forces

- Leading central three-nucleon force at the optimal resolution scale:

$$
\begin{aligned}
V_{\text {large- }}^{c} & =V_{C}^{3 \mathrm{~N}}+\left[\left(\vec{\sigma}_{1} \times \vec{\sigma}_{2}\right) \cdot \vec{\sigma}_{3}\right]\left[\left(\vec{\tau}_{1} \times \vec{\tau}_{2}\right) \cdot \vec{\tau}_{3}\right] W_{123}^{3 \mathrm{~N}} \\
& +\vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \vec{\tau}_{1} \cdot \vec{\tau}_{2} W_{12}^{3 \mathrm{~N}}+\vec{\sigma}_{2} \cdot \vec{\sigma}_{3} \vec{\tau}_{2} \cdot \vec{\tau}_{3} W_{23}^{3 \mathrm{~N}} \\
& +\vec{\sigma}_{3} \cdot \vec{\sigma}_{1} \vec{\tau}_{3} \cdot \vec{\tau}_{1} W_{31}^{3 \mathrm{~N}}+\ldots,
\end{aligned}
$$

- Subleading central 3 N interactions are of size $1 / N_{C}$, of type

$$
\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}\left[\left(\vec{\tau}_{1} \times \vec{\tau}_{2}\right) \cdot \vec{\tau}_{3}\right], \quad\left[\left(\vec{\sigma}_{1} \times \vec{\sigma}_{2}\right) \cdot \vec{\sigma}_{3}\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2}
$$

\Rightarrow helps in constraining the many short-range three-nucleon interactions that appear at higher orders in chiral EFT

- The spin-isospin exchange symmetry of the leading interactions also severely limits the isospin-dependent contributions of the 3N interactions to the nuclear EoS
\Rightarrow relevant for calculations of the nuclear symmetry energy and its density dependence in dense nuclear matter

Ab Initio Nuclear Thermodynamics

B. N. Lu, N. Li, S. Elhatisari, D. Lee, J. Drut, T. Lähde, E. Epelbaum, UGM, Phys. Rev. Lett. 125 (2020) 192502 [arXiv:1912.05105]

Phase diagram of strongly interacting matter

- Sketch of the phase diagram of strongly interacting matter

Pinhole trace algorithm (PTA)

- The pinhole states span the whole A-body Hilbert space
- The canonical partition function can be expressed using pinholes:

$$
\begin{aligned}
Z_{A} & =\operatorname{Tr}_{\mathrm{A}}[\exp (-\beta H)], \beta=1 / T \\
& =\sum_{n_{1}, \cdots, n_{A}} \int \mathcal{D} s \mathcal{D} \pi\left\langle n_{1}, \cdots, n_{A}\right| \exp [-\beta H(s, \pi)]\left|n_{1}, \cdots, n_{A}\right\rangle
\end{aligned}
$$

- allows to study: liquid-gas phase transition \rightarrow this talk
thermodynamics of finite nuclei
thermal dissociation of hot nuclei
cluster yields of dissociating nuclei

New paradigm for nuclear thermodynamics

- The PTA allows for simulations with fixed neutron \& proton numbers at non-zero T
\hookrightarrow thousands to millions times faster than existing codes using the grand-canonical ensemble ($t_{\mathrm{CPU}} \sim V N^{2}$ vs. $t_{\mathrm{CPU}} \sim V^{3} N^{2}$)
- Only a mild sign problem \rightarrow pinholes are dynamically driven to form pairs
- Typical simulation parameters:

$$
\begin{aligned}
& \text { up to } N=144 \text { nucleons in volumes } L^{3}=4^{3}, 5^{3}, 6^{3} \\
& \quad \hookrightarrow \text { densities from } 0.008 \mathrm{fm}^{-3} \ldots 0.20 \mathrm{fm}^{-3} \\
& a=1.32 \mathrm{fm} \rightarrow \Lambda=\pi / a=470 \mathrm{MeV}, a_{t} \simeq 0.1 \mathrm{fm} \\
& \text { consider } T=10 \ldots 20 \mathrm{MeV}
\end{aligned}
$$

- use twisted bc's, average over twist angles \rightarrow acceleration to the td limit
- very favorable scaling for generating config's:

$$
\Delta t \sim N^{2} L^{3}
$$

Chemical potential

- Calculated from the free energy: $\mu=(F(N+1)-F(N-1)) / 2$

- Ulf-G. Meißner, Recent Progress in NLEFT - talk, CRC110 WS, Rizhao, July 20-22, 2023 -

Equation of state

- Calculated by integrating: $d P=\rho d \mu$
\bullet Crtitical point: $T_{c}=\mathbf{1 5 . 8 (1 . 6)} \mathrm{MeV}, \boldsymbol{P}_{c}=\mathbf{0 . 2 6}(3) \mathrm{MeV} / \mathrm{fm}^{3}, \rho_{c}=0.089(18) \mathrm{fm}^{-3}$

- Ulf-G. Meißner, Recent Progress in NLEFT - talk, CRC110 WS, Rizhao, July 20-22, 2023 -

Vapor-liquid phase transition

- Vapor-liquid phase transition in a finite volume $V \& T<T_{c}$
- the most probable configuration for different nucleon number \boldsymbol{A}
- the free energy
- chemical potential $\mu=\partial \boldsymbol{F} / \partial A$

CENTER-of-MASS PROBLEM

- AFQMC calculations involve states that are superpositions of many different center-of-mass (com) positions

$$
\begin{aligned}
& Z_{A}(\tau)=\left\langle\Psi_{A}(\tau) \mid \Psi_{A}(\tau)\right\rangle \\
& \left|\Psi_{A}(\tau)\right\rangle=\exp (-\boldsymbol{H} \tau / 2)\left|\Psi_{A}\right\rangle
\end{aligned}
$$

- but: translational invariance requires summation over all transitions

$$
Z_{A}(\tau)=\sum_{i_{\mathrm{com}}, j_{\mathrm{com}}}\left\langle\Psi_{A}\left(\tau, i_{\mathrm{com}}\right) \mid \Psi_{A}\left(\tau, j_{\mathrm{com}}\right)\right\rangle, \quad \text { com }=\bmod \left(\left(i_{\mathrm{com}}-j_{\mathrm{com}}\right), L\right)
$$

$i_{\text {com }}\left(j_{\text {com }}\right)=$ position of the center-of-mass in the final (initial) state
\rightarrow density distributions of nucleons can not be computed directly, only moments
\rightarrow need to overcome this deficieny

- Solution to the CM-problem:
track the individual nucleons using the pinhole algorithm
- Insert a screen with pinholes with spin \& isospin labels that allows nucleons with corresponding spin \& isospin to pass = insertion of the A-body density op.:

$$
\begin{aligned}
& \rho_{i_{1}, j_{1}, \cdots i_{A}, j_{A}}\left(\mathrm{n}_{1}, \cdots \mathrm{n}_{A}\right) \\
& \quad=: \rho_{i_{1}, j_{1}}\left(\mathrm{n}_{1}\right) \cdots \rho_{i_{A}, j_{A}}\left(\mathbf{n}_{A}\right):
\end{aligned}
$$

- MC sampling of the amplitude:

$$
\begin{array}{r}
\boldsymbol{A}_{i_{1}, j_{1}, \cdots i_{A}, j_{A}}\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{A}, L_{t}\right) \\
=\left\langle\Psi_{A}(\tau / 2)\right| \rho_{i_{1}, j_{1}, \cdots i_{A}, j_{A}}\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{A}\right)\left|\Psi_{A}(\tau / \mathbf{2})\right\rangle
\end{array}
$$

HMC updates for aux./pion fields

$$
\tau_{i}=\tau
$$

- Allows to measure proton and neutron distributions
- Resolution scale $\sim a / \boldsymbol{A}$ as cm position r_{cm} is an integer n_{cm} times a / \boldsymbol{A}

Similarity renormalization group studies

Timoteo, Szpigel, Ruiz Arriola, Phys. Rev. C 86 (2012) 034002

- Investigation of Wigner SU(4) symmetry using the SRG, use AV18:

- At the scale $\lambda_{\mathrm{Wigner}} \simeq 3 \mathrm{fm}^{-1}$ one has $V_{S_{0}, \mathrm{~W}_{\text {igner }}}\left(p^{\prime}, p\right) \approx V_{{ }_{3} S_{1}, \text { Wigner }}\left(p^{\prime}, p\right)$

