Charmed baryon spectrum and their decay patterns

Hua-Xing Chen

Southeast University

Collaborators: Er-Liang Cui, Hui-Min Yang, Wei Chen, Atsushi Hosaka, Xiang Liu, Shi-Lin Zhu.

Ground charmed baryons

Excited charmed baryons

Contents

Internal structure of heavy mesons

- Internal structure of heavy baryons
- QCD sum rule analyses

heavy meson ($Q-\overline{q}$)

Based on the heavy quark effective theory, the leading order Lagrangian does not depend on m_Q . Hence, the two heavy hadrons with the same light degree of freedom form a degenerate doublet:

heavy meson (
$$Q - \overline{q}$$
): $J = s_Q + (L + s_{\overline{q}})_{j_l}$

spin of the light degree of freedom

heavy meson
$$(Q - \overline{q})$$
: $J = s_Q + (L + s_{\overline{q}})_{j_l}$
= 1/2 = 1/2

neavy meson
$$(Q - \overline{q})$$
: $J = s_Q + (L + s_{\overline{q}})_{j_l}$

$$= 1/2$$

$$L = 0: j_l = 1/2, J^P = (0^-, 1^-)$$

heavy meson
$$(Q - \overline{q}): J = s_Q + (L + s_{\overline{q}})_{j_l}$$

 $\equiv 1/2$ $\equiv 1/2$
 $L = 0: j_l = 1/2, J^P = (0^-, 1^-)$
 $L = 1: \begin{cases} j_l = 1/2, J^P = (0^+, 1^+) \\ j_l = 3/2, J^P = (1^+, 2^+) \end{cases}$

heavy meson
$$(Q - \overline{q})$$
: $J = s_Q + (L + s_{\overline{q}})_{j_l}$
 $\equiv 1/2$ $\equiv 1/2$
 $L = 0 : j_l = 1/2, J^P = (0^-, 1^-)$
 $L = 1 : \begin{cases} j_l = 1/2, J^P = (0^+, 1^+) \\ j_l = 3/2, J^P = (1^+, 2^+) \end{cases}$
 $L = 2 : \begin{cases} j_l = 3/2, J^P = (1^-, 2^-) \\ j_l = 5/2, J^P = (2^-, 3^-) \end{cases}$

Contents

• Internal structure of heavy mesons

Internal structure of heavy baryons

• QCD sum rule analyses

Internal structure of heavy baryons q_1 q_1 q_1 \vec{p} \vec{p} \vec{p} \vec{q}_2

λ -excitation and ρ -excitation

$$J = s_Q + s_{q1} + s_{q2} + l_\rho + l_\lambda$$

= $s_Q + (s_{q1} + s_{q2} + l_\rho + l_\lambda)_{jl}$

spin of the light degree of freedom

The Pauli principle can be directly applied to the two light quarks:

 \succ color $\longrightarrow \overline{3}_{C}$ antisymmetric \succ orbital $\longrightarrow l_{\rho}$ {symmetric antisymmetric > spin $\longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$ $\succ SU(3) \text{ flavor} \longrightarrow \begin{cases} \mathbf{6}_F \text{ symmetric} \\ \mathbf{\overline{3}}_F \text{ antisymmetric} \end{cases}$

The Pauli principle can be directly applied to the two light quarks:

$$\succ \operatorname{color} \longrightarrow \overline{3}_{C} \operatorname{antisymmetric}$$

$$\succ \operatorname{orbital} \longrightarrow l_{\rho} \begin{cases} \operatorname{symmetric} \\ \operatorname{antisymmetric} \end{cases}$$

$$\Rightarrow \operatorname{spin} \longrightarrow s_{qq} = \begin{cases} 1 \operatorname{symmetric} \\ 0 \operatorname{antisymmetric} \end{cases}$$

$$Totally \operatorname{Antisymmetric} \end{cases}$$

$$\Rightarrow \operatorname{SU}(3) \operatorname{flavor} \longrightarrow \begin{cases} 6_{F} \operatorname{symmetric} \\ \overline{3}_{F} \operatorname{antisymmetric} \end{cases}$$

S-wave heavy baryons:

 \succ color $\longrightarrow \overline{3}_{C}$ antisymmetric

 \succ orbital $\longrightarrow l_{\rho} = 0$ symmetric

 $\Rightarrow \text{spin} \longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$ $\Rightarrow \text{SU(3) flavor} \longrightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$

S-wave heavy baryons:

- \succ color $\longrightarrow \overline{3}_C$ antisymmetric
- >orbital $\longrightarrow l_{\rho} = 0$ symmetric

$$\Rightarrow \text{spin} \longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$$
$$\Rightarrow \text{SU(3) flavor} \longrightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$$

Totally Antisymmetric

S-wave heavy baryons:

 \succ color $\longrightarrow \overline{3}_{C}$ antisymmetric

 \succ orbital $\longrightarrow l_{\rho} = 0$ symmetric

$$\Rightarrow \text{spin} \longrightarrow s_{qq} = \begin{cases} 1 \text{ symmetric} \\ 0 \text{ antisymmetric} \end{cases}$$
$$\Rightarrow \text{SU(3) flavor} \longrightarrow \begin{cases} 6_F \text{ symmetric} \\ \overline{3}_F \text{ antisymmetric} \end{cases}$$

$$L = 0 \begin{cases} \mathbf{j}_{l} = \mathbf{s}_{qq} = \mathbf{0}, J^{P} = 1/2^{+} & \longleftrightarrow & \overline{3}_{F} \\ \mathbf{j}_{l} = \mathbf{s}_{qq} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & \longleftrightarrow & \mathbf{6}_{F} \end{cases}$$

S-wave heavy baryons:

S-wave charmed baryons

$$L = 0 \begin{cases} \mathbf{j}_{l} = \mathbf{0}, J^{P} = 1/2^{+} & \overline{\mathbf{3}}_{F}: \Lambda_{c}, \Xi_{c} \\ \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & \mathbf{6}_{F}: (\Sigma_{c}, \Sigma_{c}^{*}), (\Xi_{c}^{\prime}, \Xi_{c}^{*}), (\Omega_{c}, \Omega_{c}^{*}) \\ \mathbf{\uparrow} & \mathbf{\uparrow} \\ 1/2^{+} 3/2^{+} \end{cases}$$

S-wave bottom baryons

$$L = 0 \begin{cases} \mathbf{j}_{l} = \mathbf{0}, J^{P} = 1/2^{+} & \mathbf{\bar{3}}_{F}: \Lambda_{b}, \Xi_{b} \\ \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & \mathbf{6}_{F}: (\Sigma_{b}, \Sigma_{b}^{*}), (\Xi_{b}^{*}, \Xi_{b}^{*}), (\Omega_{b}, \Omega_{b}^{*}) \\ & \uparrow & \uparrow \\ 1/2^{+} 3/2^{+} \end{cases}$$

S-wave charmed baryons

$$L = 0 \begin{cases} \mathbf{j}_{l} = \mathbf{0}, J^{P} = 1/2^{+} & \overline{\mathbf{3}}_{F}: \Lambda_{c}, \Xi_{c} \\ \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & \mathbf{6}_{F}: (\Sigma_{c}, \Sigma_{c}^{*}), (\Xi_{c}^{\prime}, \Xi_{c}^{*}), (\Omega_{c}, \Omega_{c}^{*}) \\ \mathbf{\uparrow} & \mathbf{\uparrow} \\ 1/2^{+} 3/2^{+} \end{cases}$$

S-wave bottom baryons

$$L = 0 \begin{cases} j_{l} = \mathbf{0}, J^{P} = 1/2^{+} & \overline{3}_{F}: \Lambda_{b}, \Xi_{b} \\ j_{l} = \mathbf{1}, J^{P} = (1/2^{+}, 3/2^{+}) & 6_{F}: (\Sigma_{b}, \Sigma_{b}^{*}), (\Xi_{b}^{*}, \Xi_{b}^{*}), (\Omega_{b}, \Omega_{b}^{*}) \\ & \uparrow & \uparrow \\ 1/2^{+} 3/2^{+} & \text{missing} \end{cases}$$

P-wave charmed baryons

8 multiplets, 35 baryons, e.g., 7 Ω_c baryons

 $\mathbf{\bar{3}}_{C} (\mathbf{A}) \begin{pmatrix} l_{\rho} = 1 \ (\mathbf{A}) \\ l_{\lambda} = 0 \end{pmatrix} \begin{pmatrix} s_{l} = 0 \ (\mathbf{A}) \rightarrow \mathbf{6}_{\mathbf{F}} \ (\mathbf{S}) \rightarrow j_{l} = 1: \ \Sigma_{c1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & \Xi_{c1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & \Omega_{c1} \left(\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & (1-a) \left[\mathbf{6}_{\mathbf{F}}, 1, 0, \rho\right] \\ \mathbf{J}_{l} = 0 & s_{l} = 1 \ (\mathbf{S}) \rightarrow \mathbf{\bar{3}}_{\mathbf{F}} \ (\mathbf{A}) \begin{pmatrix} j_{l} = 0: \ \Lambda_{c0} \ (\frac{1}{2}^{-}\right) & \Xi_{c0} \ (\frac{1}{2}^{-}\right) & (1-b) \left[\mathbf{\bar{3}}_{\mathbf{F}}, 0, 1, \rho\right] \\ \mathbf{J}_{l} = 1: \ \Lambda_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & \Xi_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}\right) & (1-c) \left[\mathbf{\bar{3}}_{\mathbf{F}}, 1, 1, \rho\right] \\ \mathbf{J}_{l} = 2: \ \Lambda_{c2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & \Xi_{c2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & (1-d) \left[\mathbf{\bar{3}}_{\mathbf{F}}, 2, 1, \rho\right] \\ s_{l} = 0 \ (\mathbf{S}) \\ s_{l} = 1 \ (\mathbf{S}) \rightarrow \mathbf{\bar{3}}_{\mathbf{F}} \ (\mathbf{A}) \rightarrow j_{l} = 1: \ \Lambda_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Xi_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & (2-a) \ [\mathbf{\bar{3}}_{\mathbf{F}}, 1, 0, \lambda] \\ s_{l} = 1 \ (\mathbf{S}) \rightarrow \mathbf{\bar{6}}_{\mathbf{F}} \ (\mathbf{S}) \qquad j_{l} = 1: \ \Sigma_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Xi_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Omega_{c0} \ (\frac{1}{2}^{-}) & (2-b) \ [\mathbf{6}_{\mathbf{F}}, 0, 1, \lambda] \\ j_{l} = 1: \ \Sigma_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Xi_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & \Omega_{c1} \ (\frac{1}{2}^{-}, \frac{3}{2}^{-}) & (2-c) \ [\mathbf{6}_{\mathbf{F}}, 1, 1, \lambda] \\ j_{l} = 2: \ \Sigma_{c2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & \Xi_{c2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & \Omega_{c2} \ (\frac{3}{2}^{-}, \frac{5}{2}^{-}) & (2-d) \ [\mathbf{6}_{\mathbf{F}}, 2, 1, \lambda] \end{cases}$

λ-excitation and ρ-excitation $(l_{\rho} + l_{\lambda} = 1)$

Currents for P-wave charmed baryons of the flavor 6_F

$$\begin{bmatrix} \mathbf{6}_{F}, \mathbf{1}, \mathbf{0}, \boldsymbol{\rho} \end{bmatrix} \begin{bmatrix} J_{1/2, -6_{F}, 1, 0, \rho} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{5}q^{b} - q^{aT}C\gamma_{5}[\mathcal{D}_{t}^{\mu}q^{b}])\gamma_{t}^{\mu}\gamma_{5}h_{c}^{c}, \\ J_{3/2, -6_{F}, 1, 0, \rho}^{a} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{5}q^{b} - q^{aT}C\gamma_{5}[\mathcal{D}_{t}^{\mu}q^{b}]) \left(g_{t}^{a\mu} - \frac{1}{3}\gamma_{t}^{a}\gamma_{t}^{\mu}\right)h_{c}^{c}, \\ \begin{bmatrix} \mathbf{6}_{F}, \mathbf{0}, \mathbf{1}, \boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} J_{1/2, -6_{F}, 0, 1, \boldsymbol{\lambda}} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{t}^{\nu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}])h_{c}^{\mu}, \\ J_{1/2, -6_{F}, 1, 1, \boldsymbol{\lambda}} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{t}^{\nu}q^{b} + q^{aT}C\gamma_{t}^{\nu}[\mathcal{D}_{t}^{\mu}q^{b}])\sigma_{t}^{\mu\nu}h_{c}^{c}, \\ J_{3/2, -6_{F}, 1, 1, \boldsymbol{\lambda}} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{t}^{\nu}q^{b} + q^{aT}C\gamma_{t}^{\nu}[\mathcal{D}_{t}^{\mu}q^{b}]) \left(g_{t}^{a\mu}\gamma_{t}^{\nu}\gamma_{5} - g_{t}^{a\nu}\gamma_{t}^{\mu}\gamma_{t}^{\nu}\gamma_{5} + \frac{1}{3}\gamma_{t}^{a}\gamma_{t}^{\mu}\gamma_{t}^{\nu}\gamma_{5}\right)h_{c}^{c}, \\ \begin{bmatrix} \mathbf{6}_{F}, \mathbf{1}, \mathbf{1}, \boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} J_{3/2, -6_{F}, 1, 1, \boldsymbol{\lambda}} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{t}^{\nu}q^{b} + q^{aT}C\gamma_{t}^{\nu}[\mathcal{D}_{t}^{\mu}q^{b}]) \left(g_{t}^{a\mu}\gamma_{t}^{\nu}\gamma_{5} - g_{t}^{a\nu}\gamma_{t}^{\mu}\gamma_{5} - \frac{1}{3}\gamma_{t}^{a}\gamma_{t}^{\mu}\gamma_{t}\gamma_{5}\right)h_{c}^{c}, \\ \end{bmatrix} \\ \begin{bmatrix} \mathbf{6}_{F}, \mathbf{2}, \mathbf{1}, \boldsymbol{\lambda} \end{bmatrix} \begin{bmatrix} J_{3/2, -6_{F}, 2, 1, \boldsymbol{\lambda}} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{t}^{\nu}q^{b} + q^{aT}C\gamma_{t}^{\nu}[\mathcal{D}_{t}^{\mu}q^{b}]) \times \left(g_{t}^{a\mu}\gamma_{t}^{\nu}\gamma_{5} + g_{t}^{a\nu}\gamma_{t}^{\mu}\gamma_{5} - \frac{2}{3}g_{t}^{\mu\nu}\gamma_{t}\gamma_{5}\right)h_{c}^{c}, \\ J_{3/2, -6_{F}, 2, 1, \boldsymbol{\lambda}} = i\epsilon_{abc} ([\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{aT}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{a}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{a}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{a}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{b}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{a}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{b}]C\gamma_{t}^{\mu}q^{b} + q^{aT}C\gamma_{t}^{\mu}[\mathcal{D}_{t}^{\mu}q^{b}] + [\mathcal{D}_{t}^{\mu}q^{b}]C\gamma_{t}^{\mu}q^{b} + q^$$

General discussions on hadronic currents

 Hadronic currents well describe the internal color, flavor, spin, and orbital quantum numbers.

 Hadronic currents well describe the internal symmetries of hadrons, e.g, the Pauli principle is automatically satisfied.

Contents

- Internal structure of heavy mesons
- Internal structure of heavy baryons

• QCD sum rule analyses

QCD Sum Rules

• In sum rule analyses, we consider two-point correlation functions: $\Pi(q^2) \stackrel{\text{def}}{=} i \int d^4 x e^{iqx} \langle 0|T\eta(x)\eta^+(0)|0\rangle$ $\approx \sum_n \langle 0|\eta|n\rangle \langle n|\eta^+|0\rangle$

 $\sim \Delta_n \langle 0|1|11/\langle 11|1| |0\rangle$

where η is the current which can couple to hadronic states.

• By using the dispersion relation, we can obtain the spectral density

$$\Pi\left(q^2\right) = \int_{s_<}^\infty \frac{\rho(s)}{s-q^2-i\varepsilon} ds$$

• In QCD sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

Nielsen et al, Phys. Rept. 497, 41 (2010); Albuquerque et al, JPG46, 093002 (2019).

Mass spectrum

P-wave charmed baryons of the flavor 6_F

~

Multiplet	В	ω_c	Working region	$\overline{\Lambda}$	Baryon	Mass	Difference	Decay constant	
Multiplet		(GeV)	(GeV)	(GeV)	(j^P)	(GeV)	(MeV)	(GeV^4)	
$[6_F, 1, 0, \rho]$	Σ_c	1.74	0.27 < T < 0.32	1.25 ± 0.11	$\Sigma_c(1/2^-)$	2.77 ± 0.14	15 ± 6	$0.067 \pm 0.017 \ (\Sigma_c^-(1/2^-))$	
					$\Sigma_c(3/2^-)$	2.79 ± 0.14	10 ± 0	$0.031 \pm 0.008 \ (\Sigma_c^-(3/2^-))$	
	Ξ_c'	1.87	0.26 < T < 0.34	1.36 ± 0.10	$\Xi_c'(1/2^-)$	2.88 ± 0.14	13 ± 5	$0.059 \pm 0.014 \ (\Xi_c^{\prime -}(1/2^-))$	
					$\Xi_c'(3/2^-)$	2.89 ± 0.14	10 ± 0	$0.028 \pm 0.007 \ (\Xi_c^{\prime -}(3/2^-))$	
	Ω_c	2.00	0.26 < T < 0.35	1.48 ± 0.09	$\Omega_c(1/2^-)$	2.99 ± 0.15	12 ± 5	$0.105 \pm 0.023 \; (\Omega_c^-(1/2^-))$	
					$\Omega_c(3/2^-)$	3.00 ± 0.15		$0.049 \pm 0.011 \ (\Omega_c^-(3/2^-))$	
$[{f 6}_F,0,1,\lambda]$	Σ_c	1.35	T = 0.27	1.10 ± 0.04	$\Sigma_c(1/2^-)$	2.83 ± 0.05	_	$0.045 \pm 0.008 \ (\Sigma_c^-(1/2^-))$	
	Ξ_c'	1.57	0.27 < T < 0.29	1.22 ± 0.08	$\Xi_c'(1/2^-)$	2.90 ± 0.13	_	$0.041 \pm 0.009 \ (\Xi_c^{\prime -}(1/2^-))$	
	Ω_c	1.78	0.27 < T < 0.31	1.37 ± 0.09	$\Omega_c(1/2^-)$	3.03 ± 0.18	_	$0.081 \pm 0.020 \ (\Omega_c^-(1/2^-))$	
$[6_F, 1, 1, \lambda]$	Σ_c	1.72	T = 0.33	1.03 ± 0.12	$\Sigma_c(1/2^-)$	2.73 ± 0.17	41 ± 16	$0.045 \pm 0.011 \ (\Sigma_c^-(1/2^-))$	
					$\Sigma_c(3/2^-)$	2.77 ± 0.17		$0.021 \pm 0.005 \ (\Sigma_c^-(3/2^-))$	
	Ξ_c'	1.72	T = 0.34	1.14 ± 0.09	$\Xi_c'(1/2^-)$	2.91 ± 0.12	38 ± 14	$0.041 \pm 0.008 \ (\Xi_c^{\prime -}(1/2^-))$	
					$\Xi_c'(3/2^-)$	2.95 ± 0.12		$0.019 \pm 0.004 \ (\Xi_c^{\prime -}(3/2^-))$	
	Ω_c	1.72	T = 0.35	1.22 ± 0.07	$\Omega_c(1/2^-)$	3.04 ± 0.10	36 ± 13	$0.069 \pm 0.011 \; (\Omega_c^-(1/2^-))$	
					$\Omega_c(3/2^-)$	3.07 ± 0.09		$0.032 \pm 0.005 \; (\Omega_c^-(3/2^-))$	
$[{f 6}_F,2,1,\lambda]$	Σ_c	1.50	0.28 < T < 0.29	1.09 ± 0.09	$\Sigma_c(3/2^-)$	2.78 ± 0.13	86 ± 36	$0.055 \pm 0.013 \ (\Sigma_c^-(3/2^-))$	
					$\Sigma_c(5/2^-)$	2.87 ± 0.11		$0.033 \pm 0.008 \ (\Sigma_c^-(5/2^-))$	
	Ξ_c'	1.72	0.27 < T < 0.32	1.24 ± 0.12	$\Xi_c'(3/2^-)$	2.96 ± 0.20	66 ± 27	$0.057 \pm 0.016 \ (\Xi_c^{\prime -}(3/2^-))$	
					$\Xi_c'(5/2^-)$	3.02 ± 0.18	00 ± 21	$0.034 \pm 0.009 \ (\Xi_c^{\prime -}(5/2^-))$	
	Ω_c	1.85	0.26 < T < 0.33	1.35 ± 0.11	$\Omega_c(3/2^-)$	3.08 ± 0.19	59 + 24	$0.103 \pm 0.026 \ (\Omega_c^-(3/2^-))$	
					$\Omega_c(5/2^-)$	3.14 ± 0.18		$0.062 \pm 0.016 \ (\Omega_c^-(5/2^-))$	

P-wave charmed baryons
of the flavor 6_F

$[\Sigma_c(\frac{1}{2}^-), 0, 1, \lambda]$		$[\Sigma_c(\frac{1}{2}^-), 0, 1, \lambda]$	$2.83\substack{+0.06 \\ -0.04}$	\mathbf{I} of the flavor 6_F				
$[\Sigma_c(\frac{1}{2}^-), 1, 1, \lambda]$	$\theta_1 \approx 0^\circ$	$[\Sigma_c(\frac{1}{2}^-), 1, 1, \lambda]$	$2.73_{-0.18}^{+0.17}$	23^{+19}_{-43}	$\Gamma (\Sigma_c(1/2^-) \to \Lambda_c \pi) \neq 0$ $\Gamma_S (\Sigma_c(1/2^-) \to \Sigma_c \pi) = 37^{+60}_{-28}$ $\Gamma_S (\Sigma_c(1/2^-) \to \Lambda_c \rho \to \Lambda_c \pi \pi) = 9.2^{+37.0}_{-9.2}$ $\Gamma_S (\Sigma_c(1/2^-) \to \Sigma_c \rho \to \Sigma_c \pi \pi) = 1.2^{+2.1}_{-1.0}$	48^{+70}_{-29}		
$[\Sigma_c(\frac{3}{2}^-), 1, 1, \lambda]$	$\theta_2 = 37 \pm 5^\circ$	$ \Sigma_c(\frac{3}{2}^-)\rangle_1$	$2.75_{-0.17}^{+0.17}$		$ \Gamma_D \left(\Sigma_c(3/2^-) \to \Lambda_c \pi \right) = 13^{+29}_{-9} \Gamma_D \left(\Sigma_c(3/2^-) \to \Sigma_c \pi \right) = 3.3^{+4.2}_{-2.2} \Gamma_S \left(\Sigma_c(3/2^-) \to \Sigma_c^* \pi \right) = 6.4^{+10.3}_{-4.7} $	24^{+23}_{-10}	$\Sigma_c(2800)^0$	
$[\Sigma_c(\frac{3}{2}^-), 2, 1, \lambda]$		$ \Sigma_c(\frac{3}{2}^-)\rangle_2$	$2.80^{+0.14}_{-0.12}$		$\Gamma_D \left(\Sigma_c(3/2^-) \to \Lambda_c \pi \right) = 23^{+35}_{-16} \Gamma_S \left(\Sigma_c(3/2^-) \to \Sigma_c^* \pi \right) = 3.5^{+6.1}_{-2.7}$	28^{+36}_{-16}		
$[\Sigma_c(\frac{5}{2}^-), 2, 1, \lambda]$	-	$[\Sigma_c(\frac{5}{2}^-), 2, 1, \lambda]$	$2.87^{+0.12}_{-0.11}$	68^{+51}_{-51}	$\Gamma_D \left(\Sigma_c(5/2^-) \to \Lambda_c \pi \right) = 12^{+18}_{-8}$ $\Gamma_D \left(\Sigma_c(5/2^-) \to \Sigma_c \pi \right) = 0.39^{+0.72}_{-0.32}$ $\Gamma_D \left(\Sigma_c(5/2^-) \to \Sigma_c^* \pi \right) = 0.61^{+1.14}_{-0.50}$	13^{+18}_{-8}		
$[\Xi_c'({\textstyle\frac12}^-),0,1,\lambda]$		$[\Xi_c'(\frac{1}{2}^-),0,1,\lambda]$	$2.90_{-0.12}^{+0.13}$	_	$\Gamma_{S} \left(\Xi_{c}'(1/2^{-}) \to \Lambda_{c} \bar{K} \right) = 400^{+610}_{-270}$ $\Gamma_{S} \left(\Xi_{c}'(1/2^{-}) \to \Xi_{c} \pi \right) = 360^{+550}_{-250}$	760^{+820}_{-370}	_	
$[\Xi_c'(\frac{1}{2}^-),1,1,\lambda]$	$\theta_1 \approx 0^\circ$	$[\Xi_c'(\frac{1}{2}^-), 1, 1, \lambda]$	$2.91^{+0.13}_{-0.12}$	27^{+16}	$\Gamma\left(\Xi_{c}'(1/2^{-}) \to \Lambda_{c}\bar{K}\right) \neq 0$ $\Gamma\left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}\pi\right) \neq 0$ $\Gamma_{S}\left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}'\pi\right) = 12^{+15}_{-8}$ $\Gamma_{S}\left(\Xi_{c}'(1/2^{-}) \to \Xi_{c}\rho \to \Xi_{c}\pi\pi\right) = 1.7^{+7.6}_{-1.7}$	14^{+17}_{-8}	$\Xi_c(2923)^0$	
$[\Xi_c^{\prime}(\frac{3}{2}^-),1,1,\lambda]$	$\theta_2 = 37 \pm 5^{\circ}$	$ \Xi_c'(rac{3}{2}^-) angle_1$	$2.94_{-0.11}^{+0.12}$	21-27	$ \Gamma_D \left(\Xi'_c(3/2^-) \to \Lambda_c \bar{K} \right) = 2.3^{+1.7}_{-1.7} \Gamma_D \left(\Xi'_c(3/2^-) \to \Xi_c \pi \right) = 4.6^{+8.1}_{-8.3} \Gamma_D \left(\Xi'_c(3/2^-) \to \Xi'_c \pi \right) = 2.0^{+2.2}_{-1.2} \Gamma_S \left(\Xi'_c(3/2^-) \to \Xi'_c \pi \right) = 2.1^{+2.6}_{-1.5} $	12^{+10}_{-4}	$\Xi_c(2939)^0$	
$[\Xi_c'(\frac{3}{2}^-),2,1,\lambda]$		$ \Xi_c'(\frac{3}{2}^-)\rangle_2$	$2.97^{+0.24}_{-0.15}$	56^{+30}	$\Gamma_D\left(\Xi_c'(3/2^-) \to \Lambda_c \bar{K}\right) = 6.3^{+11.6}_{-4.7}$ $\Gamma_D\left(\Xi_c'(3/2^-) \to \Xi_c \pi\right) = 11^{+19}_{-8}$ $\Gamma_S\left(\Xi_c'(3/2^-) \to \Xi_c^* \pi\right) = 1.3^{+1.80}_{-0.94}$	19^{+22}_{-9}	$\Xi_c(2965)^0$	
$[\Xi_c'(\frac{5}{2}^-),2,1,\lambda]$	_	$[\Xi_c'(\frac{5}{2}^-), 2, 1, \lambda]$	$3.02^{+0.23}_{-0.14}$	-35	$\Gamma_D\left(\Xi_c'(5/2^-) \to \Lambda_c \bar{K}\right) = 6.3^{+11.4}_{-4.6}$ $\Gamma_D\left(\Xi_c'(5/2^-) \to \Xi_c \pi\right) = 9.6^{+15.8}_{-6.8}$ $\Gamma_D\left(\Xi_c'(5/2^-) \to \Xi_c^* \pi\right) = 1.5^{+2.6}_{-1.1}$	18^{+20}_{-8}	_	
$\frac{[\Omega_c(\frac{1}{2}^-), 1, 0, \rho]}{[\Omega_c(\frac{3}{2}^-), 1, 0, \rho]}$	$\theta_1' \approx 0^\circ$ $\theta_2' \approx 0^\circ$	$\frac{[\Omega_{c}(\frac{1}{2}^{-}), 1, 0, \rho]}{[\Omega_{c}(\frac{3}{2}^{-}), 1, 0, \rho]}$	$2.99_{-0.15}^{+0.15}$ $3.00^{+0.15}$	12^{+5}_{-5}	$\Gamma\left(\Omega_c(1/2^-) \to \Xi_c \bar{K}\right) \neq 0$ $\Gamma\left(\Omega_c(3/2^-) \to \Xi_c \bar{K}\right) \neq 0$	~ 0 ~ 0	$\Omega_c(3000)^0$	
$\frac{[\Omega_c(\frac{1}{2}^-), 1, 0, p]}{[\Omega_c(\frac{1}{2}^-), 0, 1, \lambda]}$		$[\Omega_c(\frac{1}{2}^-), 0, 1, \lambda]$	$3.03_{-0.19}^{+0.18}$	_	$\Gamma_{S}\left(\Omega_{c}(1/2^{-}) \to \Xi_{c}\bar{K}\right) = 980^{+1530}_{-670}$	980^{+1530}_{-670}	_	
$[\Omega_c(\frac{1}{2}^-), 1, 1, \lambda]$	$\theta_1 \approx 0^{-3}$	$\left[\Omega_c(\frac{1}{2}^-), 1, 1, \lambda\right]$	$3.04^{+0.11}_{-0.09}$	27^{+15}	$\Gamma\left(\Omega_c(1/2^-) \to \Xi_c \bar{K}\right) \neq 0$	~ 0	$\Omega_c(3050)^0$	
$[\Omega_c(\frac{3}{2}^-), 1, 1, \lambda]$	$\theta_2 \approx 37 \pm 5^\circ$	$ \Omega_c(\frac{3}{2})\rangle_1$	$3.06\substack{+0.10\\-0.09}$	21-23	$\Gamma_D\left(\Omega_c(3/2^-) \to \Xi_c \bar{K}\right) = 2.0^{+3.5}_{-1.5}$	$2.0^{+3.5}_{-1.5}$	$\Omega_c(3066)^0$	
$\left[\Omega_c(\frac{3}{2}^-), 2, 1, \lambda\right]$		$ \Omega_c(\frac{3}{2})\rangle_2$	$3.09^{+0.22}_{-0.17}$	~ 4 ± 26	$\Gamma_D\left(\Omega_c(3/2^-) \to \Xi_c \bar{K}\right) = 6.3^{+11.2}_{-4.8}$	$6.4^{+11.2}_{-4.8}$	$\Omega_c(3090)^0$	
$\left[\Omega_c(\frac{5}{2}^-), 2, 1, \lambda\right]$	_	$\left[\Omega_c(\frac{5}{2}^-), 2, 1, \lambda\right]$	$3.14^{+0.21}_{-0.15}$	51^{+20}_{-29}	$\Gamma_D\left(\Omega_c(3/2^-)\to\Xi_c\bar{K}\right)=5.5^{+9.6}_{-4.1}$	$5.5^{+9.6}_{-4.1}$	$\Omega_c(3119)^0$	

Mass

(GeV)

Mixed state

HQET state

Mixing

Decay properties

$\Omega_c^0(1/2^-) \rightarrow \Xi_c + \overline{K}$ (S-wave)
$\Omega_{\rm c}^{\rm 0}(1/2^{-}) \longrightarrow \Xi_{\rm c} + \overline{\rm K}^* \longrightarrow \Xi_{\rm c} + \overline{\rm K} + \pi$
$\Omega_c^0(1/2^-) \rightarrow \Xi_c^* + \overline{K} (D-wave)$
··· ···

Total: 128 decay channels

Our QCD sum rule studies

- 1502.01103 Masses of P-wave charmed baryons ($\overline{3}_F$ and $\overline{6}_F$)
- 1510.05267 Masses of P-wave bottom baryons ($\overline{3}_F$ and $\overline{6}_F$)
- 1611.02677 Masses of D-wave charmed/bottom baryons ($\overline{3}_F$)
- 1707.03712 Masses of D-wave charmed/bottom baryons (6_F)
- 1703.07703 Decays of P-wave charmed baryons ($\overline{3}_F$ and 6_F , partly)
- 1903.10369 Decays of P-wave bottom baryons (6_F, partly)
- 1909.13575 Decays of P-wave bottom baryons ($\overline{3}_F$ and 6_F , partly)
- 2003.07488 Masses/Decays of P-wave bottom baryons (6_F, fully)
- 2106.15488 Masses/Decays of P-wave charmed baryons (6_F, fully)

Heavy baryons possibly known

P-wave charmed baryons of the flavor $\overline{\mathbf{3}}_F$

$$L = 1, \mathbf{j_l} = \mathbf{1}, J^P = (1/2^-, 3/2^-) \quad \overline{3}_F \begin{cases} (\Lambda_c(2595), \Lambda_c(2625)) \\ (\Xi_c(2790), \Xi_c(2815)) \\ 1/2^- & 3/2^- \end{cases}$$

P-wave bottom baryons of the flavor $\overline{\mathbf{3}}_{F}$

$$L = 1, \mathbf{j}_{l} = \mathbf{1}, J^{P} = (1/2^{-}, 3/2^{-}) \quad \overline{3}_{F} \begin{cases} (\Lambda_{b}(5912), \Lambda_{b}(5920)) \\ (\Xi_{b}(?), \Xi_{b}(6100)) \end{cases}$$

Heavy baryons possibly known

D-wave charmed baryons of the flavor $\overline{\mathbf{3}}_F$

$$L = 2, \mathbf{j}_{l} = \mathbf{2}, J^{P} = (3/2^{+}, 5/2^{+}) \qquad \overline{3}_{F} \begin{cases} (\Lambda_{c}(2860), \Lambda_{c}(2880)) \\ (\Xi_{c}(3055), \Xi_{c}(3080)) \\ 3/2^{+} & 5/2^{+} \end{cases}$$

D-wave bottom baryons of the flavor $\overline{\mathbf{3}}_{F}$ $L = 2, \mathbf{j}_{l} = \mathbf{2}, J^{P} = (3/2^{+}, 5/2^{+}) \quad \overline{\mathbf{3}}_{F} \begin{cases} (\Lambda_{b}(6146), \Lambda_{b}(6152)) \\ (\Xi_{b}(6327), \Xi_{b}(6333)) \end{cases}$ Heavy baryons not well known

P-wave charmed baryons of the flavor 6_F $L = 1, j_l =?, J^P =?^ 6_F \begin{cases} \Sigma_c(2800) & \text{Many of them are missing} \\ \Xi_c(2923), \Xi_c(2939), \Xi_c(2965) \\ \Omega_c(3000), \Omega_c(3050), \Omega_c(3066), \Omega_c(3090), \Omega_c(3119) \end{cases}$

P-wave bottom baryons of the flavor 6_F

$$L = 1, j_{l} = ?, J^{P} = ?^{-}$$

$$6_{F} \begin{cases} \Sigma_{b}(6097) \\ \Xi_{b}(6227) \end{cases}$$
Many of them are missing
$$\Omega_{b}(6316), \Omega_{b}(6330), \Omega_{b}(6340), \Omega_{b}(6350) \end{cases}$$

Summary

- Thanks to the efforts of experimentalists, various signals of heavy baryons and exotic hadrons were observed in recent years, making hadron physics popular once more.
- Different from exotic hadrons, we know the internal structure of heavy mesons and heavy baryons much better. Especially, the heavy quark effective theory plays an important role.

• All the above assignments are just possible assignments. We propose to search for more excited heavy hadrons in future experiments.

Thank you very much!