#### New Algorithms in Lattice Effective Field Theory

#### Bing-Nan Lü Nuclear Lattice EFT Collaboration



The 7th Symposium on "Symmetries and the emergence of Structure in QCD", RiZhao, July-20-2023

#### Introduction to Lattice Effective Field Theory

#### Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing a ≈ 1 fm = 620 MeV (~chiral symmetry breaking scale)
- Protons & neutrons interacting via short-range, δ-like and long-range, pion-exchange interactions
- Exact method, polynomial scaling ( $\sim A^2$ )



#### Euclidean time projection

• Get *interacting g. s.* from imaginary time projection:

 $|\Psi_{g.s.}\rangle \propto \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_A\rangle$ 

with  $|\Psi_A\rangle$  representing A free nucleons.

• Expectation value of any operator  $\mathscr{O}$ :

$$\langle O 
angle = \lim_{ au o \infty} rac{\langle \Psi_A | \exp(- au H/2) \mathscr{O} \exp(- au H/2) | \Psi_A 
angle}{\langle \Psi_A | \exp(- au H) | \Psi_A 
angle}$$

τ is discretized into time slices:

$$\exp(-\tau H) \simeq \left[:\exp(-\frac{\tau}{L_t}H):\right]^{L_t}$$

All possible configurations in  $\tau \in [\tau_i, -\tau_f]$  are sampled. Complex structures like nucleon clustering emerges naturally.



#### Auxiliary field transformation

Quantum correlations between nucleons are represented by fluctuations of the auxiliary fields.

$$: \exp\left[-\frac{C}{2}(N^{\dagger}N)^{2}\right] := \frac{1}{\sqrt{2\pi}} \int ds : \exp\left[-\frac{s^{2}}{2} + \sqrt{C}s(N^{\dagger}N)\right] :\Longrightarrow$$
$$Z = \int \mathscr{D}s \exp\left(-\sum \frac{s^{2}}{2}\right) \begin{vmatrix} \langle \psi_{1}|\phi_{1}\rangle & \langle \psi_{1}|\phi_{2}\rangle & \cdots & \langle \psi_{1}|\phi_{A}\rangle \\ \langle \psi_{2}|\phi_{1}\rangle & \langle \psi_{2}|\phi_{2}\rangle & \cdots & \langle \psi_{2}|\phi_{A}\rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \psi_{A}|\phi_{1}\rangle & \langle \psi_{A}|\phi_{2}\rangle & \cdots & \langle \psi_{A}|\phi_{A}\rangle \end{vmatrix}$$



#### Imaginary time extrapolation to find ground state

## Samples are generated by Markov Chain Monte Carlo

Observables calculated as  $\langle O \rangle = (1/N) \sum_{i=1}^{N} O_i$ Error scales as  $\varepsilon \sim \mathcal{O}(1/\sqrt{N})$ 

Number of samples  $N \sim 10^3 \sim 10^6$ 

Total energies at large t follow

 $E_A(t) = E_A(\infty) + c \exp\left[-\Delta E \tau\right].$ 

For any inserted operator  $\mathcal{O}$ ,

$$\mathscr{O}_A(\tau) = \mathscr{O}_A(\infty) + c' \exp\left[-\Delta E \tau/2\right]$$

c, c',  $\Delta E$  are fitting parameters.



#### Monte Carlo sign problem





- Sign problem: Monte Carlo works well for well-behaved functions, however, sometimes the integral becomes highly oscillating.
- QMC sign problem comes from the fermion anti-symmetrization.
- Sign problem as difficult as P=NP.
- Split H = H<sub>0</sub> + λV<sub>C</sub>. H<sub>0</sub>: w/o sign problem; V<sub>C</sub>: w/ sign problem.
- Solution 1: numerical extrapolation from λ = 0 to λ = 1.
- Solution 2: perturbative calculation near λ = 0.

#### Approximate symmetry of the nuclear force

• Construct a N<sup>2</sup>LO chiral force on the a = 1.32 fm ( $\Lambda \approx 471$  MeV) lattice.

• H<sub>N<sup>2</sup>LO</sub> gives good description of symmetric nuclear matter and finite nuclei:

|      | $ ho_{\rm sat}({\rm fm}^{-3})$ | $E_{\rm sat}/A$ (MeV) | K (MeV) | E( <sup>16</sup> O) (MeV) |
|------|--------------------------------|-----------------------|---------|---------------------------|
| LEFT | 0.165(1)                       | -15.9(0)              | 263(8)  | -117.1(1)                 |
| exp. | 0.16(1)                        | -16(1)                | 240(20) | -127.6(0)                 |

• Contribution of various contact terms in  $V_{2N}$  to  $E(^{16}O)$  (perturbatively):

| operator                                  | N <sub>C</sub> pow.      | Q pow.          | E (MeV) | operator                                                                  | N <sub>C</sub> pow.      | Q pow.          | E (MeV) |
|-------------------------------------------|--------------------------|-----------------|---------|---------------------------------------------------------------------------|--------------------------|-----------------|---------|
| 1                                         | N <sub>C</sub>           | 1               | -430.4  | $q^2 \vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2$ | N <sub>C</sub>           | $(Q/\Lambda)^2$ | 24.2    |
| $\vec{\sigma}_1\cdot\vec{\sigma}_2$       | 1/N <sub>C</sub>         | 1               | 33.0    | $\frac{i}{2}(q \times k) \cdot (\vec{\sigma}_1 + \vec{\sigma}_2)$         | 1/ <i>N</i> <sub>C</sub> | $(Q/\Lambda)^2$ | 0.0     |
| $q^2$                                     | N <sub>C</sub>           | $(Q/\Lambda)^2$ | 22.8    | $(ec{\sigma}_1 \cdot q)(ec{\sigma}_2 \cdot q)$                            | 1/N <sub>C</sub>         | $(Q/\Lambda)^2$ | 0.4     |
| $q^2 \vec{\tau}_1 \cdot \vec{\tau}_2$     | 1/ <i>N</i> <sub>C</sub> | $(Q/\Lambda)^2$ | 6.0     | $(ec{\sigma}_1\cdot q)(ec{\sigma}_2\cdot q)ec{	au}_1\cdotec{	au}_2$       | N <sub>C</sub>           | $(Q/\Lambda)^2$ | 30.5    |
| $q^2 \vec{\sigma}_1 \cdot \vec{\sigma}_2$ | 1/ <i>N</i> <sub>C</sub> | $(Q/\Lambda)^2$ | 0.6     |                                                                           |                          |                 |         |

• Note that  $1/N_C^2 \approx 0.1$ ,  $(Q/\Lambda)^2 \approx 0.2$  in <sup>16</sup>O. Red: suppressed by  $1/N_C^2$  or  $(Q/\Lambda)^2$ . Blue: suppressed by both factors. every clear hierachy

● SU(4) symmetric term dominate ← No sign problem, good for MC Dean Lee, Scott Bogner, B. Alex Brown, Serdar Elhatisari, Evgeny Epelbaum, Heiko Hergert, Morten Hjorth-Jensen, Hermann Krebs, Ning Li, Bing-Nan Lu, Ulf-G. Meißner, Phys. Rev. Lett. 127, 062501 (2021)

### Nuclear binding from a SU(4) nuclear force

In full quantum Monte Carlo simulations, equations are solved exactly





Bing-Nan Lu, Ning Li, Serdar Elhatisari, Dean Lee, Evgeny Epelbaum, Ulf-G. Meißner, Phys. Lett. B 797, 134863 (2019)

Bing-Nan Lü 8 / 17

#### Reyleigh-Schrödinger perturbation theory

For a Hamiltonian  $H = H^{(0)} + \lambda V_C$ ,

In conventional stationary perturbation theory:

$$\begin{split} E_{i} &= E_{i}^{(0)} + \lambda \langle \Psi_{i}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle + \lambda^{2} \sum_{k \neq 0} \frac{\langle \Psi_{k}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle}{E_{k}^{(0)} - E_{i}^{(0)}} + \mathscr{O}(\lambda^{3}) \\ |\Psi_{i}\rangle &= |\Psi_{i}^{(0)}\rangle + \lambda \sum_{k \neq 0} \frac{\langle \Psi_{k}^{(0)} | V_{C} | \Psi_{i}^{(0)} \rangle}{E_{k}^{(0)} - E_{i}^{(0)}} | \Psi_{k}^{(0)} \rangle + \mathscr{O}(\lambda^{2}) \end{split}$$

However, in projection Monte Carlo algorithms,

$$E_{\text{g.s.}} = \lim_{\tau \to \infty} \exp(-\tau H) |\Psi_T\rangle$$

targets the ground states (or low-lying states) directly.

- In projection methods, excited states are very expensive. ← required for 2nd order energy or 1st order wave function!
- All projection QMC calculations use at most first order perturbation theory.

#### Perturbative Monte Carlo (ptQMC) algorithm

We can expand  $|\Psi
angle$  against  $V_C$ ,

$$|\Psi\rangle = \lim_{L_t \to \infty} M^{L_t/2} |\Psi_T\rangle = |\Psi_0\rangle + |\delta\Psi_1\rangle + \mathcal{O}(V_C^2), \tag{1}$$

with the wave functions defined as

$$|\Psi_0\rangle = \lim_{L_t \to \infty} M_0^{L_t/2} |\Psi_T\rangle, \qquad |\delta\Psi_1\rangle = \lim_{L_t \to \infty} \sum_{k=1}^{L_t/2} M_0^{L_t/2-k} (M-M_0) M_0^{k-1} |\Psi_T\rangle,$$

$$E = E_0 + \delta E_1 + \delta E_2 + \mathcal{O}(V_C^3),$$

where the partial energy contributions at each orders are

$$E_{0} = \langle \Psi_{0} | (\mathcal{K} + \mathcal{V}) | \Psi_{0} \rangle / \langle \Psi_{0} | \Psi_{0} \rangle,$$
  

$$\delta E_{1} = \langle \Psi_{0} | \mathcal{V}_{C} | \Psi_{0} \rangle / \langle \Psi_{0} | \Psi_{0} \rangle,$$
  

$$\delta E_{2} = (\langle \Psi_{0} | \mathcal{V}_{C} | \delta \Psi_{1} \rangle - \delta E_{1} \operatorname{Re} \langle \delta \Psi_{1} | \Psi_{0} \rangle) / \langle \Psi_{0} | \Psi_{0} \rangle, \qquad (2)$$

in which all matrix elements and overlaps can be expressed with,

$$\begin{aligned} \mathcal{M}(O) &= \langle \Psi_T | M_0^{L_t/2} O M_0^{L_t/2} | \Psi_T \rangle, \\ \mathcal{M}_k(O) &= \langle \Psi_T | M_0^{L_t/2} O M_0^{L_t/2-k} M M_0^{k-1} | \Psi_T \rangle. \end{aligned}$$

Bing-Nan Lu, Ning Li, Serdar Elhatisari, Yuan-Zhuo Ma, Dean Lee, Ulf-G. Meißner, Phys. Rev. Lett. 128, 242501 (2022)

#### ptQMC with realistic chiral interaction

1



Perturbed amplitude can be transformed into an approximate Gaussian integral with a variable change. Note that

$$\langle \exp(\sqrt{-a_t C} s \rho) \rangle_T \approx \exp(\sqrt{-a_t C} s \langle \rho \rangle_T)$$

$$\mathcal{M}_{k}(O) = \langle \Psi_{T} | M_{0}^{L_{t}/2} O M_{0}^{L_{t}/2-k} M M_{0}^{k-1} | \Psi_{T} \rangle$$
  
=  $\int \mathscr{D} c P(c+\bar{c}) \langle \cdots O \cdots M(s_{k}, c+\bar{c}) \cdots \rangle_{T}$   
=  $\mathcal{M}(s) \exp\left(\frac{\bar{c}^{2}}{2}\right) \int \mathscr{D} c \exp\left(-\frac{c^{2}}{2} + \varepsilon\right)$ 

$$\bar{c}(n) = \frac{\partial}{\partial c(n)} \ln \langle \cdots M(s_k, c) \cdots \rangle_T \Big|_{c=0}$$
 is a constant field easy to calculate

#### Integral over c calculated with MC

Left panel: Test calculation of the transfer matrix energy  $E = -\ln\langle : \exp(-a_t H) : \rangle / a_t$ Bing-Nan Lu, Ning Li, Serdar Elhatisari, Yuan-Zhuo Ma, Dean Lee, Ulf-G. Meißner, Phys. Rev. Lett. 128, 242501 (2022)

## Benchmark Hamiltonian: N<sup>2</sup>LO chiral Hamiltonian

We benchmark the ptQMC algorithm with a N²LO chiral Hamiltonian  $H=K+V_{2N}+V_{3N}+V_{cou}$ 

$$\begin{split} V_{2N} &= \left[ B_1 + B_2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) + C_1 q^2 + C_2 q^2(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + C_3 q^2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) + C_4 q^2(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2)(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \right] \\ &+ C_5 \frac{i}{2} (\boldsymbol{q} \times \boldsymbol{k}) \cdot (\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) + C_6(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q}) + C_7(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \right] e^{-\sum_{l=1}^2 \left( p_l^6 + p_l'^6 \right) / \Lambda^6} \\ &- \frac{g_A^2 f_\pi(q^2)}{4F_\pi^2} \left[ \frac{(\boldsymbol{\sigma}_1 \cdot \boldsymbol{q})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{q})}{q^2 + M_\pi^2} + C_\pi' \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \right] (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) \\ V_{3N} &= \frac{c_E}{2F_\pi^4 \Lambda_\chi} e^{-\sum_{l=1}^3 \left( p_l^6 + p_l'^6 \right) / \Lambda^6} \end{split}$$

with  $C_{1-7}$ ,  $g_A$ ,  $c_E$  etc. low energy constants fitted to N-N scattering or  $\pi$ -N scattering data,  $\Lambda = 340$  MeV is the momentum cutoff

| LEC | $B_1$                 | B <sub>2</sub> | <i>C</i> <sub>1</sub> | <i>C</i> <sub>2</sub> | <i>C</i> <sub>3</sub> |
|-----|-----------------------|----------------|-----------------------|-----------------------|-----------------------|
|     | -2.443                | -0.125         | 0.143                 | -0.012                | -0.013                |
| LEC | <i>C</i> <sub>4</sub> | $C_5$          | $C_6$                 | <i>C</i> <sub>7</sub> | c <sub>E</sub>        |
|     | -0.020                | 0.273          | 0.0                   | -0.078                | 0.712                 |

Table: Fitted LECs' in lattice unit



- We split  $H = H_0 + (H H_0)$  and perform perturbative calculations
- $E_0$  is the ground state of  $H_0$
- $E_1 = E_0 + \delta E_1$  is the first order corrected energy
- E<sub>2</sub> = E<sub>1</sub> + δE<sub>2</sub> is the second order corrected energy
- *E*<sub>non-pt</sub> is the exact solution (~infinite order)

• Red bars on the right: Experiments For <sup>4</sup>He and <sup>16</sup>O, sign problem prevent us from going to large  $\tau$ , resulting in large statistical errors. But no need to worry,

Perturbation theory can save us!

#### Abnormally large second order corrections



- Though consistent with the exact solutions, we found abnormally large second order energy corrections
- We write  $H = H_0 + \lambda (H H_0)$  and study the  $\lambda$ -dependence of energies  $(0 \le \lambda \le 1)$
- $E_1 = E_0 + \lambda \delta E_1$  is a straight line
- $E_2 = E_1 + \lambda^2 \delta E_2$  is a parabola
- *E*<sub>non-pt</sub> is the exact solution
- For <sup>16</sup>O we use three different H<sub>0</sub> Bing-Nan Lu, Ning Li, Serdar Elhatisari, Yuan-Zhuo Ma, Dean Lee, Ulf-G. Meißner, Phys. Rev. Lett. 128, 242501 (2022)

As  $H_0$  respects the SU(4) symmetry, the wave function  $|\Psi_0\rangle$  must belong to one of its irreducible representations (irreps). The full Hamiltonian H breaks the SU(4) symmetry, thus its ground state  $|\Psi\rangle$  is a mixture of different SU(4) irreps. The components of  $|\Psi\rangle$  that mixes the SU(4) irreps can only be seen in  $|\delta\Psi_1\rangle$  or  $\delta E_2$ 

**Reminder**: A symmetry breaking perturbative Hamiltonian usually implies a large 2nd order energy correction!

#### Numerical results for several light nuclei

Table: The nuclear binding energies at different orders calculated with the ptQMC.  $E_{exp}$  is the experimental value. All energies are in MeV. We only show statistical errors from the MC simulations.

|                           | $E_0$     | $\delta E_1$ | $E_1$     | $\delta E_2$ | <i>E</i> <sub>2</sub> | $E_{exp}$ |
|---------------------------|-----------|--------------|-----------|--------------|-----------------------|-----------|
| <sup>3</sup> Н            | -7.41(3)  | +2.08        | -5.33(3)  | -2.99        | -8.32(3)              | -8.48     |
| <sup>4</sup> He           | -23.1(0)  | -0.2         | -23.3(0)  | -5.8         | -29.1(1)              | -28.3     |
| <sup>8</sup> Be           | -44.9(4)  | -1.7         | -46.6(4)  | -11.1        | -57.7(4)              | -56.5     |
| $^{12}C$                  | -68.3(4)  | -1.8         | -70.1(4)  | -18.8        | -88.9(3)              | -92.2     |
| <sup>16</sup> O           | -94.1(2)  | -5.6         | -99.7(2)  | -29.7        | -129.4(2)             | -127.6    |
| $^{16}\text{O}^{\dagger}$ | -127.6(4) | +24.2        | -103.4(4) | -24.3        | -127.7(2)             | -127.6    |
| <sup>16</sup> O‡          | -161.5(1) | +56.8        | -104.7(2) | -22.3        | -127.0(2)             | -127.6    |

Realistic N<sup>2</sup>LO chiral Hamiltonian fixed by few-body data + perturbative quantum MC simulation = nice agreement with the experiments Excellent predicative power  $\Longrightarrow$  Demonstration of both nuclear force model and many-body algorithm

#### Perturbative calculations beyond the second order



Perturbative energy correction  $\delta E_n$  of the deuteron at each order. For the zeroth order we show  $E_0$ .

- We calculated deuteron energy  $E({}^{2}H)$  in a small box L = 6.6 fm with a chiral Hamiltonian
- *H* is split as  $H = (K + \mu V_0) + (V - \mu V_0)$ ,  $V_0$  is the SU(4) interaction and *V* is the full chiral interaction

 $E_0$ ,  $\delta E_1$  and  $\delta E_2$  are always significant.  $\delta E_3$  and higher order contributions are negligible, regardless of what  $H_0$  we choose as the unperturbed Hamiltonian

The second order correction is large due to the symmetry breaking effect. There is no such mechanism for higher-order corrections, thus the higher-order corrections follow the usual power-counting hierachy.

# THANK YOU FOR YOUR ATTENTION