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Introduction to Lattice Effective Field Theory

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009),
Lihde, MeiBner, “Nuclear Lattice Effective Field Theory”, Springer (2019)

@ Discretized chiral nuclear force

@ Lattice spacing a~ 1 fm = 620 MeV @
(~chiral symmetry breaking scale) G O

@ Protons & neutrons interacting via @ G
short-range, 6-like and long-range, @
pion-exchange interactions Ja~os-26m

Lattice adapted for nucleus
@ Exact method, polynomial scaling (~ A?)
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Euclidean time projection

@ Get interacting g. s. from imaginary time

projection:
‘\Ug,s‘> o< ‘!mEXp(—TH)‘\UA>
with |W4) representing A free nucleons.

@ Expectation value of any operator 0

 (Walexp(—TH/2)0 exp(—TH/2) W A)
(0= fim, (Wl exp(—cH) V)

——> Euclidean time

@ 7 is discretized into time slices:

exp(—TH) ~ {: exp(letH) :] :

All possible configurations in T € [1;, 17¢] are sampled.
Complex structures like nucleon clustering emerges naturally.
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Auxiliary field transformation

Quantum correlations between nucleons are represented by fluctuations of the auxiliary
fields.

Cexp {fg(NTN)ﬂ = \/%/ds:exp {7§+\/ES(NTN)} =

LI
Z:/@sexp(—zg) W2|¢1 lI/2:¢2 ) W2:¢A
(Walor)  (Waldo) - (walon)

> Euclidean time
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Imaginary time extrapolation to find ground state

Samples are generated by

Markov Chain Monte Carlo

Observables calculated as (0) = (1/N)XN,; O;

Error scales as £ ~ 0(1/VN)
Number of samples N ~ 103~10°
Total energies at large t follow
Ea(t) = Ea(c0) + cexp[—AET].
For any inserted operator O,
OA(7) = Oa(=) + ¢ exp[-AET/2],

c, ¢, AE are fitting parameters.

[ Cetner of mass gy SUG) invariant g Density g Coulomb energy
Projection transfer matrix operators operator

Hybrid Monte Carlo Algorithm
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Monte Carlo sign problem

E;» (EMIB) [MeV]

SLi (GT+Ew-1.0) o~ Unconstrained

— Fit
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— Exp(-x~2/ 2)
— Exp(-x~2 / 2) * Cos(57x)

Sign problem: Monte Carlo works
well for well-behaved functions,
however, sometimes the integral
becomes highly oscillating.

QMC sign problem comes from the
fermion anti-symmetrization.

Sign problem as difficult as P=NP.

Split H=Hyo+AVc. Hp: w/o sign
problem; V¢: w/ sign problem.

Solution 1: numerical extrapolation
fromA=0to A =1.

Solution 2: perturbative calculation

near A =0.
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Approximate symmetry of the nuclear force

@ Construct a N2LO chiral force on the a=1.32 fm (A = 471 MeV) lattice.

@ Hyp o gives good description of symmetric nuclear matter and finite nuclei:

psat(fm™3)  Eq@/A (MeV) K (MeV)  E(1°0) (MeV)

LEFT  0.165(1) ~15.9(0) 263(8) —117.1(1)

exp. 0.16(1) —16(1) 240(20) —127.6(0)

@ Contribution of various contact terms in Voy to E(1%0) (perturbatively):

operator N¢ pow. Q pow. E (MeV) operator N¢ pow. Q pow. E (MeV)
1 Nc 1 —430.4 G261 - 6oy - T N¢ (Q/N)? 24.2
616 1/N¢ 1 33.0 5(gx k) (61 +62) 1/N¢ (Q/N)? 0.0
7 N¢ (Q/N)? 238 (81-9)(82-q) 1/N¢ (Q/N)? 0.4
%7 1/Nc (Q/N)? 6.0 (61-9)(02-q)T1- T2 N¢ (Q/N)? 30.5
¢°81-62 1/Nc¢ (Q/N)? 0.6

@ Note that 1/N2 ~0.1, (Q/A)2 0.2 in 180. Red: suppressed by 1/N2 or
(Q/N)2. Blue: suppressed by both factors.«<—=very clear hierachy

@ SU(4) symmetric term dominate<=No sign problem, good for MC

Dean Lee, Scott Bogner, B. Alex Brown, Serdar Elhatisari, Evgeny Epelbaum, Heiko Hergert, Morten
Hjorth-Jensen, Hermann Krebs, Ning Li, Bing-Nan Lu, UIf-G. MeiBner, Phys. Rev. Lett. 127, 062501 (2021)
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Nuclear binding from a SU(4) nuclear force

In full quantum Monte Carlo simulations, equations are solved exactly
vl (vl

—[9 _y2y| (Y2l V2|92
2=]7sep(-L%) (vilgr)  (valg2)
(v2lg1)  (v2l92)
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Bing-Nan Lu, Ning Li, Serdar Elhatisari, Dean Lee, Evgeny Epelbaum, UIf-G. MeiBner, Phys. Lett. B 797, 134863 (2019)
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Reyleigh-Schrodinger perturbation theory

For a Hamiltonian H = H(®) +AVe,
@ In conventional stationary perturbation theory:

(WO v )

E=E® + AW v w122y +0(23%)

& EO_gO
W ve vl

wy) = [w%) +127) W) +6(22)
k#0 k El

@ However, in projection Monte Carlo algorithms,
Egs. = 1_!51'1’e><p(—1:H)|\IJ7—)

targets the ground states (or low-lying states) directly.

@ In projection methods, excited states are very expensive. < required for 2nd
order energy or 1st order wave function!

@ All projection QMC calculations use at most first order perturbation theory.
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Perturbative Monte Carlo (ptQMC) algorithm

We can expand |W) against V¢,
W) = lim MEP[Wr) = W) +[8W1) + O(VE), (1)
oo
with the wave functions defined as

Le/2

Lt/2
[Wo) = fim My 2wr), [8w) = fim Y My 2T (M - Mo)METH W),
k=1

E = E+8E+8E+0(VY),

where the partial energy contributions at each orders are

By = (Wo|(K+ V)[Wo)/(Wo|Wo),
SE1 = (Wo|Vc|Wo)/(Wo|Wo),
0E; = ({Wo|Vc|6W1)— SE1Re(8W1|W0)) /(Wo|Wo), (2)

in which all matrix elements and overlaps can be expressed with,
#(0) = (Wr|Mg2OMg 2 wy),
Le/2 Le/2—k _
M(0) = (Wr|Mg2OMy T MM ).

Bing-Nan Lu, Ning Li, Serdar Elhatisari, Yuan-Zhuo Ma, Dean Lee, UIf-G. MeiBner,
Phys. Rev. Lett. 128, 242501 (2022)
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ptQMC with realistic chiral interaction

Statistical error (MeV)

Ey, = -a;'In(Cexp(-aH):0) (MeV)
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Perturbed amplitude can be transformed
into an approximate Gaussian integral with
a variable change. Note that

(exp(v=2:Csp)) 7 ~ exp(v—a;Cs(p) )

M1(0) = (W |MEPOME 2 MME W 7)

:/@cP(c—O—E)(‘--O-‘AM(sk,c+E)-~'>T
= M (s)exp (%2) ./chxp (—%2 +£)

&(n) = %(n)ln(wM(sk,c)--)T’c:O is a

constant field easy to calculate

Integral over c calculated with MC

Left panel: Test calculation of the transfer
matrix energy E = —In(: exp(—a:H) :)/a:
Bing-Nan Lu, Ning Li, Serdar Elhatisari,
Yuan-Zhuo Ma, Dean Lee, UIf-G. MeiBner,

Phys. Rev. Lett. 128, 242501 (2022
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Benchmark Hamiltonian: N2LO chiral Hamiltonian

We benchmark the ptQMC algorithm with a N2LO chiral Hamiltonian
H=K+ Von+ V3N + Veou
Von = [51+Bz(°'1'62)+C1q2+C2q2(11'1?2)+C3L72(61 -62)+ (61 -62)(T1 - T2)

: _y2 (64 p/6) /A0
+csé<qu)»(ol+a2)+cﬁ(al‘q)(az~q)+c7(al‘q)(am)(nwz)]e Kia (oP 4ol

_ &afr(d?) [(al»q)(czlq)

+Cpo -o’] 71T
P2 ey 70102 (T1-72)

—y3 . (p0+p0) /A0
Vv _E o B (oPe) A

with Ci_7, ga, ce etc. low energy constants fitted to N-N scattering or 7-N
scattering data, A = 340 MeV is the momentum cutoff

LEC B B, G G G
—2443 —0.125 0.143 —0.012 —0.013

LEC G Gs Go G CE
—0.020 0.273 00 —0.078 0712

Table: Fitted LECs' in lattice unit
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Perturbative Monte Carlo with realistic chiral interaction

Ak ® E v E ¢ E " Egpy

.'V~--v.__'_

@ We split H=Hy+ (H— Hp) and
perform perturbative calculations

B T

1 @ Ej is the ground state of Hp
@ E; = Eg+ 8E; is the first order

@~
* "o 0.0

8t e
el corrected energy
L
2 T @ E; = E; + 0E; is the second order
» corrected energy
< Bt TP - Y P
3 25 _‘\" Lk G G Gl i e i ] @ Eyon—pt is the exact solution
2 "o ‘{ (~infinite order)
w [l
bl XSSP P U . .
-30 F L] * 4 4 @ Red bars on the right: Experiments
1 1 1 1
60 F .
' ' ' ' For “He and 00, sign problem prevent us
X gn p! p
-80 F °-.. 4 . . .
..
. e ae o] from going to large 7, resulting in large
B R B AT A A statistical errors. But no need to worry,
120 | ME. ]
A S _1 .
0 B Sk i Shin Sl e Perturbation theory can save us!
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Abnormally large second order corrections

@ Though consistent with the exact
solutions, we found abnormally large

° (a)' w“o ", i ot (b)' e i second order energy corrections
s°F R b @ We write H= Hy+A(H — Hp) and
= /‘,;.‘_.‘_ﬁ\ E %24— l‘\._‘ ] study the A-dependence of energies
CHEETIRS T N Osr=y

S oo == pt 2nd orer 3 E; = Eg+ ASE; is a straight line

L h
-30
00 02 04,06 08 10 00 02 04,06 08 10

A A E> = E; + A%8E; is a parabola

Enon—pt is the exact solution

For 10 we use three different Hy
Bing-Nan Lu, Ning Li, Serdar
(% Elhatisari, Yuan-Zhuo Ma, Dean Lee,

N S UIf-G. MeiBner, Phys. Rev. Lett.
00 02 04,06 08 10 | 128, 242501 (2022)

As Hp respects the SU(4) symmetry, the wave function |[Wy) must belong to one of
its irreducible representations (irreps). The full Hamiltonian H breaks the SU(4)
symmetry, thus its ground state |V) is a mixture of different SU(4) irreps. The
components of |W) that mixes the SU(4) irreps can only be seen in [6W;) or §E>
Reminder: A symmetry breaking perturbative Hamiltonian

usually implies a large 2nd order energy correction!
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Numerical results for several light nuclei

Table: The nuclear binding energies at different orders calculated with the ptQMC.
Eexp is the experimental value. All energies are in MeV. We only show statistical errors

from the MC simulations.

E SE; E SE> E Eexp
SH  -7.41(3) +2.08 -533(3) —299 -832(3) 848
“He  —23.1(0) -02  -233(0) -58  -201(1) 283
8Be  —44.9(4) -17  -46.6(4) —11.1 -57.7(4) 565
2c -68.3(4) -18 -70.1(4) 188 -88.9(3) 922
60 —94.1(2) 56  —99.7(2) —29.7 —129.4(2) —127.6

(
1607 —127.6(4) +242 —103.4(4) -243 —127.7(2) -—127.6
160%  —161.5(1) +56.8 —104.7(2) -22.3 -127.0(2) —1276

Realistic N2LO chiral Hamiltonian fixed by few-body data + perturbative quantum
MC simulation = nice agreement with the experiments

Excellent predicative power = Demonstration of both nuclear force model and
many-body algorithm
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Perturbative calculations beyond the second order

o
0 L
Ho=K+06V, | Ho= K+ 0.8V,
“
-2
2 s
4
§ L=s
-5
R A S K RIS R O I S I I I R KRR
0 Ho= K+ 12V,

Hy =K+ 1.0V,

& 5 b % o~

012345678 91011121314

0 1234567 891011121314

° Ho=K 14V, |
or.——
s -
-10

Ho= K + 1.6V,

012345678 91011121314

01234567 891011121314

perturbative order n

Perturbative energy correction 8 E,, of the
deuteron at each order. For the zeroth

order we show Eg.

@ We calculated deuteron energy
E(?H) in a small box L=6.6 fm
with a chiral Hamiltonian

H is split as
H=(K+uVo)+(V-uWp), Vo'is
the SU(4) interaction and V is the
full chiral interaction

@ u=0.6,---,1.6 is a constant

Eo, 6E1 and S E, are always significant.
0 E3 and higher order contributions are
negligible, regardless of what Hy we

choose as the unperturbed Hamiltonian

The second order correction is large
due to the symmetry breaking effect.
There is no such mechanism for
higher-order corrections, thus the
higher-order corrections follow the
usual power-counting hierachy.
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