New Algorithms in Lattice Effective Field Theory

Bing-Nan Lü
Nuclear Lattice EFT Collaboration

The 7th Symposium on "Symmetries and the emergence of Structure in QCD", RiZhao, July-20-2023

Introduction to Lattice Effective Field Theory

Lattice EFT = Chiral EFT + Lattice + Monte Carlo

Review: Dean Lee, Prog. Part. Nucl. Phys. 63, 117 (2009),
Lähde, Meißner, "Nuclear Lattice Effective Field Theory", Springer (2019)

- Discretized chiral nuclear force
- Lattice spacing $a \approx 1 \mathrm{fm}=620 \mathrm{MeV}$ (\sim chiral symmetry breaking scale)
- Protons \& neutrons interacting via short-range, δ-like and long-range, pion-exchange interactions
- Exact method, polynomial scaling $\left(\sim A^{2}\right)$

Lattice adapted for nucleus

Euclidean time projection

- Get interacting g. s. from imaginary time projection:

$$
\left|\Psi_{\text {g.s. }}\right\rangle \propto \lim _{\tau \rightarrow \infty} \exp (-\tau H)\left|\Psi_{A}\right\rangle
$$

with $\left|\Psi_{A}\right\rangle$ representing A free nucleons.

- Expectation value of any operator \mathscr{O} :

$$
\langle O\rangle=\lim _{\tau \rightarrow \infty} \frac{\left\langle\Psi_{A}\right| \exp (-\tau H / 2) \mathscr{O} \exp (-\tau H / 2)\left|\Psi_{A}\right\rangle}{\left\langle\Psi_{A}\right| \exp (-\tau H)\left|\Psi_{A}\right\rangle}
$$

- τ is discretized into time slices:

$$
\exp (-\tau H) \simeq\left[: \exp \left(-\frac{\tau}{L_{t}} H\right):\right]^{L_{t}}
$$

All possible configurations in $\tau \in\left[\tau_{i}, \quad \tau_{f}\right]$ are sampled.
Complex structures like nucleon clustering emerges naturally.

Auxiliary field transformation

Quantum correlations between nucleons are represented by fluctuations of the auxiliary fields.

$$
\begin{gathered}
: \exp \left[-\frac{C}{2}\left(N^{\dagger} N\right)^{2}\right]:=\frac{1}{\sqrt{2 \pi}} \int d s: \exp \left[-\frac{s^{2}}{2}+\sqrt{C} s\left(N^{\dagger} N\right)\right]: \Longrightarrow \\
Z=\int \mathscr{D} s \exp \left(-\sum \frac{s^{2}}{2}\right)\left|\begin{array}{cccc}
\left\langle\psi_{1} \mid \phi_{1}\right\rangle & \left\langle\psi_{1} \mid \phi_{2}\right\rangle & \cdots & \left\langle\psi_{1} \mid \phi_{A}\right\rangle \\
\left\langle\psi_{2} \mid \phi_{1}\right\rangle & \left\langle\psi_{2} \mid \phi_{2}\right\rangle & \cdots & \left\langle\psi_{2} \mid \phi_{A}\right\rangle \\
\vdots & \vdots & \ddots & \vdots \\
\left\langle\psi_{A} \mid \phi_{1}\right\rangle & \left\langle\psi_{A} \mid \phi_{2}\right\rangle & \cdots & \left\langle\psi_{A} \mid \phi_{A}\right\rangle
\end{array}\right|
\end{gathered}
$$

Imaginary time extrapolation to find ground state

Samples are generated by

Markov Chain Monte Carlo

Observables calculated as $\langle O\rangle=(1 / N) \sum_{i=1}^{N} O_{i}$
Error scales as $\varepsilon \sim \mathscr{O}(1 / \sqrt{N})$
Number of samples $N \sim 10^{3} \sim 10^{6}$
Total energies at large t follow

$$
E_{A}(t)=E_{A}(\infty)+c \exp [-\Delta E \tau]
$$

For any inserted operator \mathscr{O},

$$
\mathscr{O}_{A}(\tau)=\mathscr{O}_{A}(\infty)+c^{\prime} \exp [-\Delta E \tau / 2],
$$

$c, c^{\prime}, \Delta E$ are fitting parameters.

Monte Carlo sign problem

- Sign problem: Monte Carlo works well for well-behaved functions, however, sometimes the integral becomes highly oscillating.
- QMC sign problem comes from the fermion anti-symmetrization.
- Sign problem as difficult as $\mathrm{P}=\mathrm{NP}$.
- Split $H=H_{0}+\lambda V_{C}$. $H_{0}: w / o$ sign problem; $V_{C}: w /$ sign problem.
- Solution 1: numerical extrapolation from $\lambda=0$ to $\lambda=1$.
- Solution 2: perturbative calculation near $\lambda=0$.

Approximate symmetry of the nuclear force

- Construct a N^{2} LO chiral force on the $a=1.32 \mathrm{fm}(\Lambda \approx 471 \mathrm{MeV})$ lattice.
- $H_{\mathrm{N}^{2} \mathrm{LO}}$ gives good description of symmetric nuclear matter and finite nuclei:

	$\rho_{\text {sat }}\left(\mathrm{fm}^{-3}\right)$	$E_{\text {sat }} / A(\mathrm{MeV})$	$K(\mathrm{MeV})$	$E\left({ }^{16} \mathrm{O}\right)(\mathrm{MeV})$
LEFT	$0.165(1)$	$-15.9(0)$	$263(8)$	$-117.1(1)$
exp.	$0.16(1)$	$-16(1)$	$240(20)$	$-127.6(0)$

- Contribution of various contact terms in $V_{2 N}$ to $E\left({ }^{16} \mathrm{O}\right)$ (perturbatively):

operator	N_{C} pow.	Q pow.	$E(\mathrm{MeV})$	operator	N_{C} pow.	Q pow.	$E(\mathrm{MeV})$
1	N_{C}	1	-430.4	$q^{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2} \vec{\tau}_{1} \cdot \vec{\tau}_{2}$	N_{C}	$(Q / \Lambda)^{2}$	24.2
$\vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$	$1 / N_{C}$	1	33.0	$\frac{i}{2}(q \times k) \cdot\left(\vec{\sigma}_{1}+\vec{\sigma}_{2}\right)$	$1 / N_{C}$	$(Q / \Lambda)^{2}$	0.0
q^{2}	N_{C}	$(Q / \Lambda)^{2}$	22.8	$\left(\vec{\sigma}_{1} \cdot q\right)\left(\vec{\sigma}_{2} \cdot q\right)$	$1 / N_{C}$	$(Q / \Lambda)^{2}$	0.4
$q^{2} \vec{\tau}_{1} \cdot \vec{\tau}_{2}$	$1 / N_{C}$	$(Q / \Lambda)^{2}$	6.0	$\left(\vec{\sigma}_{1} \cdot q\right)\left(\vec{\sigma}_{2} \cdot q\right) \vec{\tau}_{1} \cdot \vec{\tau}_{2}$	N_{C}	$(Q / \Lambda)^{2}$	30.5
$q^{2} \vec{\sigma}_{1} \cdot \vec{\sigma}_{2}$	$1 / N_{C}$	$(Q / \Lambda)^{2}$	0.6				

- Note that $1 / N_{C}^{2} \approx 0.1,(Q / \Lambda)^{2} \approx 0.2$ in ${ }^{16} \mathrm{O}$. Red: suppressed by $1 / N_{C}^{2}$ or $(Q / \Lambda)^{2}$. Blue: suppressed by both factors. \Longleftarrow very clear hierachy
- $\operatorname{SU}(4)$ symmetric term dominate \Longleftarrow No sign problem, good for MC

Nuclear binding from a SU(4) nuclear force

In full quantum Monte Carlo simulations, equations are solved exactly

$$
Z=\int \mathscr{D} \operatorname{sexp}\left(-\sum \frac{s^{2}}{2}\right)\left|\begin{array}{llll}
\left\langle\psi_{1} \mid \phi_{1}\right\rangle & \left\langle\psi_{1} \mid \phi_{2}\right\rangle & & \\
\left\langle\psi_{2} \mid \phi_{1}\right\rangle & \left\langle\psi_{2} \mid \phi_{2}\right\rangle & & \\
& & \left\langle\psi_{1} \mid \phi_{1}\right\rangle & \left\langle\psi_{1} \mid \phi_{2}\right\rangle \\
& & \left\langle\psi_{2} \mid \phi_{1}\right\rangle & \left\langle\psi_{2} \mid \phi_{2}\right\rangle
\end{array}\right|
$$

Bing-Nan Lu, Ning Li, Serdar Elhatisari, Dean Lee, Evgeny Epelbaum, Ulf-G. Meißner, Phys. Lett. B 797, 134863 (2019)

Reyleigh-Schrödinger perturbation theory

For a Hamiltonian $H=H^{(0)}+\lambda V_{C}$,

- In conventional stationary perturbation theory:

$$
\begin{aligned}
E_{i} & =E_{i}^{(0)}+\lambda\left\langle\Psi_{i}^{(0)}\right| V_{C}\left|\Psi_{i}^{(0)}\right\rangle+\lambda^{2} \sum_{k \neq 0} \frac{\left\langle\Psi_{k}^{(0)}\right| V_{C}\left|\Psi_{i}^{(0)}\right\rangle}{E_{k}^{(0)}-E_{i}^{(0)}}+\mathscr{O}\left(\lambda^{3}\right) \\
\left|\Psi_{i}\right\rangle & =\left|\Psi_{i}^{(0)}\right\rangle+\lambda \sum_{k \neq 0} \frac{\left\langle\Psi_{k}^{(0)}\right| V_{C}\left|\Psi_{i}^{(0)}\right\rangle}{E_{k}^{(0)}-E_{i}^{(0)}}\left|\Psi_{k}^{(0)}\right\rangle+\mathscr{O}\left(\lambda^{2}\right)
\end{aligned}
$$

- However, in projection Monte Carlo algorithms,

$$
E_{\text {g.s. }}=\lim _{\tau \rightarrow \infty} \exp (-\tau H)\left|\Psi_{T}\right\rangle
$$

targets the ground states (or low-lying states) directly.

- In projection methods, excited states are very expensive. \leftarrow required for 2nd order energy or 1st order wave function!
- All projection QMC calculations use at most first order perturbation theory.

Perturbative Monte Carlo (ptQMC) algorithm

We can expand $|\Psi\rangle$ against V_{C},

$$
\begin{equation*}
|\Psi\rangle=\lim _{L_{t} \rightarrow \infty} M^{L_{t} / 2}\left|\Psi_{T}\right\rangle=\left|\Psi_{0}\right\rangle+\left|\delta \Psi_{1}\right\rangle+\mathscr{O}\left(V_{C}^{2}\right) \tag{1}
\end{equation*}
$$

with the wave functions defined as

$$
\begin{gathered}
\left|\Psi_{0}\right\rangle=\lim _{L_{t} \rightarrow \infty} M_{0}^{L_{t} / 2}\left|\Psi_{T}\right\rangle, \quad\left|\delta \Psi_{1}\right\rangle=\lim _{L_{t} \rightarrow \infty} \sum_{k=1}^{L_{t} / 2} M_{0}^{L_{t} / 2-k}\left(M-M_{0}\right) M_{0}^{k-1}\left|\Psi_{T}\right\rangle \\
E=E_{0}+\delta E_{1}+\delta E_{2}+\mathscr{O}\left(V_{C}^{3}\right)
\end{gathered}
$$

where the partial energy contributions at each orders are

$$
\begin{align*}
E_{0} & =\left\langle\Psi_{0}\right|(K+V)\left|\Psi_{0}\right\rangle /\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle \\
\delta E_{1} & =\left\langle\Psi_{0}\right| V_{C}\left|\Psi_{0}\right\rangle /\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle \\
\delta E_{2} & =\left(\left\langle\Psi_{0}\right| V_{C}\left|\delta \Psi_{1}\right\rangle-\delta E_{1} \operatorname{Re}\left\langle\delta \Psi_{1} \mid \Psi_{0}\right\rangle\right) /\left\langle\Psi_{0} \mid \Psi_{0}\right\rangle \tag{2}
\end{align*}
$$

in which all matrix elements and overlaps can be expressed with,

$$
\begin{aligned}
\mathscr{M}(O) & =\left\langle\Psi_{T}\right| M_{0}^{L_{t} / 2} O M_{0}^{L_{t} / 2}\left|\Psi_{T}\right\rangle \\
\mathscr{M}_{k}(O) & =\left\langle\Psi_{T}\right| M_{0}^{L_{t} / 2} O M_{0}^{L_{t} / 2-k} M M_{0}^{k-1}\left|\Psi_{T}\right\rangle
\end{aligned}
$$

Bing-Nan Lu, Ning Li, Serdar Elhatisari, Yuan-Zhuo Ma, Dean Lee, Ulf-G. Meißner, Phys. Rev. Lett. 128, 242501 (2022)

ptQMC with realistic chiral interaction

Perturbed amplitude can be transformed into an approximate Gaussian integral with a variable change. Note that

$$
\begin{aligned}
& \left\langle\exp \left(\sqrt{-a_{t} C} s \rho\right)\right\rangle_{T} \approx \exp \left(\sqrt{-a_{t} C s}\langle\rho\rangle_{T}\right) \\
& \begin{aligned}
& \mathscr{M}_{k}(O)=\left\langle\Psi_{T}\right| M_{0}^{L_{t} / 2} O M_{0}^{L_{t} / 2-k} M M_{0}^{k-1}\left|\Psi_{T}\right\rangle \\
&=\int \mathscr{D} c P(c+\bar{c})\left\langle\cdots O \cdots M\left(s_{k}, c+\bar{c}\right) \cdots\right\rangle_{T} \\
&=\mathscr{M}(s) \exp \left(\frac{\bar{c}^{2}}{2}\right) \int \mathscr{D} c \exp \left(-\frac{c^{2}}{2}+\varepsilon\right) \\
& \begin{array}{c}
\bar{c}(\boldsymbol{n})
\end{array} \\
& \quad=\left.\frac{\partial}{\partial c(\boldsymbol{n})} \ln \left\langle\cdots M\left(s_{k}, c\right) \cdots\right\rangle_{T}\right|_{c=0} \text { is a } \\
& \text { constant field easy to calculate }
\end{aligned}
\end{aligned}
$$

Integral over c calculated with MC

Left panel: Test calculation of the transfer matrix energy $E=-\ln \left\langle: \exp \left(-a_{t} H\right):\right\rangle / a_{t}$ Bing-Nan Lu, Ning Li, Serdar Elhatisari, Yuan-Zhuo Ma, Dean Lee, Ulf-G. Meißner, Phys. Rev. Lett. 128, 242501 (2022)

Benchmark Hamiltonian: N²LO chiral Hamiltonian

We benchmark the ptQMC algorithm with a $\mathrm{N}^{2} \mathrm{LO}$ chiral Hamiltonian $H=K+V_{2 \mathrm{~N}}+V_{3 \mathrm{~N}}+V_{\text {cou }}$

$$
\begin{aligned}
V_{2 N} & =\left[B_{1}+B_{2}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right)+C_{1} q^{2}+C_{2} q^{2}\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)+C_{3} q^{2}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right)+C_{4} q^{2}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right)\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)\right. \\
& \left.+C_{5} \frac{i}{2}(\boldsymbol{q} \times \boldsymbol{k}) \cdot\left(\boldsymbol{\sigma}_{1}+\boldsymbol{\sigma}_{2}\right)+C_{6}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}\right)+C_{7}\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}\right)\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right)\right] e^{-\sum_{i=1}^{2}\left(p_{i}^{6}+p_{i}^{\prime 6}\right) / \Lambda^{6}} \\
& -\frac{g_{A}^{2} f_{\pi}\left(q^{2}\right)}{4 F_{\pi}^{2}}\left[\frac{\left(\boldsymbol{\sigma}_{1} \cdot \boldsymbol{q}\right)\left(\boldsymbol{\sigma}_{2} \cdot \boldsymbol{q}\right)}{q^{2}+M_{\pi}^{2}}+C_{\pi}^{\prime} \boldsymbol{\sigma}_{1} \cdot \boldsymbol{\sigma}_{2}\right]\left(\boldsymbol{\tau}_{1} \cdot \boldsymbol{\tau}_{2}\right) \\
V_{3 \mathrm{~N}} & =\frac{c_{E}}{2 F_{\pi}^{4} \Lambda_{\chi}} e^{-\sum_{i=1}^{3}\left(p_{i}^{6}+p_{i}^{\prime 6}\right) / \Lambda^{6}}
\end{aligned}
$$

with C_{1-7}, g_{A}, C_{E} etc. low energy constants fitted to $\mathrm{N}-\mathrm{N}$ scattering or π - N scattering data, $\Lambda=340 \mathrm{MeV}$ is the momentum cutoff

LEC	B_{1}	B_{2}	C_{1}	C_{2}	C_{3}
	-2.443	-0.125	0.143	-0.012	-0.013
LEC	C_{4}	C_{5}	C_{6}	C_{7}	C_{E}
	-0.020	0.273	0.0	-0.078	0.712

Table: Fitted LECs' in lattice unit

Perturbative Monte Carlo with realistic chiral interaction

- We split $H=H_{0}+\left(H-H_{0}\right)$ and perform perturbative calculations
- E_{0} is the ground state of H_{0}
- $E_{1}=E_{0}+\delta E_{1}$ is the first order corrected energy
- $E_{2}=E_{1}+\delta E_{2}$ is the second order corrected energy
- $E_{\text {non-pt }}$ is the exact solution (\sim infinite order)
- Red bars on the right: Experiments

For ${ }^{4} \mathrm{He}$ and ${ }^{16} \mathrm{O}$, sign problem prevent us from going to large τ, resulting in large statistical errors. But no need to worry,

Perturbation theory can save us!

Abnormally large second order corrections

As H_{0} respects the $\operatorname{SU}(4)$ symmetry, the wave function $\left|\Psi_{0}\right\rangle$ must belong to one of its irreducible representations (irreps). The full Hamiltonian H breaks the SU(4) symmetry, thus its ground state $|\Psi\rangle$ is a mixture of different $\mathrm{SU}(4)$ irreps. The components of $|\Psi\rangle$ that mixes the $\mathbf{S U}(4)$ irreps can only be seen in $\left|\delta \Psi_{1}\right\rangle$ or δE_{2}

Reminder: A symmetry breaking perturbative Hamiltonian usually implies a large 2nd order energy correction!

Numerical results for several light nuclei

Table: The nuclear binding energies at different orders calculated with the ptQMC. $E_{\text {exp }}$ is the experimental value. All energies are in MeV . We only show statistical errors from the MC simulations.

	E_{0}	δE_{1}	E_{1}	δE_{2}	E_{2}	$E_{\text {exp }}$
${ }^{3} \mathrm{H}$	$-7.41(3)$	+2.08	$-5.33(3)$	-2.99	$-8.32(3)$	-8.48
${ }^{4} \mathrm{He}$	$-23.1(0)$	-0.2	$-23.3(0)$	-5.8	$-29.1(1)$	-28.3
${ }^{8} \mathrm{Be}$	$-44.9(4)$	-1.7	$-46.6(4)$	-11.1	$-57.7(4)$	-56.5
${ }^{12} \mathrm{C}$	$-68.3(4)$	-1.8	$-70.1(4)$	-18.8	$-88.9(3)$	-92.2
${ }^{16} \mathrm{O}$	$-94.1(2)$	-5.6	$-99.7(2)$	-29.7	$-129.4(2)$	-127.6
${ }^{16} \mathrm{O}^{\dagger}$	$-127.6(4)$	+24.2	$-103.4(4)$	-24.3	$-127.7(2)$	-127.6
${ }^{16} \mathrm{O}^{\ddagger}$	$-161.5(1)$	+56.8	$-104.7(2)$	-22.3	$-127.0(2)$	-127.6

Realistic N 2 LO chiral Hamiltonian fixed by few-body data + perturbative quantum MC simulation = nice agreement with the experiments Excellent predicative power \Longrightarrow Demonstration of both nuclear force model and many-body algorithm

Perturbative calculations beyond the second order

Perturbative energy correction δE_{n} of the deuteron at each order. For the zeroth order we show E_{0}.

- We calculated deuteron energy $E\left({ }^{2} \mathrm{H}\right)$ in a small box $L=6.6 \mathrm{fm}$ with a chiral Hamiltonian
- H is split as
$H=\left(K+\mu V_{0}\right)+\left(V-\mu V_{0}\right), V_{0}$ is the $\operatorname{SU}(4)$ interaction and V is the full chiral interaction
- $\mu=0.6, \cdots, 1.6$ is a constant
$E_{0}, \delta E_{1}$ and δE_{2} are always significant. δE_{3} and higher order contributions are negligible, regardless of what H_{0} we choose as the unperturbed Hamiltonian

The second order correction is large due to the symmetry breaking effect. There is no such mechanism for higher-order corrections, thus the higher-order corrections follow the usual power-counting hierachy.

THANK YOU FOR YOUR ATTENTION

