Partial width from the analytical extension of the wave function：P_{c} states

Zi－Yang Lin（林子阳）

OUTLINE

\square Wave function on the 2nd Riemann sheet
-Partial width formula
-Three-body unitary cut
\square Application to the $T_{c c}^{+}$and P_{c} states

01
 Introduction $-P_{c}$ states

- Pentaquark candidates $P_{c}(4312), P_{c}(4440), P_{c}(4457)$ discovered by the LHCb Collaboration in the $\Lambda_{b}^{0} \rightarrow J / \psi p K^{-}$decay
- Molecular states of $\Sigma_{c} \bar{D}^{(*)}$
- Coupled to $\Lambda_{c} \bar{D}^{(*)}$ channels via the one-pion exchange (OPE)

State	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$
$P_{c}(4312)^{+}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$
$P_{c}(4440)^{+}$	$4440.3 \pm 1.3_{-4.1}^{+4.7}$	$20.6 \pm 4.9_{-10.7}^{+8.7}$
$P_{c}(4457)^{+}$	$4457.3 \pm 0.6_{-1.7}^{+4.1}$	$6.4 \pm 2.0_{-1.9}^{+5.7}$

R. Aaij et al. Phys. Rev. Lett. 122, 222001 (2019)

01
 Introduction —— Schrödinger equation \& LS equation

- Schrödinger equation

$$
\frac{\boldsymbol{k}^{2}}{2 m} \phi(\boldsymbol{k})+\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} V(\boldsymbol{k}, \boldsymbol{p}) \phi(\boldsymbol{p})=E \phi(\boldsymbol{k})
$$

- Lippmann-Schwinger equation

$$
T\left(\boldsymbol{k}^{\prime}, \boldsymbol{k} ; E\right)=V\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)+\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \frac{V\left(\boldsymbol{k}^{\prime}, \boldsymbol{p}\right) T(\boldsymbol{p}, \boldsymbol{k} ; E)}{E-\boldsymbol{p}^{2} / 2 \mu+i \epsilon}
$$

- Analytical continuity applies for both equations
- How can we learn about the poles of the T matrix from the Schrödinger equation?

02
 Formalism —— Schrödinger equation on the 2nd Riemann sheet

- Schrödinger equation $\quad\langle k| \hat{T}+\hat{V}|\phi\rangle=E_{R}\langle k \mid \phi\rangle$
- Analytical extension of the wave function

$$
\frac{\phi(\boldsymbol{k})}{\square}=\frac{1}{E_{R}-\frac{\boldsymbol{k}^{2}}{2 m}} \int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} V(\boldsymbol{k}, \boldsymbol{p}) \frac{\phi(\boldsymbol{p})}{\searrow}
$$

k can be anywhere on the complex plane p is on the integral path

- $\quad \phi(\boldsymbol{k})$ has two poles $\quad k= \pm \sqrt{2 m E_{R}}$
\rightarrow discontinuity (unitary cut)

02
 Formalism —— Schrödinger equation on the 2nd Riemann sheet

- 1st Riemann sheet: integrate along the real axis
- 2nd Riemann sheet: the residue of the pole must be include
- Or change the integral path
- E.g. complex scaling method:

$$
\begin{aligned}
E \tilde{\phi}_{l}(p) & =\frac{p^{2} e^{-2 i \theta}}{2 m} \tilde{\phi}_{l}(p) \\
& +\int \frac{p^{\prime 2} e^{-3 i \theta} d p^{\prime}}{(2 \pi)^{3}} V_{l, l^{\prime}}\left(p e^{-i \theta}, p^{\prime} e^{-i \theta}\right) \tilde{\phi}_{l^{\prime}}\left(p^{\prime}\right)
\end{aligned}
$$

- Avoid the branch cut in the potential

02
 Formalism —— Schrödinger equation on the 2nd Riemann sheet

- 2-channel example
- $\quad k_{1}=\sqrt{2 \mu_{1}\left(E-E_{t h 1}\right)} \quad k_{2}=\sqrt{2 \mu_{2}\left(E-E_{t h 2}\right)}$
- Sheet I: $\operatorname{Im}\left(k_{1}\right)>0 \quad \operatorname{Im}\left(k_{2}\right)>0$ bound state
- Sheet II: $\operatorname{Im}\left(k_{1}\right)<0 \operatorname{Im}\left(k_{2}\right)<0$ quasibound state (Feshbach-type resonance)
- Sheet III: $\operatorname{Im}\left(k_{1}\right)<0 \quad \operatorname{Im}\left(k_{2}\right)<0$ resonance
- Sheet IV: $\operatorname{Im}\left(k_{1}\right)<0 \quad \operatorname{Im}\left(k_{2}\right)<0$ "threshold cusp"

Integral path

Formalism —— partial width

- Integrals concerning the wave function must include the residue
- Partial-wave Fourier transformation (along the real axis)

$$
\begin{aligned}
& \psi_{l}(r)=\int_{0}^{\infty} \frac{4 \pi p^{2}}{(2 \pi)^{3}} \phi_{l}(p) i^{l} j_{l}(p r) d p+\left.2 \pi i \operatorname{Res}\left\{\frac{4 \pi p^{2}}{(2 \pi)^{3}} \phi_{l}(p) i^{l} j_{l}(p r)\right\}\right|_{p=k_{R}} \\
&=\int_{\text {convergent at } r \rightarrow \infty}^{\int_{0}^{\infty} \frac{4 \pi p^{2}}{(2 \pi)^{3}} \phi_{l}(p) i^{l} j_{l}(p r) d p}+i^{l+1} \frac{k_{R}^{2}}{\pi} j_{l}\left(k_{R} r\right) \lim _{p \rightarrow k_{R}}\left(p-k_{R}\right) \phi_{l}(p) \\
& \text { divergent at } r \rightarrow \infty
\end{aligned}
$$

- j_{l} stands for the l-th spherical Bessel function
- Partial widths are related to the residues of the wave function

04 Formalism —— chiral effective field theory

- Leading-order pion-exchange and contact terms in

$$
\begin{gathered}
\mathcal{L}_{H \phi}^{(1)}=-\langle(i v \cdot \partial H) \bar{H}\rangle+\langle H v \cdot \Gamma \bar{H}\rangle+g\left\langle H \psi \gamma_{5} \bar{H}\right\rangle-\frac{1}{8} \delta\left\langle H \sigma^{\mu \nu} \bar{H} \sigma_{\mu \nu}\right\rangle \\
H=\frac{1+\psi}{2}\left(P_{\mu}^{*} \gamma^{\mu}+i P \gamma_{5}\right), \quad P=\left(D^{0}, D^{+}\right), \quad P_{\mu}^{*}=\left(D^{* 0}, D^{*+}\right) \\
\mathcal{L}_{\mathcal{B} \phi}=-\operatorname{Tr}\left(\bar{\psi}^{\mu} i v \cdot D \psi^{\mu}\right)+\frac{i \delta_{a}}{2} \operatorname{Tr}\left(\bar{\psi}^{\mu} \sigma_{\mu \nu} \psi^{\nu}\right)+i g_{1} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(\bar{\psi}^{\mu} u^{\rho} v^{\sigma} \psi_{\nu}\right)+g_{2} \operatorname{Tr}\left(\bar{\psi}^{\mu} u_{\mu} \mathcal{B}_{1}+\text { h.c. }\right) \\
\psi_{1}=\left[\begin{array}{cc}
0 & \Lambda_{c}^{+} \\
-\Lambda_{c}^{+} & 0
\end{array}\right], \quad \psi_{3}=\left[\begin{array}{cc}
\Sigma_{c}^{++} & \frac{\Sigma^{+}}{\sqrt{2}} \\
\frac{\Sigma_{+}^{+}}{\sqrt{2}} & \Sigma_{c}^{0}
\end{array}\right], \quad \psi_{3^{*}}^{\mu}=\left[\begin{array}{cc}
\Sigma_{c}^{*++} & \frac{\Sigma_{c}^{*+}}{\sqrt{2}} \\
\frac{\Sigma_{c}^{*+}}{\sqrt{2}} & \Sigma_{c}^{\Sigma_{c}^{*}}
\end{array}\right]^{\mu} \quad \psi^{\mu}=\mathcal{B}_{3^{*}}^{\mu}-\frac{1}{\sqrt{3}}\left(\gamma^{\mu}+v^{\mu}\right) \gamma^{5} \mathcal{B}_{3} \\
\mathcal{B}_{i}=e^{i M_{i} v \cdot x} \frac{1+\psi}{2} \psi_{i}
\end{gathered}
$$

- large mass difference

$$
\begin{aligned}
& m_{D^{*}}-m_{D}>m_{\pi} \\
& m_{\Sigma_{c}}-m_{\Lambda_{c}}>m_{\pi}
\end{aligned}
$$

Formalism —— three-body effect in OPE ($T_{c c}^{+}$)

- Optical theorem: on-shell $D D \pi$ intermediate states \square negative imaginary part of the potential
- Instantaneous approximation

$$
\frac{i}{q^{2}-m_{\pi}^{2}+i \epsilon} \longrightarrow-\frac{i}{\boldsymbol{q}^{2}+m_{\pi}^{2}-i \epsilon}
$$

- Nonzero $q_{0}\left(\delta=m_{D^{*}}-m_{D}\right)$

$$
\frac{i}{q^{2}-m_{\pi}^{2}+i \epsilon} \longrightarrow-\frac{i}{\boldsymbol{q}^{2}-\left(\delta^{2}-m_{\pi}^{2}\right)-i \epsilon}
$$

- Three-body effect: energy-dependent potential

$$
\frac{i}{q^{2}-m_{\pi}^{2}+i \epsilon} \longrightarrow \frac{i}{(E+\delta)^{2}-\boldsymbol{q}^{2}-m_{\pi}^{2}+i \epsilon}
$$

Results $-T_{c c}^{+}$and $\mathrm{X}(3872)$ states ($D D^{*}$)

Figure 5. Bound states in the $I=0 S$-wave $D D^{*}$ system with the OPE and contact terms only. When we shift C_{s} from $-35 \mathrm{GeV}^{-2}$ to $-19 \mathrm{GeV}^{-2}$, the pole moves in the positive real axis direction. With the parameters chosen, the $D D \pi$ threshold is located at -3 MeV . The cutoff Λ is fixed to be 0.5 GeV .

- The width goes to zero when the mass is lower than the $D D \pi$ threshold
- Two-pion-exchange potential may break the unitarity
- The width of $X(3872)$ is of the order of 10 keV
- Annihilation processes can be included by introducing imaginary contact terms

Figure 6. The complex scaled wavefunction $\tilde{\phi}_{l}(\boldsymbol{q})=\phi_{l}\left(\boldsymbol{q} e^{-i \theta}\right)$ solved in Eq. (2.10). The first two graphs stand for the $D^{0} \bar{D}^{* 0}$ (red dashed curve), $D^{ \pm} \bar{D}^{* \mp}$ (blue solid curve) channels, respectively. The third graph shows the complex scaled wavefunction $\tilde{\phi}_{l}(\boldsymbol{r})=\phi_{l}\left(\boldsymbol{r} \boldsymbol{e}^{-i \theta}\right)$ in coordinate space.

Results —— $\boldsymbol{P}_{\boldsymbol{c}}$ states $\left(\Sigma_{c} \overline{\boldsymbol{D}}^{(*)}\right)$

$\frac{1}{2}^{-}$	$P_{c}(4312)$	$P_{c}(4440)$	$P_{c}(4504)$
M	$4309.4_{-2.5}^{+2.7}$	$4443.5_{-3.5}^{+3.7}$	$4504.0_{-4.7}^{+6.1}$
Γ	$7.8_{-6.6}^{+6.6}$	$3.1{ }_{-1.4}^{+0.8}$	$1.5{ }_{-1.4}^{+0.4}$
$M_{\text {exp }}$	$4311.9 \pm 0.7_{-0.6}^{+6.8}$	$4440.3 \pm 1.3_{-4.7}^{+4.1}$	
$\Gamma_{\text {exp }}$	$9.8 \pm 2.7_{-4.5}^{+3.7}$	$20.6 \pm 4.9_{-10.1}^{+8.7}$	
$\sqrt{\left(\phi_{i}\left\|r^{2}\right\| \phi_{i}\right)}$	$0.63-0.11 i_{-0.07}^{+0.07+0.09 i}$	$0.60-0.01 i_{-0.01-0.00 i}^{+0.03+0.01 i}$	$0.58+0.00 i_{-0.01 i-0.01 i}^{+0.03+0.00 i}$
$\Lambda_{c} \bar{D}$	$0.04_{-0.02}^{+0.01}$	$10.8_{-2.7}^{+8.0}$	$8.7_{-6.6}^{+7.0}$
$\Lambda_{c} \bar{D}^{*}$	$99.96_{-0.01}^{+0.02}$	$38.4{ }_{-30.6}^{+24.9}$	$24.6{ }_{-18.3}^{+17.1}$
$\Sigma_{c} \bar{D}$	-	$50.9_{-27.4}^{+38.6}$	$31.6_{-14.4}^{+16.2}$
$\Sigma_{c} \bar{D}^{*}$	-	-	$35.2{ }_{-9.7}^{+8.7}$
$\Sigma_{c}^{*} \bar{D}^{*}$	-	-	-
$\frac{3}{2}^{-}$	$P_{c}(4380)$	$P_{c}(4457)$	$P_{c}(4516)$
M	$4377.9_{-3.0}^{+2.3}$	$4458.6_{-2.5}^{+1.4}$	$4516.0_{-2.5}^{+2.1}$
Γ	$3.2{ }_{-3.1}^{+1.7}$	$1.0_{-0.4}^{+0.3}$	$3.2{ }_{-1.7}^{+1.4}$
$M_{\text {exp }}$		$4457.3 \pm 0.6_{-1.7}^{+4.1}$	
$\Gamma_{\text {exp }}$		$6.4 \pm 2.0_{-1.9}^{+5.7}$	
$\sqrt{\left(\phi_{i}\left\|r^{2}\right\| \phi_{i}\right)}$	$0.74-0.03 i_{-0.06-0.02 i}^{+0.06+0.02 i}$	$0.84+0.01 i_{-0.08}^{+0.08+0.01 i}{ }_{-0.01 i}$	$0.67-0.01 i_{-0.02-0.01 i}^{+0.03+0.01 i}$
$\Lambda_{c} \bar{D}^{*}$	100	$26.9{ }_{-22.5}^{+30.0}$	$18.1_{-14.5}^{+23.7}$
$\Sigma_{c}^{*} \bar{D}$	-	$73.1{ }_{-30.0}^{+22.5}$	$45.6_{-13.1}^{+7.9}$
$\Sigma_{c} \bar{D}^{*}$	-	-	$36.2_{-10.6}^{+6.6}$
$\Sigma_{c}^{*} \bar{D}^{*}$	-	-	-

ZYL, J.-B. Cheng, B.-L, Huang, S.- L. Zhu, 2305.19073

- The Schrödinger equation and the wave function are extended to the 2nd Riemann sheet

The Schrödinger equation is good at pole search, while the LS equation is good at line shape.

- The partial width (residue of T matrix) is related to the residue of the wave function
- Three-body effects in the OPE potential

$$
T_{c c}^{+}: \text {important } \quad P_{c}: \text { not significant }
$$

- Branching ratios of P_{c} states are obtained

Thank you for your attention!

Backups —— three-body effect in OPE

- Different choice of q_{0} in the denominator

$$
\frac{i}{q_{0}^{2}-q^{2}-m_{\pi}^{2}}
$$

- Direct diagram $\left(P_{c}\right)$

$$
q_{0}=p_{0}-p_{0}^{\prime}
$$

- Cross diagram $\left(T_{c c}^{+}\right)$

$$
q_{0}=E-p_{0}-p_{0}^{\prime}
$$

Backups -- singularity of OPE

- Non-analytical term in S-wave OPE

$$
T\left(\boldsymbol{k}^{\prime}, \boldsymbol{k} ; E\right)=V\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)+\int \frac{d^{3} \boldsymbol{p}}{(2 \pi)^{3}} \frac{V\left(\boldsymbol{k}^{\prime}, \boldsymbol{p}\right) T(\boldsymbol{p}, \boldsymbol{k} ; E)}{E-\boldsymbol{p}^{2} / 2 \mu+i \epsilon}
$$

$$
V_{O P E} \propto \ln \frac{\left(p+p^{\prime}\right)^{2}-m_{e f f}^{2}-i \epsilon}{\left(p-p^{\prime}\right)^{2}-m_{e f f}^{2}-i \epsilon} \quad m_{e f f}^{2}=q_{0}^{2}-m_{\pi}^{2}
$$

$$
\operatorname{Im}(E)=0
$$

$$
\operatorname{lm}(E)<0
$$

