Doubly-heavy tetraquark bound states in quark potential models

Yan-Ke Chen

Advisor: Prof. Shi-Lin Zhu

Peking University

July 21, 2023, Rizhao, Shandong

Together with : Lu Meng (RUB) and Yao Ma

Yan-Ke Chen (PKU)

Tetraquark bound states in QM July 21, 2023, Rizhao, Shandong 1/21

4 AR & 4 E & 4 E &

- Quark potential models
- 3 Gaussian Expansion Method (GEM)
- 4 Resonating Group Method (RGM)
- 5 Summary and outlook

(4) (日本)

Background

- 2) Quark potential models
- 3 Gaussian Expansion Method (GEM)
- 4 Resonating Group Method (RGM)
- 5) Summary and outlook

A D N A B N A B N A B N

Background

Recently, more and more hadrons composed of at least four quarks were observed

[ccccc] X(6900)	$[cs\bar{u}\bar{d}]$ $T_{cs1}(2900)$ $T_{cs0}(2900)$	$[cs c \bar{u}]$ $Z_{cs}(3985)$ $Z_{cs}(4000)$	$\begin{bmatrix} cc\bar{u}\bar{d} \end{bmatrix} \\ T_{cc}(3875)^+$	[cus̄d̄][cds̄ū] T _{cs̄0} (2900) ⁺⁺ T _{cs̄0} (2900) ⁰	
2006.16957	2009.00025	2011.07855	2109.01038	2212.02716	
2304.08962	2009.00026	2103.01803	2109.01056	2212.02717	

Different guark models predicted different results[Chen:2022asf]

Reasons for variations: Interactions + few-body methods

• Benchmark calculations : $(AL1, AP1, SLM) \otimes (GEM, RGM, DMC)$

DMC: Baryons and Tetraguark States with Diffusion Monte Carlo Method, Y. Ma-

Yan-Ke Chen (PKU)

Quark potential models

Gaussian Expansion Method (GEM)

4 Resonating Group Method (RGM)

5) Summary and outlook

A D N A B N A B N A B N

Quark potential models

• Cornell model: One-gluon-exchange+Confinement

$$V_{ij}(r) = \left[\frac{\alpha_s}{r} + \left(-\frac{3b}{4}r + V_c\right) - \frac{8\pi\alpha_s}{3m_im_j}\frac{\tau^3}{\pi^{3/2}}e^{-\tau^2r^2}\boldsymbol{s}_i\cdot\boldsymbol{s}_j\right]\frac{\lambda_i\cdot\lambda_j}{4}$$

• Semay-Silvestre-Brac Models [Silvestre-Brac:1996myf]

$$V_{ij}(r) = \left[-\frac{\kappa}{r} + \lambda r^{p} - \Lambda + \frac{2\pi}{3m_{i}m_{j}}\kappa'\frac{1}{\pi^{3/2}r_{0}^{3}}e^{\left(-r^{2}/r_{0}^{2}\right)}\boldsymbol{\sigma}_{i}\cdot\boldsymbol{\sigma}_{j}\right]\lambda_{i}\cdot\lambda_{j}$$

AL1: p = 1 and AP1: p = 2/3

• Chiral quark models (e.g Salamanca model (SLM)) [Gonzalez:2012gka]

$$V_{ij}(r) = \left[\frac{\alpha_s}{4} \left(\frac{1}{r} - \frac{1}{6m_im_j} \frac{e^{-r/r_0}}{r_0^2 r} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j\right) + \left(-a_c \left(1 - e^{-\mu_c r}\right) + \Delta\right)\right] \lambda_i \cdot \lambda_j$$
$$+ V_{\pi} + V_{\kappa} + V_{\eta} + V_{\sigma}$$

In this work, we use AL1, AP1 and SLM

ヘロト 人間ト ヘヨト ヘヨト

Tetraquark systems

Over 150 states: q = u, d, s, Q = b, c

- Fully heavy tetraquark states $(QQ\bar{Q}\bar{Q})$
- Triply heavy tetraquark states $(QQ\bar{Q}\bar{q})$
- Doubly heavy tetraquarks states $(QQ\bar{q}\bar{q})$
- Single heavy strange states $(Qs\bar{q}\bar{q}, Q\bar{s}q\bar{q})$
- Only S-wave are considered : $J^P = (0, 1, 2)^+$

In this work, we only focus on bound states

	$QQ\bar{Q}\bar{Q}$	QQQq	QQāā	Qsq̄q	Qs̄qq̄
$J^P = 0^+$	×	×	\checkmark	\checkmark	×
$J^{P} = 1^{+}$	×	×	\checkmark	\checkmark	×
$J^{P} = 2^{+}$	×	×	\checkmark	\checkmark	×

Masses are shifted to align the theoretical thresholds with the physical ones.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Tetraquark systems

Over 150 states: q = u, d, s, Q = b, c

- Fully heavy tetraquark states $(QQ\bar{Q}\bar{Q})$
- Triply heavy tetraquark states $(QQ\bar{Q}\bar{q})$
- Doubly heavy tetraquarks states $(QQ\bar{q}\bar{q})$
- Single heavy strange states $(Qs\bar{q}\bar{q}, Q\bar{s}q\bar{q})$
- Only S-wave are considered : $J^P = (0, 1, 2)^+$

In this work, we only focus on bound states

	$QQ\bar{Q}\bar{Q}$	QQQq	QQāā	Qsq̄q	Qs̄qā
$J^P = 0^+$	×	×	\checkmark	\checkmark	×
$J^{P} = 1^{+}$	×	×	\checkmark	\checkmark	×
$J^{P} = 2^{+}$	×	×	\checkmark	\checkmark	×

Masses are shifted to align the theoretical thresholds with the physical ones.

- 4 回 ト 4 ヨ ト 4 ヨ ト

3 Gaussian Expansion Method (GEM)

4 Resonating Group Method (RGM)

5 Summary and outlook

A D N A B N A B N A B N

Gaussian Expansion Method

• Color-spin wave functions (richer color-structure in multiquark systems)

$$\begin{bmatrix} \{Q_1 Q_2\}_{\bar{3}_c}^{S_{12}} \{\bar{q}_3 \bar{q}_4\}_{3_c}^{S_{34}} \end{bmatrix}_{1_c}^{S_{tot}}, \quad \begin{bmatrix} \{Q_1 Q_2\}_{6_c}^{S_{12}} \{\bar{q}_3 \bar{q}_4\}_{\bar{6}_c}^{S_{34}} \end{bmatrix}_{1_c}^{S_{tot}} \\ \begin{bmatrix} \{Q_1 \bar{q}_3\}_{1_c}^{S_{13}} \{Q_2 \bar{q}_4\}_{1_c}^{S_{24}} \end{bmatrix}_{1_c}^{S_{tot}}, \quad \begin{bmatrix} \{Q_1 \bar{q}_3\}_{8_c}^{S_{13}} \{Q_2 \bar{q}_4\}_{8_c}^{S_{24}} \end{bmatrix}_{1_c}^{S_{tot}}$$

Spatial wave functions : diquark-antidiquark and di-meson correlations

$$\begin{array}{c} Q_1 \\ \hline q_2 \\ \hline q_3 \\ \hline q_4 \\ \hline q_5 \\ \hline q_5 \\ \hline q_6 \\ \hline$$

• Antisymmetrization (e.a. $Q_1 = Q_2$ and $q_3 = q_4$):

$$\psi = \mathcal{A} \left[\psi_{\text{color}} \otimes \psi_{\text{spin}} \otimes \psi_{\text{spatial}} \otimes \psi_{\text{flavor}} \right], \quad \mathcal{A} = (1 - P_{12})(1 - P_{34})$$

0

$QQ\bar{q}\bar{q}$ systems with $J^P = 1^+$

Points of agreement:

- $[QQ\bar{n}\bar{n}]^{I=0}(QQ = cc \text{ or } bb \text{ or } bc)$ bound states; $[bb\bar{n}\bar{s}]$ bound states .
- For $[bb\bar{n}\bar{n}]^{l=0}$ systems, the 1st excited states are bound states.
- No $[QQ\bar{n}\bar{n}]^{l=1}$ bound states.

SLM:

- $[cc\bar{n}\bar{n}]^{l=0}$ are too deep compared with ex. (200MeV VS 200keV)
- [cbns] bound state

$QQ\bar{q}\bar{q}$ systems with $J^P = 0^+, 2^+$

Points of agreement:

• $[cb\bar{n}\bar{n}]^{I=0}$ bound states for $J^P = 0^+, 2^+$

SLM:

• $[cb\bar{n}\bar{s}]$ bound state for $J^P = 0^+, 2^+$

AP1:

• $[bb\bar{n}\bar{n}]^{I=1}$ bound state for $J^P = 2^+$

)	
relim	inary

Yan-Ke Chen (PKU)

July 21, 2023, Rizhao, Shandong 12 / 21

- 2 Quark potential models
- 3 Gaussian Expansion Method (GEM)
- 4 Resonating Group Method (RGM)

5) Summary and outlook

A D N A B N A B N A B N

Resonating Group Method

Dimeson-wave function

$$\psi_{AB}(\boldsymbol{P}) = \mathcal{A}\left[\phi_{A}\left(\boldsymbol{p}_{A}\right)\phi_{B}\left(\boldsymbol{p}_{B}\right)\chi(\boldsymbol{P})\chi_{AB}^{CST}
ight.$$

- ϕ_A and ϕ_B are meson wave functions
- We use GEM to get the meson wave functions

Schrödinger equation of RGM [Entem:2000mq, Ortega:2022efc]

$$\left(\frac{\boldsymbol{P}^{\prime 2}}{2\mu}-\boldsymbol{E}\right)\chi\left(\boldsymbol{P}^{\prime}\right)+\int d^{3}\boldsymbol{P}\left(V_{D}\left(\boldsymbol{P}^{\prime},\boldsymbol{P}\right)+\mathcal{K}_{Ex}\left(\boldsymbol{P}^{\prime},\boldsymbol{P}\right)\right)\chi(\boldsymbol{P})=0$$

• V_D direct interaction, K_{Ex} the exchange kernel

Compared with GEM

- The spin-color-flavor wave functions are complete as well
- The RGM neglecting the distortion of the meson wave functions in the tetraquark system
- Only the di-meson-type spatial correlations are included
- The trial functions are not as general as GEM : $E_{RGM}\gtrsim E_{GEM}$

Direct diag.

イロト イヨト イヨト イヨト

Exchange diag.

Results from RGM

The RGM gives the smaller binding energies.

The RGM results agree with the GEM neglecting diquark-antidiquark correlation

- Not general enough trail wave function
- Cannot get the ground state accurately
- A drawback as a few-body method

However...

- Some quark models (e.g. SLM) constraining the para. using NN phase shifts with RGM
- The spatial correlations other than di-hadron types are neglected from birth
- Perhaps, it is misleading to use diquark-antidiquark type trial functions for these models.[Entem:2000mq]

Results from RGM

The RGM gives the smaller binding energies.

The RGM results agree with the GEM neglecting diquark-antidiquark correlation

- Not general enough trail wave function
- Cannot get the ground state accurately
- A drawback as a few-body method

However...

- Some quark models (e.g. SLM) constraining the para. using NN phase shifts with RGM
- The spatial correlations other than di-hadron types are neglected from birth
- Perhaps, it is misleading to use diquark-antidiquark type trial functions for these models.[Entem:2000mq]

→ ∃ →

Summary and outlook

Investigate the T_{QQ} tetraquark bound states with (AL1,AP1,SLM) \otimes (GEM,RGM)

•
$$(QQ\bar{Q}\bar{Q}), (QQ\bar{Q}\bar{q}), (QQ\bar{q}\bar{q}), (Qs\bar{q}\bar{q}), \qquad q = u, d, s$$

Recommended tetraquark bound states (consistent predictions of 3 models)

•
$$J^P = 1^+$$
 : $[cc\bar{n}\bar{n}]^{I=0}$, $[bb\bar{n}\bar{n}]^{I=0}$, $[bc\bar{n}\bar{n}]^{I=0}$, $[bb\bar{n}\bar{s}]$, $[bs\bar{n}\bar{n}]^{I=0}$
• $J^P = 0^+$: $[cb\bar{n}\bar{n}]^{I=0}$, $[cs\bar{n}\bar{n}]^{I=0}$, $[bs\bar{n}\bar{n}]^{I=0}$

•
$$J^P = 2^+ : [cb\bar{n}\bar{n}]^{I=0}$$

The trial functions of RGM are not general enough to give the ground state

For quark models born with RGM, it is inconsistent to include diquark-antidiquark correlations

Outlook:

• Resonances and virtual states (on-going)

< □ > < □ > < □ > < □ > < □ > < □ >

Thanks for your attention

< □ > < 同 > < 回 > < 回 > < 回 >

Methods to obtain resonance and virtual states

Complex scaling methods with GEM

- It is hard to detect the higher states
- The unclear relation with Riemann surface
- The tetraquark resonance: two-body scattering problems (confinement)
- RGM + Complex Scaling in coupled-channel two-body problem
 - Solving Freedholm determinant \Rightarrow Eigenvalue problem

$cs\bar{q}\bar{q}$ systems with $J^P = 0^+, 1^+, 2^+$

Points of agreement

• $[cs\bar{n}\bar{n}]^{I=0}$ bound states for $J^P = 0^+$

SLM:

reliminar • $[cs\bar{n}\bar{n}]^{l=0}$ for $J^P = 1^+$ and $[cs\bar{s}\bar{n}]$ for $J^P = 2^+$ bound states

(4) (5) (4) (5)

$bsar{q}ar{q}$ systems with $J^{P}=0^{+},1^{+},2^{+}$

Points of agreement

• $[bs\bar{n}\bar{n}]^{I=0}$ bound states for $J^P = 0^+, 1^+$

SLM:

• $[bs\bar{n}\bar{n}]^{I=0}$ and $[bs\bar{s}\bar{n}]$ for $J^P = 2^+$ bound states

Preliminar