The 7th Symposium on "Symmetries and the emergence of Structure in QCD"

Baryons and Tetraquark States with Diffusion Monte Carlo Method

Yao Ma (马 尧)

Peking University

Based on PRD107(2023),054035 and papers in preparation **Together with** Lu Meng (RUB), Yan-Ke Chen and Shi-Lin Zhu (PKU)

July 21, 2023, Rizhao

- Background •
- Diffusion Monte Carlo Method (DMC)
- Application in baryons and tetraquark states
- Summary •

Multiquark state

- Quark model — a useful theoretical tool

$$V_{ij}(r) = \left[\frac{\alpha_s}{r} - \frac{8\pi\alpha_s}{3m_im_j}\frac{\tau^3}{\pi^{3/2}}e^{-\tau^2r^2}\boldsymbol{s}_i \cdot \boldsymbol{s}_j + \left(-\frac{3b}{4}r + V_c\right)\right]\frac{\lambda_i \cdot \lambda_j}{4}$$

OGE Confinement

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

chten:1974af,Eichten:1978tg,Eichten:1979ms

Quark potential model

Semay-Silvestre-Brac Models

$$V_{ij}(r) = \left[-\frac{\kappa}{r} + \lambda r^p - \Lambda + \frac{2\pi}{3m_i m_j} \kappa' \frac{1}{\pi^{3/2} r_0^3} e^{\left(-r^2/r_0^2\right)} \boldsymbol{\sigma}_i \cdot \boldsymbol{\sigma}_j \right] \lambda_i \cdot \lambda_j$$

AL1: $p = 1$, AP1: $p = 2/3$

$$egin{aligned} V_{ij}(r) = & [rac{lpha_s}{4} \Bigg(rac{1}{r} - rac{1}{6m_im_j} rac{e^{-r_i}}{r_0^2} \ & + V_\pi + V_K + V_\eta + V_\sigma \end{aligned}$$

Motivation

Variational method

- Computational cost increases exponentially with # of particles
- Three-body and four-body force
- Presumed clustering

Diffusion Monte Carlo (DMC) Method

- Moderate the increasing computational cost as the particles number
- Easier to deal with the few-body force
- No presumed clustering
- DMC applications in multiquark systems

Gordillo:2020sgc		$n^{2S+1}L_J$	J^{PC}	DMC
	$\eta_c \ J/\psi$	$\frac{1^{1}S_{0}}{1^{3}S_{1}}$	0 ⁻⁺ 1	3005 3101
	$egin{array}{c} B_c \ B_c^* \end{array}$	$\frac{1^{1}S_{0}}{1^{3}S_{1}}$	0 ⁻⁺ 1	6292 6343
	η_b $\Upsilon(1S)$	$\frac{1^{1}S_{0}}{1^{3}S_{1}}$	0^{-+} $1^{}$	9424 9462

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

Reviews: Carlson:2014vla, Foulkes:2001zz

Bai:2016int

 J^{PC} DMC 0^{++} 6351 6441 1+-6471

bbbb. 0^{++} bound state

 $M_{T_{ccar{c}ar{c}}} - 2 M_{\eta_c} = 341 \ {
m MeV}$

Diffusion Monte Carlo (DMC) Method

Diffusion Monte Carlo

 A numerical way for solving Schrödinger equation • Imaginary time Schrödinger equation ($\tau = it$)

$$-\frac{\partial \Psi(\boldsymbol{R},\tau)}{\partial \tau} = \begin{bmatrix} -\frac{\nabla^2}{2m} + V(\boldsymbol{R}) - E_R \\ -\frac{2m}{2m} \end{bmatrix} \Psi(\boldsymbol{R},\tau), \quad \Psi(\boldsymbol{R},\tau) = \sum_i c_i \Phi_i(\boldsymbol{R}) e^{-[E_i - E_R]\tau}$$

Diffusion Source or Sink

$$ullet$$
 If we take $E_R=E_0, \quad \lim_{ au
ightarrow\infty}\Psi$

Solution in the form of path integral

$$\Psi(\boldsymbol{R}, \tau + \Delta \tau) = \int G(\boldsymbol{R}, \boldsymbol{R}', \Delta)$$
$$= \int G_1(\boldsymbol{R}, \boldsymbol{R}', \Delta)$$

$$G_1(\boldsymbol{R}, \boldsymbol{R}', t) = (2\pi t/m)^{-3/2} e^{-\frac{m\left(\boldsymbol{R}'-\boldsymbol{R}\right)^2}{2t}}, \ G_2(\boldsymbol{R}, \boldsymbol{R}', t) = e^{-\left(\frac{V(\boldsymbol{R})+V\left(\boldsymbol{R}'\right)}{2}-E_R\right)t}$$

Can be implemented with the diffusion Monte Carlo algorithm

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

musion Equation. Sait in still water

 ${m v}({m R}, au)=c_0\Phi_0({m R})$

 $(\mathbf{A} au) \Psi (\mathbf{R}', au) d\mathbf{R}'$

 $\Delta \tau G_2 \left(\mathbf{R}', \mathbf{R}'', \Delta \tau \right) \Psi \left(\mathbf{R}'', \tau \right) d\mathbf{R}' d\mathbf{R}''$

7

Algorithm

• The wave function is sampled by walkers: $\Psi(\mathbf{R}) \Rightarrow$ distribution of walkers • Walkers: in space D=3N

Algorithm

V(x)

 $\Psi_0(x)$

τ

- The wave function is sampled by walkers: $\Psi(\mathbf{R}) \Rightarrow$ distribution of walkers • Walkers: in space D=3N
 - No numerical integration
 - No Jacobi coordinate, no presumed clustering
 - Computational cost increases linearly

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

• Same complexity dealing with pairwise confinement interaction and flux-tube interaction

Importance Sampling

- Introduce importance function: $\psi_T(\mathbf{R})$, and sample $f(\mathbf{R}, t) \equiv \Psi(\mathbf{R}, t)\psi_T(\mathbf{R})$
- The $\psi_T(\mathbf{R})$ should be as close as possible to $\Psi_0(\mathbf{R})$
- Schrödinger equation with importance sampling

$$-\frac{\partial f(\boldsymbol{R},t)}{\partial t} = -\sum_{i=1}^{m} \frac{1}{2m_i} \nabla_{r_i}^2 f(\boldsymbol{R},t) + \sum_{i=1}^{m} \frac{1}{2m_i} \nabla_{r_i} (\boldsymbol{F}_i(\boldsymbol{R}) f(\boldsymbol{R},t)) + [E_L(\boldsymbol{R}) - E_R] f(\boldsymbol{R},t)$$
Diffusion
Drift
Source or Sink
$$\boldsymbol{F}_i(\boldsymbol{R}) = 2\psi_T(\boldsymbol{R})^{-1} \nabla_{r_i} \psi_T(\boldsymbol{R}) = \nabla \ln |\psi_T|^2, \quad E_L(\boldsymbol{R}) = \psi_T(\boldsymbol{R})^{-1} \widehat{H} \psi_T(\boldsymbol{R})$$
Convection-diffusion equation: Salt in flowing water
$$\boldsymbol{F}_i(\boldsymbol{R}) = \frac{1}{2} \left(\sum_{i=1}^{m} \frac{F(\boldsymbol{R})}{2} \right) = \frac{F(\boldsymbol{R})}{2} \left(\sum_{i=1}^{m} \frac{F(\boldsymbol{R})}{2} \right)$$

- Drift term Green's function: $G_3(\mathbf{R}, \mathbf{R}', t) = \delta(\mathbf{R} \mathbf{R}', t)$

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

In areas where the potential changes intensely, a tiny movement of the walker will lead to a drastic fluctuation of the population.

Importance sampling technique

$$\left(\frac{F(R)}{2m} t \right)$$
 Make a displacement: $\frac{F(R)}{2m} \Delta \tau$ D

Importance Sampling

- Two effects:

 - 2. Reduces the fluctuation of the population of walkers

$$egin{aligned} E_L(m{R}) &= \psi_T(m{R})^{-1} \widehat{H} \psi_T(m{R}) o E_0 \ n_r &= e^{-\left(rac{E_L(m{R}) + E_L(m{R}')}{2} - E_R
ight) \Delta au} o 1 \end{aligned}$$
 Hjorth-Jensen:2017gss, Gordillo:20

• In the practical simulation, the $\psi_T(\mathbf{R})$ is unknown beforehand In our calculation $\psi_T(oldsymbol{R}) = ig| ig| e^{-a_{ij}r_{ij}}$

$$\hat{i} < \hat{j}$$

- a_{ij} : adjustable constants, set to minimize fluctuation
- e.g. 1-d HO

$$H=-rac{1}{2}rac{\partial^2}{\partial x^2}+rac{1}{2}x^2, E_0=0.5$$

With importance sampling, the fluctuation is reduced

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

Guides walkers to regions with higher probability density: drift force $m{F}_i(m{R}) =
abla \ln |\psi_T|^2$

Application in baryons and tetraquark states

Baryons

- Potential: AL1 and its revised version
- Two confinement scenarios (Δ -type and Y-type)
- In variational method: It is hard to calculate the matrix elements of $V_{\rm conf}^{r}$

$$L_{min} = igg[rac{1}{2}ig(a^2+b^2+c^2ig)+rac{\sqrt{3}}{2}\sqrt{G}igg]$$

- In DMC: No need of integration, Steiner tree problem
- Coupling constants
 - σ_{Δ} from AL1 model

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

• Flux tube-I: $\sigma_Y = \sigma_{\bar{q}q} = 2\sigma_{\Delta}$, Flux tube-II: fix σ_Y from $\Omega(sss)$ mass, $\sigma_Y = 0.9204\sigma_{\bar{q}q}$ Ma:2022vqf Takahashi:2002bw Lattice QCD: $\sigma_Y = 0.9355\sigma_{\bar{q}q}$

> ■ Flux tube-II is more reliable For baryons it is hard to distinguish two confinement scenarios

DMC in quark models

- A lesson from nucleon calculation: proper configuration assignment
 - Single channel $|N\rangle_{\text{frac}} = \chi^S_{sf}(123)\psi^S(123)$ \rightarrow not general enough
 - $\bullet |Ci\rangle = |Bi\rangle + ext{ even perm } (1,2,3), |B1\rangle = \chi_s^S(12;3)$ $|B2\rangle = \chi_s^S(12;3)$ $|B3\rangle = \chi^A_s(12;3)$ $|B4\rangle = \chi^A_s(12;3)$
- $cc\bar{c}\bar{c}$ system

 - Our advancement: including the extra two configuration channels Ma:2022vqf

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

$\chi_f^S(12;3)\psi_1^S(12;3),$			AL
$\chi_f^A(12;3)\psi_2^A(12;3),$		DMC	VAR
$\chi_f^A(12;3)\psi_3^S(12;3),$	$ N(123) angle_{ ext{fac}}$	968	966
$\chi_f^{S}(12;3)\psi_4^{A}(12;3),$	$ N(123)\rangle_{ m general}$	930	930

		AL1			ET II	F
	DMC	VAR	Faddeev		1111	
$ N(123) angle_{ ext{fac}}$	968	966	933	1059	975	02
$ N(123) angle_{ ext{general}}$	930	930		1019	936).

Cannot get the di-meson thresholds (real ground state for systems w/o bound states) Gordillo:2020sgc

DMC in quark models

- A lesson from nucleon calculation: proper configuration assignment
 - Single channel $|N\rangle_{\text{frac}} = \chi^S_{sf}(123)\psi^S(123)$ →not general enough
 - $igstarrow |Ci
 angle = |Bi
 angle + ext{ even perm }(1,2,3), |B1
 angle = \chi_s^S(12;3)$ $|B2\rangle = \chi_s^S(12;3)$ $|B3\rangle = \chi^A_s(12;3)$ $|B4\rangle = \chi^A_s(12;3)$
- $cc\bar{c}\bar{c}$ system

 - Our advancement: including the extra two configuration channels Ma:2022vqf

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

$\chi_f^S(12;3)\psi_1^S(12;3),$		AL1			
$\chi_f^A(12;3)\psi_2^A(12;3),$		DMC	VAR	Faddeev	ГІІ
$\chi_f^A(12;3)\psi_3^S(12;3),$	$ N(123) angle_{ ext{fac}}$	968	966	033	1059
$\chi_f^{\mathbf{S}}(12;3)\psi_4^{\mathbf{A}}(12;3),$	$ N(123) angle_{ ext{general}}$	930	930	200	1019

Cannot get the di-meson thresholds (real ground state for systems w/o bound states) Gordillo:2020sgc

In variational method, it is hard to get the di-meson threshold without the di-meson clustering basis ■ In DMC, we get a di-meson type ground state without presuming such kind of clustering

FT II

975

936

Double-heavy tetraquark

- Potential: Chiral quark models [Salamanca model (SLM)]
- Systems with bound state:

J^P		Ι	$E_{ m th}$	E	ΔE
0+	bcīnī	0	7171	6986	-185
	bc <u>s</u> n	$\frac{1}{2}$	7244	7243	-1
	ccīnī	0	3915	3759	-156
	bbnīn	0	10594	10249	-345
1+	bb <u>s</u> n	$\frac{1}{2}$	10667	10653	-14
	bcnīn	0	7215	7012	-203
	bcsn	$\frac{1}{2}$	7291	7287	-4

Summary and outlook

- Improved DMC to give the di-meson threshold
- Recommended tetraquark bound states:

$$egin{aligned} J^P &= 1^+\colon & [ccar{n}ar{n}]^{I=0}, & [bbar{n}ar{n}]^{I=0}, & [bcar{n}ar{n}]^{I=0}\ J^P &= 0^+\colon & [bcar{n}ar{n}]^{I=0}, & [bcar{s}ar{n}] \end{aligned}$$

- Can be further improved: Auxiliary field diffusion Monte Carlo, fixed-node method • Flux-tube confinement potentials for tetraquark states

Thanks for your attention!

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

 $^{=0},\;[bbar{s}ar{n}],\;[bcar{s}ar{n}]$

17

The 7th Symposium on "Symmetries and the emergence of Structure in QCD"

Backup

Coupled-channel formalism

Coupled-channel Schrödinger equation

• Sample $\mathcal{F}(\boldsymbol{R},t)$

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

 $\Psi(oldsymbol{R},t) = \sum_lpha \Psi_lpha(oldsymbol{R},t)\chi_lpha \ -rac{\partial \Psi_{lpha'}}{\partial t} = \sum_lpha \hat{H}_{lpha'lpha}\Psi_lpha - E_R\Psi_{lpha'}$

$f_lpha(oldsymbol{R},t)\equiv\psi_T(oldsymbol{R})\Psi_lpha(oldsymbol{R},t),$ $\mathcal{F}(oldsymbol{R},t)\equiv\sum_lpha f_lpha(oldsymbol{R},t).$

Double-heavy tetraquark

Systemic uncertainties

- Time-step uncertainty
- Walker number control uncertainty
- Choice of importance functions
- Fermion sign problem (Main problem)
 - The density of the walker is always positive
 - However, the wave functions can be negative
 - The present coupled channel strategy
 - Better choice: fixed-node method, fixed-phase method...
- Other possible improvement
 - The wave function of the discrete quantum numbers can be sampled
 - Auxiliary field diffusion Monte Carlo
 - Optimize the initial function

Statistical uncertainties

Jackknife resampling method

Statistical uncertainties: less than 1 MeV

Resonances within DMC method

- Put them into finite box or a well Wiese:1988qy, Gandolfi:2016bth
- Similar to the real scaling method
- More methods to calculate resonance: see the papers about tetra-neutron resonance

the interacting model.

Yao Ma (马 尧) | Baryons and Tetraquark States with Diffusion Monte Carlo Method

Figure 2: The finite volume spectrum of the free and Wiese:1988qy

