

The effect of the short-range contribution of one-boson model on the hadronic molecular picture for pentaquarks

Nijiati Yalikun(尼加提•亚力坤) XinJiang university(新疆大学)

Based on PRD104(2021)9,094039; PRD105(2022)9,094026; arXiv:2303.03629 In collaborating with X.-K. Dong, Y.-H. Lin, F.-K. Guo, K. Yuki and B.-S. Zou

The 7th Symposium on "Symmetries and the emergence of Structure in QCD" 第七届强相互作用量子色动力学对称性及其物质结构学术研讨会 21 July, 2023

Outline

- Review of works for P_c pentaquarks
- Theoretical framework
 - Scattering matrix from Schrödinger equation
 - One-boson exchange model
- Results
 - *P*_c
 - $P_{\bar{c}s}$
 - $P_{ccs\bar{s}}$
- Summary

Earlier Predictions of P_c

- In 2010-2012, hidden-charm pentaquarks were predicted in the charmed meson-baryon interaction.
- Masses below the $\overline{D}\Sigma_c, \overline{D}^*\Sigma_c$ thresholds.
- $\overline{D}^{(*)}\Sigma_c^{(*)}, \overline{D}^{(*)}\Lambda_c, \eta_c N, J/\psi N$ channels relevant due to having the same quark flavors.
- Unstable bound states in $\overline{D}^{(*)}\Sigma_c^{(*)}$ system produced via strong interaction parameterized by light-meson exchange.
- $J/\psi p$ channel is the lowest decay channel and appropriate for detecting P_c .

- J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys.Rev.Lett. 105 (2010) 232001
- J.-J. Wu, T. S. H. Lee, and B. S. Zou, Phys. Rev. C 85, 044002 (2012)

TABLE III. The pole position $(M - i\Gamma/2)$ and "binding energy" $(\Delta E = E_{thr} - M)$ for different cutoff parameters Λ and spin-parity J^P . The threshold E_{thr} is 4320.79 MeV of $\overline{D}\Sigma_c$ in the *PB* system and 4462.18 MeV of $\overline{D}^*\Sigma_c$ in the *VB* system. The unit for the listed numbers is MeV.

J^{p}	Λ	PB system		VB system			
		$M - i\Gamma/2$	ΔE	$M - i\Gamma/2$	ΔE		
$\frac{1}{2}$ -	650	_	_	_	_		
~	800	-	-	4462.178 - 0.002i	0.002		
	1200	4318.964 - 0.362i	1.826	4459.513 - 0.417i	2.667		
	1500	4314.531 - 1.448i	6.259	4454.088 - 1.662i	8.092		
	2000	4301.115 - 5.835i	19.68	4438.277 - 7.115i	23.90		
$\frac{3}{2}$ -	650	-	_	_	_		
2	800	_	-	4462.178 - 0.002i	0.002		
	1200	_	-	4459.507 - 0.420i	2.673		
	1500	-	-	4454.057 - 1.681i	8.123		
	2000	_	_	4438.039 - 7.268i	23.14		

• Z.-C. Yang, Z.-F. Sun, J. He, X. Liu, and S.-L. Zhu, Chin. Phys.C 36, 6 (2012)

Abstract: Using the one-boson-exchange model, we studied the possible existence of very loosely bound hidden-charm molecular baryons composed of an anti-charmed meson and a charmed baryon. Our numerical results indicate that the $\Sigma_c \bar{D}^*$ and $\Sigma_c \bar{D}$ states exist, but that the $\Lambda_c \bar{D}$ and $\Lambda_c \bar{D}^*$ molecular states do not.

P_c in the experiment

• In 2015, the first evidence of P_c captured by LHCb in the analysis of $J/\psi p$ invariant mass spectrum in $\Lambda_b^0 \to K^- J/\psi p$ decay.

R. Aaij et al. (LHCb), Phys. Rev. Lett. 115, 072001 (2015)

State	Mass [MeV]	Width [MeV]
$P_{c}(4380)$	$4380 \pm 8 \pm 29$	205 ± 18 ± 89
$P_{c}(4450)$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$

In 2019, both of P_c(4380) & P_c(4450) could not survive at the LHCb experiment with higher luminosity. Another 3 new P_c states are reported. R. Aaij et al. (LHCb), Phys. Rev. Lett. 122, 222001 (2019)

State	Mass [MeV]	Width [MeV]
$P_{c}(4312)$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$
$P_{c}(4440)$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$
$P_{c}(4457)$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$

Interpretation of P_c

- Hadronic molecules
 - Loosely unstable bound state, binding energy about 2-20 MeV, light mesons transmit the strong interaction.
 - Mass region covers several thresholds, coupled channel dynamics may be important for binding.
 - Spin-parity assignment: $1/2^{-}(\overline{D}\Sigma_c)$ for $P_c(4312)$, $1/2^{-}$ or $3/2^{-}(\overline{D}\Sigma_c)$ for $P_c(4440)$ and $P_c(4457)$.
- Compact pentaquarks
 - L. Maiani, A. D. Polosa, and V. Riquer, Phys. Lett. B 749,289 (2015).
 - Ali, I. Ahmed, M. J. Aslam, and A. Rehman, Phys. Rev.D 94, 054001 (2016).
 - Z. G. Wang, Eur. Phys. J. C 76, 70 (2016)
 - I. A. Perevalova, M. V. Polyakov, and P. Schweitzer, Phys.Rev. D 94, 054024 (2016).
 - E. Hiyama, A. Hosaka, M. Oka, and J. M. Richard, Phys.Rev. C 98, 045208 (2018).
- Kinematic effects
 - X. H. Liu, Q. Wang, and Q. Zhao, Phys. Lett. B 757, 231(2016).
 - M. Bayar, F. Aceti, F. K. Guo, and E. Oset, Phys. Rev. D94, 074039 (2016).

- R. Chen, X. Liu, X. Q. Li and S. L. Zhu, Phys. Rev. Lett. 115, no. 13, 132002 (2015)
- H. X. Chen, W. Chen, X. Liu, T. G. Steele and S. L. Zhu, Phys. Rev. Lett. 115, no. 17,172001 (2015)
- M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115 no.12, 122001 (2015)
- L. Roca, J. Nieves and E. Oset , Phys. Rev. D 92, no. 9, 094003 (2015)
- T. J. Burns, Eur. Phys. J. A 51 no.11, 152(2015)
- H. Huang and J. Ping, Phys. Rev. D 99, no.1, 014010 (2019)
- J. He and D. Y. Chen, Eur. Phys. J. C 79, 887 (2019)
- R. Chen, Z. F. Sun, X. Liu, and S. L. Zhu, Phys. Rev. D 100, 011502 (2019)
- M. Z. Liu, Y.W. Pan, F. Z. Peng, M. S. Sánchez, L. S. Geng, A. Hosaka, and M. P. Valderrama, Phys. Rev. Lett. 122, 242001 (2019).
- T. J. Burns and E. S. Swanson, Phys. Rev. D 100, 114033(2019).
- M. L. Du, V. Baru, F. K. Guo, C. Hanhart, U. G. Meißner, J. A. Oller, and Q. Wang, J. High Energy Phys. 08 (2021) 157

Our related works

qqqcc • P_c

q stands u or d

- $\overline{D}\Sigma_{\rm c}, \overline{D}\Sigma_{\rm c}^*, \overline{D}^*\Sigma_{\rm c}, \overline{D}^*\Sigma_{\rm c}^*, \overline{D}\Lambda_c(2595)$
- Mass region at $M \sim 4.3 4.5$ GeV

N. Yalikun, Y.-H. Lin, F.-K. Guo K. Yuki and B.-S. Zou, "Coupled-channel effects of the $\Sigma_c^{(*)}\overline{D}^{(*)} - \Lambda_c(2595)\overline{D}$ system and molecular nature of the Pc pentaquark states from one-boson exchange model", Phys.Rev.D 104 (2021) 9,094039

• $P_{\bar{c}s}$

qqqsī

- $D_{\rm S}^- N, \overline{D}\Lambda, \overline{D}^*\Lambda, \overline{D}^*\Sigma, \overline{D}\Sigma$
- Mass region at $M \sim 3.0 3.2$ GeV ٠

N. Yalikun and B.-S. Zou, "Anticharmed strange pentaquarks from the one-boson-exchange model", Phys.Rev.D 105 (2022) 9, 094026

• $P_{ccs\bar{s}}$ qccs \bar{s}

- $D_{S}^{+}\Xi_{c}, D_{S}^{*+}\Xi_{c}, D_{S}^{+}\Xi_{c}^{\prime}, D_{S}^{*+}\Xi_{c}^{\prime}, D_{S}^{+}\Xi_{c}^{*}, D_{S}^{*+}\Xi_{c}^{*}$
- Mass region at $M \sim 4.4 4.7$ GeV

N. Yalikun and B.-S. Zou, "Molecular states in $D_s^{(*)} \Xi_c^{(\prime,*)}$ systems", e-Print: 2303.03629

Theoretical framework

- Scattering matrix from Schrödinger equation
- One-boson exchange model

• Scattering described by time-independent Schrödinger equation:

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{2\mu r^2} + W\right]u + Vu = Eu$$

J. R. Taylor, Scattering Theory: *The Quantum Theory on Non-relativistic Collisions* (New York, 1972)
 J. J. Sakurai, *Modern Quantum Mechanics*, 2ed addison(Wesley, 2011)

• For given energy *E*, solution can be expressed as a superposition of in and out plane waves, Hankel function

$$u(r) = A(q)h^{-}(qr) + B(q)h^{+}(qr)$$

• For the potential $V(r \to \infty) \to 0$, asymptotic form of the wave function:

$$u(r) \xrightarrow{r \to \infty} h^{-}(qr) - S(q)h^{+}(qr)$$
Scattering matrix $S(q) = -\frac{B(q)}{A(q)}$

• Channel momentum $q = \sqrt{2\mu(E - W)}$.

Analytic S matrix

- $q = \sqrt{2\mu(E W)}$ is multi-valued function of *E*, each *E* corresponds to two value of *q*, thus scattering matrix *S*(*q*) can be analytically continued to two complex energy plane Im[q] Im[E]
- Distinguish the two Riemann sheets(RSs) by imaginary part of q, i.e. Im[q] ≥ 0 corresponds to 1st RS, Im[q] < 0 corresponds to 2nd RS.
- Thus, S matrix at two RSs defined by

 $S^{RS-I} = S(q),$ $S^{RS-II} = S(-q).$

• Above the threshold, lower-half plane of 2nd RS is smoothly connected to physical energy axis, and resonance pole on it can cause a structure of the scattering amplitude.

Coupled channel S matrix

• For multi-channel scattering, coupled-channel Schrödinger equation is

$$\left[-\frac{\hbar^2}{2\mu_j}\frac{d^2}{dr^2} + \frac{\hbar^2 l_j(l_j+1)}{2\mu_j r^2} + W_j\right] u_j + \sum_{k \le j} V_{jk} u_k = E u_j.$$

J. R. Taylor, Scattering Theory: The Quantum Theory on Non-relativistic Collisions (New York, 1972)

• Wave functions of *j*th channel satisfying the α th boundary condition:

$$u_j^{\alpha}(r) = A_j^{\alpha}(q_j)h^-(q_jr) + B_j^{\alpha}(q_j)h^+(q_jr),$$

- Asymptotic form: with α th boundray condition: $u_j^{\alpha}(0) = 0$, $\frac{\partial}{\partial r} u_j^{\alpha}(r) \Big|_{r=0} = \delta_j^{\alpha}$.
- Asymptotic form:

$$u_j^{\alpha}(r) \xrightarrow{r \to \infty} h^-(q_j r) - S_j^{\alpha}(q_j)h^+(q_j r),$$

$$S(q) = -A(q)^{-1}B(q)$$

- For n channels system, each channel momentum $q_j(E) = \sqrt{2\mu_j(E W_j)}$ defines two RSs, thus there are 2^n RSs in this case.
 - Bound state corresponds to the pole at the 1st RS (all $q_j(E)$ take positive values).
 - Resonance corresponds to the pole between open-channels ($\text{Im}[q_{\text{open}}(E) < 0]$) and close-channels ($\text{Im}[q_{\text{close}}(E) < 0]$) Open Close
 - Virtual state corresponds to other pole.

One-boson exchange model

• Strong interaction at low energy parameterized by light meson exchange:

$$\sigma, \ \mathbb{P} = \begin{pmatrix} \frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & \pi^+ & K^+ \\ \pi^- & -\frac{\pi^0}{\sqrt{2}} + \frac{\eta}{\sqrt{6}} & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix}, \ \mathbb{V} = \begin{pmatrix} \frac{\rho^0}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^+ & K^{*+} \\ \rho^- & -\frac{\rho^0}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}$$
$$I^P = \mathbf{0}^+ \qquad I^P = \mathbf{0}^- \qquad I^P = \mathbf{1}^-$$

• Potential from t-channel scattering amplitude

$$V(\boldsymbol{q}) = -\frac{M^{h_1 h_2 \to h_3 h_4}}{\sqrt{2m_1 2m_2 2m_3 2m_4}}, \quad \begin{array}{c} h_1, p_1 \\ h_2, p_2 \end{array}, \quad \begin{array}{c} h_3, p_3 \\ h_4, p_4 \end{array}$$

Kinematics

$$p_1 = (E_1, \mathbf{p}), p_2 = (E_2, -\mathbf{p}),$$

 $p_3 = (E_3, \mathbf{p}'), p_4 = (E_4, -\mathbf{p}')$
 $q = p_3 - p_1 = p_2 - p_4 = (q^0, \mathbf{q})$
 $\frac{|\mathbf{p}|}{m_i} \ll 1 \rightarrow q^0 = \frac{m_2^2 - m_1^2 + m_3^2 - m_4^2}{2(m_3 + m_4)}$

- Chen H X, Chen W, Liu X, et al. Phys.Rept. 639 (2016) 1-121
- For the meson-baryon system each containing a heavy quark

$$\begin{split} \mathcal{L}_{\text{eff}} &= l_{S} \bar{S}_{a\mu} \sigma S_{a}^{\mu} - \frac{3}{2} g_{1} \varepsilon_{\mu\nu\lambda\kappa} v^{\kappa} \bar{S}_{ab}^{\mu} A_{bc}^{\nu} S_{ca}^{\lambda} + i \beta_{S} \bar{S}_{ab\mu} v_{\alpha} (\Gamma_{bc}^{\alpha} - \rho_{bc}^{\alpha}) S_{ca}^{\mu} + \lambda_{S} \bar{S}_{ab\mu} F^{\mu\nu}(\rho_{bc}) S_{ca\nu} \\ &- i h_{2} [\bar{S}_{ab}^{\mu} v \cdot A_{bc} R_{ca\mu} + \bar{R}_{ab}^{\mu} v \cdot A_{cb} S_{ca\mu}] + h_{3} \varepsilon_{\mu\nu\lambda\kappa} i v^{\kappa} [\bar{S}_{ab}^{\mu} (\Gamma_{bc}^{\nu} - \rho_{bc}^{\nu}) R_{ca}^{\lambda} + \bar{R}_{ab}^{\mu} (\Gamma_{bc}^{\nu} - \rho_{bc}^{\nu}) S_{ca}^{\lambda}] \\ &+ g_{S} \text{Tr} [\bar{H}_{a}^{\bar{Q}} \sigma H_{a}^{\bar{Q}}] + i g \text{Tr} [\bar{H}_{a}^{\bar{Q}} \gamma \cdot A_{ab} \gamma^{5} H_{b}^{\bar{Q}}] - i \beta \text{Tr} [\bar{H}_{a}^{\bar{Q}} v_{\mu} (\Gamma_{ab}^{\mu} - \rho_{ab}^{\mu}) H_{b}^{\bar{Q}}] \\ &+ i \lambda \text{Tr} \left[\bar{H}_{a}^{\bar{Q}} \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}] F^{\mu\nu} (\rho_{ab}) H_{b}^{\bar{Q}} \right], \quad P. L. Cho, Phys. Rev. D 50, 3295 (1994). \\ &\cdot D. Pirjol and T.-M. Yan, Phys. Rev. D 56, 5483 (1997). \\ &\cdot Y.-R. Liu and M. Oka, Phys. Rev. D 85, 014015 (2012). \end{split}$$

OBE potentials:
$$V_{\rm s} + V_{\rm ps} + V_{\rm v}$$

 $V_{\rm s}(q) \rightarrow \frac{\boldsymbol{O}_1 \cdot \boldsymbol{O}_2}{\boldsymbol{q}^2 + m^2}$
 $V_{\rm ps}(q) \rightarrow \frac{\boldsymbol{O}_1 \cdot \boldsymbol{q}\boldsymbol{O}_2 \cdot \boldsymbol{q}}{\boldsymbol{q}^2 + m^2}$
 $V_{\rm v}(q) \rightarrow \frac{\boldsymbol{O}_1 \cdot \boldsymbol{O}_2}{\boldsymbol{q}^2 + m^2} - \frac{(\boldsymbol{O}_1 \times \boldsymbol{q}) \cdot (\boldsymbol{O}_2 \times \boldsymbol{q})}{\boldsymbol{q}^2 + m^2}$

Short-range contribution

• Position space potentials by Fourier transformation

$$V_{\rm ex}(\boldsymbol{r},\Lambda) = \int \frac{d^3\boldsymbol{q}}{(2\pi)^3} V_{\rm ex}(\boldsymbol{q}) F^2(\boldsymbol{q},\Lambda) e^{i\boldsymbol{q}\cdot\boldsymbol{r}},$$

The form factor $F(q, \Lambda) = \frac{\Lambda^2 - m^2}{\Lambda^2 - q^2}$ describes the size of the vertex, where Λ phenomenological parameter. $\frac{\boldsymbol{O}_1 \cdot \boldsymbol{O}_2}{\boldsymbol{a}^2 + m^2} \xrightarrow{F} Y(\mathbf{r}, \Lambda, m) \boldsymbol{O}_1 \cdot \boldsymbol{O}_2$ $S(\boldsymbol{O}_1 \cdot \boldsymbol{O}_2 + \boldsymbol{a}_2 - \boldsymbol{a}_2^2 \boldsymbol{O}_1 \cdot \boldsymbol{O}_2)$

F.-L. Wang and X. Liu, Phys. Rev. D 102, 094006 (2020)

$$\frac{q^{2} + m^{2}}{q^{2} + m^{2}} = \frac{1}{3} \left[\frac{q^{2}}{q^{2} + m^{2}} \boldsymbol{O}_{1} \cdot \boldsymbol{O}_{2} + \frac{1}{q^{2} + m^{2}} S(\boldsymbol{O}_{1}, \boldsymbol{O}_{2}, \boldsymbol{q}) \right]^{F} C(r, \Lambda, m, a) \boldsymbol{O}_{1} \cdot \boldsymbol{O}_{2} + T(r, \Lambda, m) S(\boldsymbol{O}_{1}, \boldsymbol{O}_{2}, \hat{r})$$

$$1 - \frac{m^{2}}{q^{2} + m^{2}} \rightarrow 1 - a - \frac{m^{2}}{q^{2} + m^{2}}$$

 \rightarrow Leads $\delta(r)$ -term after Fourier transformation

$$\frac{(\boldsymbol{O}_{1} \times \boldsymbol{q}) \cdot (\boldsymbol{O}_{2} \times \boldsymbol{q})}{\boldsymbol{q}^{2} + m^{2}} \xrightarrow{F} 2C(r, \Lambda, m, a)\boldsymbol{O}_{1} \cdot \boldsymbol{O}_{2} - T(r, \Lambda, m)S(\boldsymbol{O}_{1}, \boldsymbol{O}_{2}, \hat{r})$$

$$OBE \text{ potentials: } V_{s} + V_{ps} + V_{v}$$

$$V_{s} \rightarrow Y(r, \Lambda, m_{s})\boldsymbol{O}_{1} \cdot \boldsymbol{O}_{2}$$

$$V_{ps} \rightarrow C(r, \Lambda, m_{ps}, a)\boldsymbol{O}_{1} \cdot \boldsymbol{O}_{2} + T(r, \Lambda, m_{ps})S(\boldsymbol{O}_{1}, \boldsymbol{O}_{2}, \hat{r})$$

$$V_{v} \rightarrow Y(r, \Lambda, m_{v})\boldsymbol{O}_{1} \cdot \boldsymbol{O}_{2} - 2C(r, \Lambda, m_{v}, a)\boldsymbol{O}_{1} \cdot \boldsymbol{O}_{2}$$

$$+T(r, \Lambda, m_{v})S(\boldsymbol{O}_{1}, \boldsymbol{O}_{2}, \hat{r})$$

Short-range contribution

• Short-range behaviour of the potential is not fully captured by Λ , but by parameter *a*

OBE potentials:
$$V_{\rm s} + V_{\rm ps} + V_{\rm v}$$

 $V_{\rm s} \rightarrow Y(\mathbf{r}, \Lambda, m_{\rm s}) \boldsymbol{O}_1 \cdot \boldsymbol{O}_2$
 $V_{\rm ps} \rightarrow C(\mathbf{r}, \Lambda, m_{\rm ps}, a) \boldsymbol{O}_1 \cdot \boldsymbol{O}_2 + T(r, \Lambda, m_{\rm ps}) S(\boldsymbol{O}_1, \boldsymbol{O}_2, \hat{r})$
 $V_{\rm v} \rightarrow Y(\mathbf{r}, \Lambda, m_{\rm v}) \boldsymbol{O}_1 \cdot \boldsymbol{O}_2 - 2C(\mathbf{r}, \Lambda, m_{\rm v}, a) \boldsymbol{O}_1 \cdot \boldsymbol{O}_2$
 $+T(r, \Lambda, m_{\rm v}) S(\boldsymbol{O}_1, \boldsymbol{O}_2, \hat{r})$

• Repulsive or attractive property of the $C(r, \Lambda, m, a)$ near the origin is quantitatively determined by parameter a, which is not accommodated by Λ .

Results

- *P*_c
- $P_{\bar{c}s}$
- $P_{ccs\bar{s}}$

P_c states: Single channel bound states

• Binding energy by varying the cutoff, binding energy and Λ in MeV unit

Other $P_c(> 4457)$

	$1/2^{-}(\Sigma_c \bar{D})$	$3/2^-(\Sigma_c^*\bar{D})$	1/2-(Σ	$\Sigma_c ar{D}^*)$	3/2-	$(\Sigma_c ar{D}^*)$	1/2-(Σ	$\Sigma_c^* ar D^*)$	3/2-(2	$\Sigma_c^* ar D^*)$	5/2-	$T(\Sigma_c^*ar{D}^*)$
Λ	a = 0 $a = 1$	a = 0 $a = 1$	a = 0	a = 1	a = 0	a = 1	a = 0	a = 1	a = 0	a = 1	a = 0	a = 1
1000			-23.12				-50.13		-2.44		•••	-0.48
1200			-117.27			-4.99	-351.24		-27.15			-10.03
1400	-0.28	-0.36	-325.26		-0.04	-19.42	< -500		-88.16	-0.21	-0.24	-31.65
1600	-3.73	-4.03	< -500	•••	-0.98	-41.04	< -500	•••	< -500	-2.07	-1.78	-215.79
	$P_{c}(4312)$	$P_{c}(4380)$	Pc	(4440)	& P _c (44	ł57)	🔺 Ma	ss gan	betwe	en 1/:	2^{-} and	$\frac{1}{3}/2^{-}$

B. E.~-22 MeV & ~-5 MeV

- B. E.~ -9 MeV B. E.~-5 MeV
- Adjusting the parameter *a*

Mass gap between $1/2^-$ and $3/2^$ bound states in $\overline{D}^*\Sigma_c$ is controlled by adjusting the partameter *a*.

J ^P (channel)	M [MeV] ($a = 0.58, \Lambda = 1.4$ GeV)	M [MeV] ($a = 0.78, \Lambda = 1.6$ GeV)
$1/2^{-}(\overline{D}\Sigma_{c})$	-	4317.38
$3/2^{-}(\overline{D}\Sigma_{c}^{*})$	-	4381.34
$1/2^{-}(\overline{D}^{*}\Sigma_{c})$	4437.8	4458.44
$3/2^{-}(\overline{D}^*\Sigma_c)$	4457.1	4441.0
$1/2^{-}(\overline{D}^*\Sigma_c^*)$	4480.5	4518.17
$3/2^{-}(\overline{D}^{*}\Sigma_{c}^{*})$	4513.7	4514.67
$5/2^{-}(\overline{D}^{*}\Sigma_{c}^{*})$	4520.4	4498.19

P_c states: Coupled channel results

• Consider $\overline{D}\Sigma_c - \overline{D}\Sigma_c^* - \overline{D}^*\Sigma_c - \overline{D}^*\Sigma_c^*$ channels, $P_c(4312)$, $P_c(4440)$ and $P_c(4457)$ as input, fit *a* and Λ ,

J^{P} (dominant channel)	$(\Lambda, a) =$ (1.23 GeV, 0.55)	$(\Lambda, a) =$ (1.4 GeV, 0.79)	E	Experimental d	ata
$\frac{1/2^{-}(\Sigma_c \bar{D})}{2/2^{-}(\Sigma^* \bar{D})}$	4317.1	4312.8	Pentaquarks	Mass [MeV]	width [MeV]
$\frac{3}{2} (\Sigma_c D)$ $1/2^{-} (\Sigma_c \bar{D}^*)$	4379.8 - 0.0i 4441.0 - 8.0i	4373.0 - 0.11 4458.8 - 1.3i	$P_{c}(4312)$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$
$3/2^{-}(\Sigma_c \bar{D}^*)$	4456.9 - 5.9i	4439.4 - 4.2i	$P_{c}(4380)$	4380 ± 8 ± 29	$205 \pm 18 \pm 86$
$1/2^-(\Sigma_c^*ar D^*)$	4498.6 - 6.6i	4525.0 - 0.8i	$P_{c}(4440)$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$
$3/2^{-}(\Sigma_{c}^{*}\bar{D}^{*})$	4511.1 – 16.6 <i>i</i>	4518.0 - 4.2i	$P_{c}(4457)$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$
$5/2^{-}(\Sigma_{c}^{*}D^{*})$	4521.9 - 5.1i	4498.3 - 6.3i			

N. Yalikun, Y.-H. Lin et al, Phys.Rev.D 104 (2021) 9, 094039

• a = 0.79 case prefered due to the smaller decay width

 $P_{c}(4312): \quad J^{P} = 1/2^{-}(\Sigma_{c}\bar{D}),$ $P_{c}(4380): \quad J^{P} = 3/2^{-}(\Sigma_{c}^{*}\bar{D}),$ $P_{c}(4440): \quad J^{P} = 3/2^{-}(\Sigma_{c}\bar{D}^{*}),$ $P_{c}(4457): \quad J^{P} = 1/2^{-}(\Sigma_{c}\bar{D}^{*}),$

$P_{\bar{c}s}$ states: Molecular picture

• Binding mechanism similar with P_c pentqaurks

Molecular picture

Production mechanism

• Relevant channels

道	$D_s^- p$	$ar{D}\Lambda$	$ar{D}\Sigma$	$ar{D}^*\Lambda$	$ar{D}^*\Sigma$
<i>W_j</i> [MeV]	2907.3	2982.9	3060.4	3124.2	3201.7
$J^P = 1/2^-$	$^{2}S_{1/2}$	${}^{2}S_{1/2}$	${}^{2}S_{1/2}$	${}^{2}S_{1/2}, {}^{4}D_{1/2}$	${}^{2}S_{1/2}, {}^{4}D_{1/2}$
$J^{P} = 3/2^{-}$	$^{2}D_{3/2}$	${}^{2}D_{3/2}$	${}^{2}D_{3/2}$	${}^{4}S_{3/2}, {}^{2}D_{3/2}, {}^{4}D_{3/2}$	${}^{4}S_{3/2}, {}^{2}D_{3/2}, {}^{4}D_{3/2}$

All channels have the same quark configuration- $uuds\bar{c}$

$P_{\bar{c}s}$ states: $D_s^- p - \overline{D} \Lambda - \overline{D} \Sigma - \overline{D}^* \Lambda - \overline{D}^* \Sigma$

• Two poles with $J^P = 1/2^-$ and a pole with $J^P = 3/2^-$ are found at the complex energy plane S(E) closet to the physical region, they can be parametrized as $E_{pole} = M - i\Gamma/2$

a = 0.58

	Mass(M), decay width(Γ) and partial decay width(Γ_i) in unit of MeV															
$J^{P} = 1/2^{-}(\bar{D}\Sigma)$				$J^P = 1/2^- (\bar{D}^* \Sigma)$					$J^P = 3/2^- (\bar{D}^* \Sigma)$							
M[Ue v]	$M - i\Gamma/2$	Г	i	$M - i\Gamma/2$			Γ_i			$M - i\Gamma/2$			Γ	i		
1.2	3060.3 <i>- i</i> 0.3	0.6	0.1	3197.3 <i>– i</i> 3.9	0.3	0.7	6.1	0.7	0.6	3201.2 - i2.8	0.0	1.9	2.3	1.2	0.2	1.4
1.25	3059.0 - i1.2	2.3	0.3	3190.2 <i>– i</i> 7.1	0.7	1.1	11.3	1.2	0.5	3199.3 <i>– i</i> 3.7	0.0	2.2	2.7	1.7	0.2	1.5
1.3	3055.8 <i>- i</i> 3.0	5.7	0.7	3179.0 <i>– i</i> 12.1	1.5	1.8	18.8	2.1	0.3	3196.9 <i>– i</i> 4.5	0.0	2.5	3.0	2.3	0.2	1.5
1.35	3049.6 <i>- i</i> 6.2	11.5	1.4	3162.0 <i>– i</i> 20.1	3.5	3.1	29.1	3.5	0.1	3194.0 <i>– i</i> 5.1	0.0	2.7	3.2	2.9	0.2	1.5
1.4	3036.8 <i>- i</i> 10.6	18.9	2.5	3136.1 <i>– i</i> 32.1	7.8	5.5	38.7	3.8	0.2	3190.6 <i>– i</i> 5.6	0.0	2.9	3.4	3.5	0.1	1.4

N. Yalikun and B.-S. Zou, Phys.Rev.D 105 (2022) 9, 094026

- Decay channels
- 1. $1/2^{-}(\overline{D}\Sigma): D_{s}^{-}p({}^{2}S_{1/2}), \overline{D}\Lambda({}^{2}S_{1/2})$
- 2. $1/2^{-}(\overline{D}^{*}\Sigma): D_{s}^{-}p(^{2}S_{1/2}), \overline{D}\Lambda(^{2}S_{1/2}), \overline{D}\Sigma(^{2}S_{1/2}), \overline{D}^{*}\Lambda(^{2}S_{1/2}), \overline{D}^{*}\Lambda(^{4}D_{1/2})$
- 3. $3/2^{-}(\overline{D}^{*}\Sigma): D_{s}^{-}p(^{2}D_{3/2}), \overline{D}\Lambda(^{2}D_{3/2}), \overline{D}\Sigma(^{2}D_{3/2}), \overline{D}^{*}\Lambda(^{4}S_{3/2}), \overline{D}^{*}\Lambda(^{2}D_{3/2}), \overline{D}^{*}\Lambda(^{4}D_{3/2})$

$P_{\bar{c}s}$ states: $D_s^- p - \overline{D} \Lambda - \overline{D} \Sigma - \overline{D}^* \Lambda - \overline{D}^* \Sigma$

• Two poles with $J^P = 1/2^-$ and a pole with $J^P = 3/2^-$ are found at the complex energy plane S(E) closet to the physical region, they can be parametrized as $E_{\text{pole}} = M - i\Gamma/2$

a = 0.78

Mass(<i>M</i>), decay width(Γ) and partial decay width(Γ_i) in unit of MeV																
AIGaVI	$J^{P} = 1/2^{-1}$	\bar{D}		J	$T^{P} = 1$	$/2^{-}(\bar{D}^{*}$	Σ)			$J^P = 3/2^-(\bar{D}^*\Sigma)$						
A[Oev]	$M - i\Gamma/2$	Γ	i	$M - i\Gamma/2$			Γ_i			$M - i\Gamma/2$]	Γ_i		
1.2	3060.4 - i0.1	0.2	0.0							3199.0 <i>– i</i> 4.9	0.0	2.4	2.6	4.4	0.2	1.
1.3	3058.5 - i1.3	2.4	0.3				•••			3191.8 <i>– i</i> 7.5	0.0	2.9	3.0	7.9	0.2	1.
1.4	3053.9 - i4.2	7.8	1.0				•••			3181.5 <i>– i</i> 9.6	0.0	3.2	3.2	11.6	0.1	1.
1.55	3044.6 <i>- i</i> 13.4	23.7	4.2	3200.6 <i>- i</i> 21.1	0.3	23.6	1.6	30.1	0.6	3160.9 <i>– i</i> 11.2	0.1	3.1	3.2	14.9	0.0	0.
1.6	3041.9 <i>– i</i> 17.7	30.6	6.2	3193.6 <i>– i</i> 26.5	0.1	28.9	2.0	32.2	0.5	3152.5 <i>– i</i> 11.2	0.1	3.0	3.4	14.7	0.0	0.

N. Yalikun and B.-S. Zou, Phys.Rev.D 105 (2022) 9, 094026

- Decay channels
- 1. $1/2^{-}(\overline{D}\Sigma) : D_{s}^{-}p({}^{2}S_{1/2}), \overline{D}\Lambda({}^{2}S_{1/2})$
- 2. $1/2^{-}(\overline{D}^{*}\Sigma): D_{s}^{-}p({}^{2}S_{1/2}), \overline{D}\Lambda({}^{2}S_{1/2}), \overline{D}\Sigma({}^{2}S_{1/2}), \overline{D}^{*}\Lambda({}^{2}S_{1/2}), \overline{D}^{*}\Lambda({}^{4}D_{1/2})$
- 3. $3/2^{-}(\overline{D}^{*}\Sigma): D_{s}^{-}p({}^{2}D_{3/2}), \overline{D}\Lambda({}^{2}D_{3/2}), \overline{D}\Sigma({}^{2}D_{3/2}), \overline{D}^{*}\Lambda({}^{4}S_{3/2}), \overline{D}^{*}\Lambda({}^{2}D_{3/2}), \overline{D}^{*}\Lambda({}^{4}D_{3/2})$

$P_{ccs\bar{s}}$ states: Single channel results

- Energy of the bound states(solid curves) or virtual states
 states(dashed curves) in single channels calculated by varying the cutoff.
- Virtual states turn to bound states as the cutoff increases
- The results including (a = 0) and excluding(a = 1) the δ-term compared
- Binding requires the larger cutoff
 Λ

$$P_{ccs\bar{s}} \text{ states: } D_s^+ \Xi_c - D_s^+ \Xi_c' - D_s^{*+} \Xi_c - D_s^+ \Xi_c' - D_s^{*+} \Xi_c' - D_s^{*+} \Xi_c'$$

- Resonsces and bound state in the coupled-channel calculation as the cutoff $\Lambda=1.5$ GeV

J^P	Nearby channel	Threshold [MeV]	$E_{\rm pole}$ [MeV]	$\Gamma_i(D_s^+\Xi_c/D_s^+\Xi_c'/D_s^{*+}\Xi_c/D_s^+\Xi_c^*/D_s^{*+}\Xi_c/D_s^{*+}\Xi_c^*) \text{ [MeV]}$
	$D_s^+ \Xi_c$	4437.76	4437.71	
	$D_s^+ \Xi_c'$	4547.14	4547.04 <i>− i</i> 0.01 [△]	
1/2-	$D_s^{*+}\Xi_c$	4581.62	4564.26 - i1.00	$0.18/1.81/\cdots/\cdots/\cdots/\cdots/\cdots$
	$D_s^{*+}\Xi_c'$	4691.00	4687.07 <i>– i</i> 3.97 [△]	
	$D_s^{*+}\Xi_c^*$	4758.17	4754.05 <i>− i</i> 4.27 [△]	
	$D_s^{*+}\Xi_c$	4581.62	4569.56 <i>- i</i> 0.02	0.01/0.04/ · · · / · · · / · · · / · · ·
3/2-	$D_s^+ \Xi_c^*$	4614.31	4614.29 <i>- i</i> 0.05	$0.00/0.02/0.10/\cdots/\cdots/\cdots$
572	$D_s^{*+}\Xi_c'$	4691.00	4689.01 - i2.58	3.36/0.06/1.9/0.36/ · · · / · · ·
	$D_s^{*+}\Xi_c^*$	4758.17	4769.34 <i>− i</i> 9.95 [△]	
5/2-	$D_s^{*+}\Xi_c^*$	4758.17	4727.40 <i>- i</i> 13.37	7.82/0.19/19.27/0.33/0.02/

- 5 narrow resonances and an unstable bound states are found
- 4 virtual state poles are found at the other RSs, some of them may cause clear cusp (peak- or dip-like) structure of the amplitude at the threshold

$$P_{ccs\bar{s}} \text{ states: } D_s^+ \Xi_c - D_s^+ \Xi_c' - D_s^{*+} \Xi_c - D_s^+ \Xi_c' - D_s^{*+} \Xi_c' - D_s^{*+} \Xi_c'$$

• Resonances and bound state in the coupled-channel calculation as the cutoff $\Lambda = 1.5$ GeV

Without δ -term

J^P	Nearby channel	Threshold [MeV]	E_{pole} [MeV]	$\Gamma_i(D_s^+\Xi_c/D_s^+\Xi_c'/D_s^{*+}\Xi_c/D_s^+\Xi_c'/D_s^{*+}\Xi_c/D_s^{*+}\Xi_c^*) \text{ [MeV]}$
	$D_s^+ \Xi_c$	4437.76	4437.73	
1/2-	$D_s^+ \Xi_c'$	4547.14	$4547.14 - i0.00^{\triangle}$	
	$D_s^{*+}\Xi_c$	4581.62	4565.34 <i>- i</i> 2.68	0.18/4.98/ · · · / · · · / · · · / · · ·
	$D_s^{*+}\Xi_c'$	4691.00	4686.30 <i>- i</i> 4.49	← 1.20/6.41/2.02/0.01/···/···
	$D_s^{*+}\Xi_c^*$	4758.17	4742.51 <i>- i</i> 6.44	← 2.81/2.57/6.26/0.05/1.46/···
	$D_s^{*+}\Xi_c$	4581.62	4570.09 - <i>i</i> 0.02	$0.00/0.04/\cdots/\cdots/\cdots/\cdots$
3/2-	$D_s^+ \Xi_c^*$	4614.31 →	$4614.26 - i0.22^{\triangle}$	
572	$D_s^{*+}\Xi_c'$	4691.00 →	4689.71 <i>− i</i> 6.38 [△]	
	$D_s^{*+}\Xi_c^*$	4758.17	4747.06 <i>- i</i> 16.76	← 2.29/0.02/24.51/7.32/3.89/…
5/2-	$D_s^{*+}\Xi_c^*$	4758.17 →	4763.39 <i>− i</i> 11.20 [△]	

- 5 narrow resonances and an unstable bound states are found
- 4 virtual state poles are found at the othe RSs, some of them may cause clear cusp (peak- or dip-like) structure of the amplitude at the threshold

Summary

- P_c
 - Coupled channel system $\overline{D}\Sigma_c \overline{D}\Sigma_c^* \overline{D}^*\Sigma_c \overline{D}^*\Sigma_c^*$ are studied in the one-boson-exchange model. Our study suggests contribution of short range δ -term is important for simultaneous interpretation of $P_c(4312)$, $P_c(4380)$, $P_c(4440)$ and $P_c(4457)$ pentaquarks as the hadronic molecules.
 - Another three pentaquarks P_c (?) are predicted in the 4.49 4.53 GeV mass region.
- $P_{\bar{c}s}$
 - Coupled channel system $D_s^- p$ $\overline{D}\Lambda$ $\overline{D}\Sigma$ $\overline{D}^*\Lambda$ $\overline{D}^*\Sigma$ are studied and three pentaquarks $P_{\bar{c}s}$ are predicted.
 - It is suggested that the $D_s^- p$ invariant mass spectrum at the 3.0-3.2 GeV energy region in the $\bar{B}_s^0 \rightarrow \bar{n} D_s^- p$ decay is an appropriate place to detect the $P_{\bar{c}s}^-$ pentaquarks.
- $P_{ccs\bar{s}}$
 - 5 resonances and an unstable bound state in $D_s^+ \Xi_c D_s^+ \Xi_c' D_s^+ \Xi_c D_s^+ \Xi_c' D_s^{*+} \Xi_c' D_s^{*+} \Xi_c^*$ coupled channel system are predicted.
 - suggesting the $D\Lambda_c$ invariant mass spectrum at the energy region of 4.43 ~ 4.76 GeV to explore the nature of $P_{ccs\bar{s}}$ pentaquarks.

Thanks for you attention!

Back up

P_c states: Related channels

• Partial waves of channels: ${}^{2S+1}L_J$, J = |L + S|, |L + S - 1|, \cdots , |L - S|

Channels	$\overline{D}\Sigma_c$	$\overline{D}\Sigma_c^*$	$\overline{D}^*\Sigma_c$	$\overline{D}^*\Sigma_c^*$
Threshold [MeV]	4321.11	4385.37	4462.42	4526.68
$J^{P} = 1/2^{-1}$	${}^{2}S_{1/2}$	${}^{4}D_{1/2}$	${}^{2}S_{1/2}$, ${}^{4}D_{1/2}$	${}^{2}S_{1/2}$, ${}^{4}D_{1/2}$, ${}^{6}D_{1/2}$
$J^{P} = 3/2^{-1}$	${}^{2}D_{3/2}$	⁴ S _{3/2}	${}^{4}S_{3/2}$, ${}^{2}D_{3/2}$, ${}^{4}D_{3/2}$	${}^{4}S_{3/2}$, ${}^{2}D_{3/2}$, ${}^{4}D_{3/2}$, ${}^{6}D_{1/2}$
$J^{P} = 5/2^{-1}$	${}^{2}D_{5/2}$	${}^{4}D_{5/2}$	² D _{5/2} , ⁴ D _{5/2}	${}^{6}S_{5/2}$, ${}^{2}D_{5/2}$, ${}^{4}D_{5/2}$, ${}^{6}D_{5/2}$

- OBE potentials in S wave
 - Partial wave projection

 ${}^{J^{P}}V^{ij}(r) =_{f} \langle {}^{2s'+1}L'_{J} | V^{ij}(r) | {}^{2s+1}L_{J} \rangle_{i}$

- Total potentials of $\overline{D}\Sigma_c$ and $\overline{D}\Sigma_c^*$ channels inependent of *a*
- In the D
 ^{*}Σ_c system, 1/2⁻ is more attractive than 3/2⁻ with a = 0, and the stuation interchanges with a = 1

$P_{ccs\bar{s}}$ states: considered channels

Channels consisted of S wave charmed-strange mesons and baryons •

Mass region $4.43 \sim 4.76$ GeV

4.3

 $1/2^{-1}$

3/2

 $5/2^{-1}$