

Threshold effects as the origin of some exotic phenomena

Xiao-Hai Liu

Center for Joint Quantum Studies & Department of Physics, Tianjin University

CRC110 Workshop, PKU, Rizhao, July 22, 2023

Outline

Brief introduction to exotic hadrons

- **Cusp effect**
- >Triangle singularity (TS) phenomena
- > Threshold effects and some newly observed
 - **XYZ states**

New particles discovered at the LHC

68 new hadrons

Renaissance of Hadron Spectroscopy!

Theoretical Interpretation

Hadronic molecule

XYZ particle Near threshold characteristic The "molecular state" concept is not exotic, the most exotic thing is that nearly all of the XYZ particles could be interpreted as molecular states

Threshold effect

Contributions cannot be ignored

Theoretical Interpretation

"Resonance-like" structure
$$\stackrel{?}{=}$$
 Genuine particle

Cusp effect

E.P. Wigner, "On the Behavior of Cross Sections Near Thresholds", PR73, 1002 (1948)

Induced by the charge-exchange rescattering $\pi^+\pi^- \rightarrow \pi^0\pi^0$

Two-body cut

Budini & Fonda, PRL6,419(1961); Cabibbo, PRL93,121801(2004);

Branching ratio

 $K^+ \to \pi^+ \pi^- \pi^+ ((5.59 \pm 0.04)\%)$

much larger than

$$K^+ \to \pi^0 \pi^0 \pi^+ ((1.761 \pm 0.022)\%)$$

F.K. Guo, XHL, S. Sakai, PPNP 112, 103757 (2020)

> Possible correlation with some XYZ states: $Z_b(10610/10650)$, $Z_c(3900)$, $Z_c(4020)$

Cusp effect

D.V. Bugg, EPL96, 11002(2011)

D.Y. Chen, X. Liu, PRD88, 11002(2013)

E. Swanson, PRD91, 034009(2015)

FIG. 2. Illustration of threshold behaviors. Here we use the masses of the π^- and J/ψ for channel-1 and those of the D^0 and D^{*-} for channel-2, and the values of used a_{ij} parameters

X.K. Dong, F.K. Guo, B.S. Zou, PRL126, 152001(2021)

Threshold cusp and X(6900)

 $X(6900): M = 6905 \pm 11 \pm 7 \text{ MeV}$ LHCb, Sci. Bull. 65, 1983-1993(2020)

 $\Gamma = 80 \pm 19 \pm 33 \text{ MeV}$. Molecule, compact state, or?

Two charmonia rescattering into di-J/psi

Triangle Singularity Mechanism

"The kinematic conditions for the existence of singularities on the physical boundary are equivalent to the condition that the relevant Feynman diagram be interpretable as a picture of an energy and momentum-conserving process occurring in space-time, with all internal particles real, on the mass shell and moving forward in time." –Coleman-Norton theorem

Coleman&Norton, Nuovo Cimento 38,5018 (1965)

Fronsdal&Norton, J.Math. Phys. 5, 100(1964)

TS mechanism

Triangle Singularity Phenomena

Wu, Liu, Zhao & Zou, PRL108,081803(2012)

Wang,Hanhart,Zhao,PRL111,132003(2013)

Kinematic region of ATS

The gap between the anomalous and normal

[MeV]	Fig. 3(a)	Fig. 3(b)	Fig. 3(c)	Fig. 3(d)	
$\Delta_{s_1}^{\max}$	0.089	96	49	16	/
$\Delta_{s_2}^{\max}$	0.087	62	38	15	

anomalous and normal threshold $\Delta_{s_1} = \sqrt{s_1^- - \sqrt{s_{1N}}},$

$$\Delta_{s_2} = \sqrt{s_2^-} - \sqrt{s_{2N}}.$$

Liu, Oka, Zhao, PLB753, 297(2016)

TS mechanism and structures in $e^+e^- \rightarrow \psi(3686)\pi\pi$

Theoretical predictions are consistent with the observed $\psi(3686)$ pi invariant mass distributions at various CM energies

TS mechanism and the heavy pentaquark "Pc"

Thresholds [GeV]	$\Lambda_c(2286) \ 1/2^+$	$\Lambda_c(2595) \ 1/2^-$	$\Lambda_c(2625) \ 3/2^-$
$\bar{D}(1865) \ 0^-$	4.151	4.457	4.493
$\bar{D}^*(2007) \ 1^-$	4.293	4.599	4.635

The possibility of TS has not been completely ruled out

TS mechanism and "Pcs"

T.J. Burns & E.S. Swanson, PLB838 (2023) 137715

 $\Xi_c^0 \bar{D}^0 = 4335.28 \pm 0.33 \text{ MeV}$ $\Xi_c^+ D^- = 4337.37 \pm 0.28$ MeV

Observation of a "cusp"

Observation of a "cusp"

Hyperons around 1663 MeV [PDG]

[MeV]	Mass	Width	J^P
X(1663)	1663	~10	?
∧*(1670)	1660 to 1680 ≈1670	25 to 50 ≈35	1/2-
∧*(1690)	1685 to 1695 ≈1690	50 to 70 ≈60	3/2-
Σ*(1660)	1630 to 1690 ≈1660	40 to 200 ≈100	1/2+
Σ*(1670)	1665 to 1685 ≈1670	40 to 80 ≈60	3/2-

No established hyperons correspond to this "X(1663)"

Two groups claim there is a narrow Λ^* with J=3/2:

- Liu & Xie [PRC85, 038201; PRC86,055202]
 J^AP=3/2-(D₀₃), M=1668.5±0.5 MeV, Γ=1.5±0.5 MeV
- Kamano *et al.* [PRC90, 065204; PRC92, 025205]
 J[^]P=3/2+(P₀₃), M=1671+2-8 MeV, Γ=10+22-4 MeV

Contributions from rescattering processes

- ✓ Cabibbo-favored process
- ✓ Strong couplings
- ✓ Exp. value: $Br(\Lambda_c \rightarrow \Lambda \eta \pi^+) \sim (2.2 \pm 0.5)\%$

 $Br(\Lambda_c \rightarrow \Sigma(1385) \eta \rightarrow \Lambda \eta \pi^+) \sim (1.06 \pm 0.32)\%$

X.H. Liu, G. Li, J.J. Xie, Q. Zhao, PRD100 (2019) 054006

FIG. 2: The TS location of $\mathcal{T}(s, m_2^2)$ in the complex *s*-plane. The thick line on the real axis represents the unitary cut starting from s_{th} . The trajectory marked with triangle (box) is obtained by varying M_{a_0} (M_{Σ^*}) and fixing $\Gamma_{a_0} = 75 \text{ MeV}$ ($\Gamma_{\Sigma^*} = 100 \text{ MeV}$).

Invariant Mass Distributions

Liu, Li, Xie, Zhao, PRD100 (2019) 054006

Threshold effects and newly observed X(2900), Tcs(2900)

Observation of D-K⁺ ($\overline{c}\overline{s}ud$) structure

Observation of D-K+ ($\overline{c}\overline{s}ud$) structure

States	Mass/MeV	Width/MeV	Fraction/%	JP
<i>X</i> ₀ (2900)	$2866 \pm 7 \pm 2$	$57 \pm 12 \pm 4$	$5.6 \pm 1.4 \pm 0.5$	0+
<i>X</i> ₁ (2900)	$2904\pm5\pm1$	$110\pm11\pm4$	$30.6 \pm 2.4 \pm 2.1$	1-

- **Two close thresholds :**
- **D**^{*}**K**^{*} ~2902 MeV
- **D**₁K ~2914 MeV

Puzzle

Chiral symmetry implies:

← DK molecule **D**₁**K** molecule

Interpretations :

- \overline{D}^*K^* , \overline{D}_1K molecular state
 - **Tightly bound tetraquark state**

Predictions: an excited 0^+ tetraquark with mass 2850 MeV, and a 1^+ state with mass 2902 MeV are predicted. Many other states are also predicted Y.R. Liu et al, PRD101, 114017(2020)

Threshold effects and $X_{0,1}(2900)$

XHL, M.J. Yan, H.W. Ke, G. Li, J.J. Xie, arXiv:2008.07190

Threshold effects and $X_0(2900)$

XHL, M.J. Yan, H.W. Ke, G. Li, J.J. Xie, arXiv:2008.07190

Threshold effects and X₁(2900)

XHL, M.J. Yan, H.W. Ke, G. Li, J.J. Xie, arXiv:2008.07190

Threshold effects and X₁(2900)

T.J. Burns, E.S. Swanson, PLB813, 106057(2021)

Threshold effects and T_{cs}(2900)

Spin-parity: $J^P = 0^+$ $M = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$ $\Gamma = 0.136 \pm 0.023 \pm 0.011 \text{ GeV}$

Threshold effects and T_{cs}(2900)

Non-resonant structure at DK threshold

LHCb,	arXiv:2212.02716
-------	------------------

Particle	Amplitude	Phase	B^0 Fraction (%)	B^+ Fraction (%)
$T^a_{c\bar{s}0}(2900)$	$0.149 \pm 0.031 \pm 0.024$	$-1.26 \pm 0.22 \pm 0.34$	$2.45 \pm 0.65 \pm 0.69$	$2.55 \pm 0.64 \pm 0.68$
$D^{*}(2007)^{0}$	$2.58 \pm 0.11 \pm 1.07$	$-3.01 \pm 0.06 \pm 0.31$	—	$14.0 \pm 1.1 \pm 2.7$
$D^{*}(2010)^{-}$	$3.05 \pm 0.11 \pm 0.48$	$-2.91 \pm 0.06 \pm 0.28$	$17.0 \pm 1.0 \pm 2.4$	_
$D_2^*(2460)$	1	0	$22.35 \pm 0.76 \pm 0.72$	$22.53 \pm 0.74 \pm 0.51$
$D_1^*(2600)$	$0.218 \pm 0.030 \pm 0.051$	$0.13 \pm 0.16 \pm 0.22$	$1.28 \pm 0.39 \pm 0.60$	$1.32 \pm 0.38 \pm 0.59$
$D_{3}^{*}(2750)$	$0.153 \pm 0.032 \pm 0.039$	$-2.80 \pm 0.19 \pm 0.59$	$0.32 \pm 0.15 \pm 0.21$	$0.33 \pm 0.14 \pm 0.20$
$D_1^*(2760)$	$0.12 \pm 0.04 \pm 0.15$	$-0.18 \pm 0.34 \pm 1.01$	$0.26 \pm 0.27 \pm 1.37$	$0.28 \pm 0.26 \pm 1.35$
$D_{J}^{*}(3000)$	$1.44 \pm 0.23 \pm 1.14$	$1.40 \pm 0.23 \pm 1.33$	$0.45 \pm 0.16 \pm 0.33$	$0.46 \pm 0.15 \pm 0.32$
$D\pi$ S-wave	$1.142 \pm 0.045 \pm 0.074$	$-0.972 \pm 0.045 \pm 0.084$	$45.0 \pm 1.9 \pm 3.1$	$48.3 \pm 1.8 \pm 3.0$

Summary

- Kinematic singularities can simulate resonance-like peaks in the invariant mass distribution, which implies that non-resonance interpretation for some exotic hadron candidates is possible.
- Being different from the genuine resonances, the TS mechanism is a process-dependent mechanism, and sensitive to the kinematic configurations.
 Model independent but Process dependent.
- Study on threshold effects is necessary before claiming that a resonance-like structure is a genuine particle.

Backup

 $Z_{cs}(3985)$ and $Z_{cs}(4000)$

BESIII, 2011.07855

LHCb, 2103.01803 $B^+ \to J/\psi \phi K^+$

 $e^+e^- \to K^+(D^-_s D^{*0} + D^{*-}_s D^0)$

Widths are quite different

Different origin?

$Z_{cs}(3985)$ and $Z_{cs}(4000)$

$Z_{cs}(3985)$ and $Z_{cs}(4000)$

D.Y. Chen, X. Liu, T. Matsuki,

PRL110, 232001(2013)

Threshold effects and Z_{cs}(4000)

J/\u03c6K* threshold~ 3989 MeV

TS kinematic region

Diagram	$M_X/M_{K^{**}}$	$M_{J/\psi K^+}$
Fig. 1(a)	$M_X: 4372 \sim 4388$	3989~4005
Fig. 1(b)	$M_{K^{**}}: 2068 \sim 2182$	3989~4099

Y.H. Ge, XHL, H.W. Ke, arXiv:2103.05282

 $B^+ \to J/\psi \phi K^+$

LHCb, 2103.01803

K** states

X states

Zcs states

Co	ntribution	Significance $[\times \sigma]$	$M_0 [{ m MeV}]$	$\Gamma_0 [{ m MeV}]$	$\mathrm{FF}\left[\% ight]$	
	All $K(1^+)$				$25 \pm 4 {}^{+}_{-15}^{6}$	
$2^1 P_1$	$K(1^+)$	4.5 (4.5)	$1861 \pm 10 {}^{+16}_{-46}$	$149 \pm 41 {}^{+ 231}_{- 23}$	HCh 2103	01803
$2^{3}P_{1}$	$K'(1^+)$	4.5 (4.5)	$1911 \pm 37 {}^{+124}_{-48}$	$276 \pm 50 {}^{+ 319}_{- 159}$	1100, 2103.	01003
$1^{3}P_{1}$	$K_1(1400)$	9.2(11)	1403	174	$15 \pm 3 {}^{+ 3}_{- 11}$	
	All $K(2^-)$				$2.1 \pm 0.4 {}^{+2.0}_{-1.1}$	
$1^1\mathrm{D}_2$	$K_2(1770)$	7.9(8.0)	1773	186		
$1^3 D_2$	$K_2(1820)$	5.8(5.8)	1816	276		
	All $K(1^-)$				$50 \pm 4^{+10}_{-19}$	
$1^{3}\mathrm{D}_{1}$	$K^{*}(1680)$	4.7(13)	1717	322	$14 \pm 2 {}^{+35}_{-8}$	
2^3S_1	$K^{*}(1410)$	7.7(15)	1414	232	$38 \pm 5^{+11}_{-17}$	
	$K(2^+)$					
$2^3 P_2$	$K_2^*(1980)$	1.6(7.4)	$1988 \pm 22 {}^{+194}_{-31}$	$318 \pm 82 {}^{+481}_{-101}$	$2.3 \pm 0.5 \pm 0.7$	
	$K(0^{-})$					
2^1S_0	K(1460)	12(13)	1483	336	$10.2 \pm 1.2 {}^{+ 1.0}_{- 3.8}$	
	$X(2^{-})$					
	X(4150)	4.8(8.7)	$4146 \pm 18 \pm 33$	$135 \pm 28 {}^{+ 59}_{- 30}$	$2.0 \pm 0.5 {}^{+0.8}_{-1.0}$	
	$X(1^{-})$					
	X(4630)	5.5(5.7)	$4626 \pm 16^{+18}_{-110}$	$174 \pm 27 {}^{+134}_{-73}$	$2.6 \pm 0.5 {}^{+2.9}_{-1.5}$	
	All $X(0^+)$				$20 \pm 5^{+14}_{-7}$	
	X(4500)	20 (20)	$4474 \pm 3 \pm 3$	$77 \pm 6^{+10}$	$5.6 \pm 0.7 {}^{+2.4}_{-0.6}$	
	X(4700)	17 (18)	$4694 \pm 4^{+16}_{-3}$	$87 \pm 8 {}^{+ 1}_{-}$	$8.9 \pm 1.2 {}^{+4.9}_{-1.4}$	
	${ m NR}_{J/\psi\phi}$	4.8(5.7)			$28 \pm 8 {}^{+19}_{-11}$	
	All $X(1^+)$				$26 \pm 3 {}^{+}_{-10}{}^{8}_{-10}$	
	X(4140)	13(16)	$4118 \pm 11 {}^{+19}_{-36}$	$162 \pm 21 {}^{+24}_{-49}$	$17 \pm 3^{+19}_{-6}$	
	X(4274)	18(18)	$4294 \pm 4^{+3}_{-6}$	$53 \pm 5 \pm 5$	$2.8 \pm 0.5 {}^{+ 0.8}_{- 0.4}$	
	X(4685)	15(15)	$4684 \pm 7^{+13}_{-16}$	$126 \pm 15 {}^{+}_{-}{}^{37}_{41}$	$7.2 \pm 1.0 {}^{+4.0}_{-2.0}$	
	All $Z_{cs}(1^+)$				$25 \pm 5^{+11}_{-12}$	
	$Z_{cs}(4000)$	15 (16)	$4003 \pm 6 ^{+ 4}_{- 14}$	$131 \pm 15 \pm 26$	$9.4 \pm 2.1 \pm 3.4$	
	$Z_{cs}(4220)$	5.9(8.4)	$4216 \pm 24 {}^{+43}_{-30}$	$233 \pm 52 {}^{+97}_{-73}$	$10 \pm 4^{+10}_{-7}$	38

Threshold effects and Z_{cs}(4000)

Threshold effects and $Z_{cs}(4000)$

Threshold effects and Z_{cs}(4220), X(4700)

ψ(2S)K threshold~ 4180 MeV

ψ(2S)φ threshold~ 4706 MeV

TS kinematic region

Diagram	$M_{K^{**}}$	$M_{J/\psi K^+}/M_{J/\psi \phi}$
Fig. 4 (a)	1546~1593	$M_{J/\psi K^+}: 4180 \sim 4226$
Fig. 4 (b)	1572~1593	$M_{J/\psi\phi}: 4706{\sim}4727$

Y.H. Ge, XHL, H.W. Ke, arXiv:2103.05282

Distinguish Kinematic Singularities from Dynamic Poles

Cusp effect

A sharp peak cannot be resulted by a pure threshold cusp in the elastic channel [Guo, Hanhart, Wang, Zhao, PRD91, 051504(2015)]: Z_c(3900) was also observed in the DD* invariant mass distributions

