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1. Introduction

Sci.Bull. 65 (2020) 23, 1983-1993

In 2020, LHCb collaboration observed some structures in the di-J/y mass spectrum (CM
energies of 7, 8, and 13 TeV, with an integrated luminosity of 9 fb).
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= Broad structure at 6.2 — 6.8 GeV slightly above di-J/hy
mass threshold

= Narrow peak at 6.9 GeV
= Hint of another structure at 7.2 GeV

= Structure not present in J/\y background sample
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CMS collaboration 2306.07164
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» Signals: 3 resonances

» Background: NRSPS+DPS+BW (model a threshold

enhancement)
» Without interference
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» Signals: 3 resonances

» Background: NRSPS+DPS+BW,

» Interference between the 3 BWSs (By assuming all the
signals have the same J°C)
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Introduction
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Statistically significant excesses are seen in the di-J/y channel consistent with a
narrow resonance at 6.9 GeV and a broader structure at lower mass

In the bottom sector, the searches by LHCb (2018) and CMS (2020) are inconclusive.
7



1. Introduction

On the theoretical side

» The explorations on fully heavy tetraguark date back to 1970s
Iwasaki, PRL(1976); Chao, ZPC(1981); Ader et al. PRD(1982)

» Extensive studies are performed after the discovery of X(6900) (e.g., >280 works by
Inspire-hep)
e.g., the excellent works by Y.B. Dong, S.L.Zhu, X. Liu, F.K, Guo, Q.Zhao,
Z.G.Wang, J.L.Ping...... ’S groups.

» Theoretical studies are based on various approaches: constituent quark models, QCD sum
rules, Lattice, color evaporation model ...



1. Introduction
On the theoretical side

» Interpretations on the nature of the fully-heavy charm quark state are still controversial
v' P-wave tetraquark (M.-S. Liu et al., 2020; H.-X. Chen et al., 2020, R. Zhu 2020).

v" Radial excitation of 0** (Z.-G. Wang, 2020; L Get al., 2020; Giron, Lebed, 2020; Karliner& Rosner, 2020; J. Zhao et
al., 2020; R. Zhu, 2020; B.-C. Yang et al., 2020; Z. Zhao, 2020; H.-W. Keet al., 2020),

v' Ground state S-wave tetraquark (Gordillo et al., 2020).

v X.0X.o Molecular state (Albuquerque et al., 2020)

v' 0™ hybrid (B.-D. Wan, C.-F. Qiao, 2020),

v Resonance formed in charmonium-charmonium scattering (G. Yang et al., 2020; X. Jinet al., 2020), or the

kinematic cusp arising from final-state interaction (J.-Z.Wang et al., 2020; X.-K. Dong et al., 2020; Z.-H. Guo2021,
C. Gong et al. 2020).



1. Introduction
On the theoretical side

While the spectra and decay properties have been widely studied, the production mechanism
of fully-heavy tetraquarks was relatively rare.

It is worthwhile to study the fully-heavy tetraquarks production in various colliders,
particularly based on factorization.

Similar ideas can be found in the papers of Y.-Q. Ma, H. F. Zhang, 2020;
R.-L. Zhu, 2020
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2. NRQCD factorization on T, production

For simplification, X(6900) is dubbed T,

» Since the charm quark is too heavy, T, Is free from the light constitutes lac:cece
contamination. Thus T,, is widely believed to be a fully-heavy compact
tetraquark state (Other possibilities exist)

» Analogous to the fact that heavy quarkonia are the simpliest hadrons, the fully-
charmed tetraquark may be the simpliest exotic hadrons from theoretical perspective

» Whether is it possible to understand the T,. production in the framework of NRQCD?
Like the case of quarkonium production

11



2. NRQCD factorization on T, production
A key observation is that, prior to hadronization, two charms and two anticharms have to
be created at a rather large energy > m,, thus one can invoke asymptotic freedom to

factorize the production rate as the product of the perturbatively calculable short-distance
part and the nonperturbative long-distance part
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2. NRQCD factorization on T, production

We construct the operators in diquark-antidiguark basis

The diquark (cc) in spin-singlet The diquark in spin-triplet
T (; 2 : -
Ya (107) 1] [w% (i02) 0" ]
Due to the identities, Color indices
-wf(iUQ)wb] _ [w{(ic;Q)wa] The color indices in spin-singlet are symmetric

_ T(: 2\ i T2y i
_% (ic%)o wb] = [% (i0%)o %} The color indices in spin-triplet are antisymmetic

So the spin configuration and color configuration of the diquark are correlated
13



2. NRQCD factorization on T, production

Assuming T,. to be a S-wave tetraquark ( the J°¢ quantum number can be 0**, 1*- and 2**).
The complement annihilation operators for T, are

1 : : .
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2. NRQCD factorization on T, production

The corresponding J°© guantum number for each operator
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3. T,.production at LHC

Applying the NRQCD factorization, we compute the T,. (S-wave) production at LHC

We compute the T,. production through two different ways.

Fixed-order production

as ~ 0.1

Fragmentation production
mr, ~ 1GeV

By naive estimation,
at pr > 20 GeV,

fragmentation dominate
at pr < 20 GeV,

fixed-order dominate

FIG. 1: One typical Feynman diagram for gg — Ty, + g.
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Relative to the fixed-order production, the differential cross section of the fragmentation

production suffers O(cv,) suppression, however is enhanced by p7./m7, at large p;.
16



3. T,.production at LHC

The NRQCD factorization for the fixed-order T,. production at LHC

do (TS + x)

2mT4C

dt
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3. T,.production at LHC

The LDMEs are universal, however nonperturbative. We resort to the quark models.
One can relate the LDMEs to the phenomenological wave functions at the origin

(O8) = (0|05 | Tue) (T | OL)10) & 16(2 + 1)43(0)25 (0)

3®3 where y(0) denotes the four-

(0§0) = (0105 5| Tac) (Tuc| O3 10) ~ 1616025 (0), body Schradinger wave
(05 = Re[ (0|05 | Tuc) (Tuc| O50510)] = 1645(0)155(0), function at the origin.

LDME Model I Model I1

(O$3)[Gev®] 00347 0.0187
Model I: EPJC80,871 (2020);
ot <O§%> (Gev?] | 0.0211 —0.0161 by Q.F. LUD.Y.ChenandY.B.Dong
<Oé0§> [GeV®]  0.0128 0.0139 Model I1: arXiv: 2006.11952;
by M. S. liu, F. X. Liu, X. H. Zhong and Q. Zhao
1+ (08} [GeV®] 00780 0.0480
2t (OF))[GeV?] 0072 0.0628 18




3. T,.production at LHC

Comparison of the p; distributions of the T,. between fixed-order and fragmentation
predictions
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3. T,.production at LHC

By assuming the integrated luminosity of 3000 fb.

Model 1 Model 11
o [Ilb} ]\Tevents/lo9 o [Ilb] -Z\Tevents/lo9
OtT 37 + 26 110 &= &80 9+6 27+ 19

1T~ 0.28+£0.16 0.8 0.5 0.17x=0.10 0.52=x=0.29
2T 93 &= 65 280 = 200 81 =57 240 £ 170

Table 1: The integrated production rates for various S-wave T states (6 GeV <
pr < 100 GeV) and the estimated event yields.

Remarks:

1. The cross section for 1* is two order-of-magnitude smaller than the other two
channels.

2. The cross sections and event numbers for 1*- and 2** are insensitive to the Model.
The condition for 0** is different. 20



3. T, production at LHC T Aaa 3
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4. Ssummary

1. We propose a NRQCD factorization formula for T,. production.

2. We compute the T, production at LHC in two different ways: fixed-order
computation and fragmentation function computation. We find the
fragmentation production may be dominant at high p; >20 GeV.

3. The cross sections can reach dozens nano-bar for J°¢ = 0** and 2**, while
less than 1 nb for 1*-.

4. The cross sections at B factories are very small.
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Thanks for your attention!



