Lattice QCD study of the hidden-charm pentaquark states

The 7th Symposium on "Symmetries and the emergence of structure in QCD Shandong, July 19-22,2023

Liuming Liu IMP, CAS

P_c Pentaquarks

P_c Pentaquarks

Lüscher's finite volume method:

Scattering on lattice

M. Lüscher, Nucl. Phys. B354, 531(1991)

Resonances/bound states are formally defined as poles in scattering amplitudes.

Scattering on lattice

Finite volume spectrum: construct the matrix of correlation function:

 $C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0$

- ◆ Solve the generalized eigenvalue problem(GEVP): $C_{ii}v_i^n(t)$
- Eigenvalues: $\lambda_n(t) \sim e^{-E_n t} (1 + e^{-\Delta E t})$

 $\Omega_n =$

Scattering on lattice

 \bullet build large basis of operators { $\mathcal{O}_1, \mathcal{O}_2, \cdots$ } with desired quantum numbers,

$$0 > = \sum_{n} Z_i^n Z_j^{n*} e^{-E_n t}$$

$$= \lambda_n(t) C_{ij}^0 v_j^n(t)$$

• Optimal linear combinations of the operators to overlap on the n'th state:

$$= \sum_{i} v_i^n \mathcal{O}_i$$

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	
~0.108fm	$24^3 \times 72$	290	
	$32^3 \times 64$	290	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
	$48^3 \times 96$	140	
~0.080fm	$32^3 \times 96$	300	
	$48^3 \times 96$	300	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
~0.055fm	$48^3 \times 144$	300	

Lattice QCD configurations

of confs
1000
1000
450
200
200
480
200
460
200
200

中国科学院近代物理研究所

L. Liu, M. Gong, W. Sun, P. Sun, W. Wang, Y.B. Yang

Lattice spacing	Volume($L^3 \times T$)	M_{π} (MeV)	
~0.108fm	$24^3 \times 72$	290	
	$32^3 \times 64$	290	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
	$48^3 \times 96$	140	
~0.080fm	$32^3 \times 96$	300	
	$48^3 \times 96$	300	
	$32^3 \times 64$	220	
	$48^3 \times 96$	220	
~0.055fm	$48^3 \times 144$	300	

Lattice QCD configurations

中国科学院近代物理研究所

L. Liu, M. Gong, W. Sun, P. Sun, W. Wang, Y.B. Yang

 $\Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$ scattering $(J^P = \frac{1}{2})$:

 The finite-volume energies lie below the free energies, indicating rather strong attractive interactions.

Scattering amplitude:

$$T \sim \frac{1}{p \cot \delta - ip}$$

Bound state pole:

$$p = i |p_B|$$

Effective range expansion:

$$pcot\delta(p) = \frac{1}{a_0} + \frac{1}{2}r_0p^2 + \cdots$$

$$\Sigma_c \bar{D} : P_c(4312)$$

 $a_0 = -2.0(3)(2)$
 $E_B = 6(2)(2)$

Luscher's formula:

$$pcot\delta(p) = \frac{2Z_{00}(1;(\frac{pL}{2\pi})^2)}{L\sqrt{\pi}}$$

$$\Sigma_c \bar{D}^* : P_c(4440)$$

 $a_0 = -2.3(5)(E_B = 7(3)(1)M$

Results

Coupled channels: $\eta_c N, J/\psi N, \Lambda_c N$

 \bigstar 15 operators for the L = 32 ensemble: $\mathcal{O}_{1,2,3} = N(\mathbf{p})\eta_c(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{4.5} = N(\mathbf{p})J/\psi(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$ $\mathcal{O}_{6,7,8} = \Lambda_c(\mathbf{p})\bar{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{9,10} = \Lambda_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$ $\mathcal{O}_{11,12,13} = \Sigma_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{14,15} = \Sigma_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$

$$\bar{D}, \Lambda_c \bar{D}^*, \Sigma_c \bar{D}, \Sigma_c \bar{D}^*$$

+23 operators for the L = 48 ensemble: $\mathcal{O}_{1,2,3,4,5} = N(\mathbf{p})\eta_c(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3,4)$ $\mathcal{O}_{7,8,9,10} = N(\mathbf{p})J/\psi(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3)$ $\mathcal{O}_{10,11,12,13,14} = \Lambda_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3,4)$ $\mathcal{O}_{15,16,17,18} = \Lambda_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2,3)$ $\mathcal{O}_{19,20,21} = \Sigma_c(\mathbf{p})\overline{D}(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1,2)$ $\mathcal{O}_{22,23} = \Sigma_c(\mathbf{p})\bar{D}^*(-\mathbf{p}) \ (\mathbf{p}^2 = 0,1)$

$N - \eta_c(J/\psi)$ spectrum:

mass dependence will also be explored.

• Single channel analysis indicates bound states in $\Sigma_c \overline{D}$ and $\Sigma_c \overline{D}^*$ channel at $m_{\pi} \sim 300$ MeV. Coupled channel analysis is onging. Pion

