Lattice QCD Calculation of $0\nu 2\beta$ Decay

Xin-Yu Tuo (脱心宇)

School of physics, Peking University

2023.7.21

In collaboration with Xu Feng (冯旭), Luchang Jin (靳路昶),

Zi-Yu Wang (王子毓) and Teng Wang (王腾)

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
- 4 Outlook for g_{ν}^{NN}

Plan

1 Background: Lattice QCD and $0\nu 2\beta$ decay

- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
- 4 Outlook for g_{v}^{NN}

$0\nu 2\beta$ decay

[1] Maria Goeppert-Mayer. Physical Review. 1935, 48(6):512[2] Wendell H Furry. Physical Review. 1939, 56(12):1184

$0\nu 2\beta$ decay

[1] Maria Goeppert-Mayer. Physical Review. 1935, 48(6):512[2] Wendell H Furry. Physical Review. 1939, 56(12):1184

Why are $0\nu 2\beta$ decays so important?

Test the nature of neutrino: Dirac fermion? Majorana fermion?

[1] Ettore Majorana. Nuovo Cim. 1937, 14:171–184

Why are $0\nu 2\beta$ decays so important?

Test the nature of neutrino: Dirac fermion? Majorana fermion?

Lepton-number violation: BSM

[2] M. A. Luty. Phys Rev. 1992, D45:455-465

Cooperation between EFTs and LQCD

Particle physics

Nuclear physics

Cooperation between EFTs and LQCD

Vincenzo Cirigliano, et al. Snowmass 2021. arxiv:2203.12169

Lattice QCD inputs for $0\nu 2\beta$ decay

Long-range contribution:

hadronic inputs: single-nucleon g_A

Y. Aoki, et al. Eur Phys J C. 2022, 82(10):869

Lattice QCD inputs for $0\nu 2\beta$ decay

Long-range contribution:

hadronic inputs: single-nucleon g_A

Extracted from lattice QCD

Y. Aoki, et al. Eur Phys J C. 2022, 82(10):869

Short-range contribution:
 contact term from hard neutrino exchange

Lattice QCD inputs for $0\nu 2\beta$ decay

Long-range contribution:

hadronic inputs: single-nucleon g_A

Extracted from lattice QCD

Y. Aoki, et al. Eur Phys J C. 2022, 82(10):869

- Short-range contribution:
 contact term from hard neutrino exchange
- Naive power-counting:

 g_{v}^{NN} appears at next-to-leading order

Divergence term at LO:

> Strong dependence on cutoff Λ : sensitive to short-range physics

Blue: $\Lambda \sim 2 fm^{-1}$ Red: $\Lambda \sim 20 fm^{-1}$

Divergence term at LO:

> Strong dependence on cutoff Λ : sensitive to short-range physics

 $\begin{bmatrix} 0.01 & & & \\ 0.00 & & \\ -0.01 & & & \\ 0.02 & & & \\ -0.02 & & & \\ -0.04 & & & \\ 25 & 30 & 35 & 40 & 45 \\ & & & & \\ |\mathbf{p'}| [MeV] \end{bmatrix}$

Blue: $\Lambda \sim 2 fm^{-1}$ Red: $\Lambda \sim 20 fm^{-1}$

PHYSICAL REVIEW LETTERS 120, 202001 (2018)

New Leading Contribution to Neutrinoless Double- β Decay

Vincenzo Cirigliano,¹ Wouter Dekens,¹ Jordy de Vries,² Michael L. Graesser,¹ Emanuele Mereghetti,¹ Saori Pastore,¹ and Ubirajara van Kolck^{3,4}

 g_{v}^{NN} should be considered at LO

Determination of hard neutrino exchange contribution

Determination of hard neutrino exchange contribution

> Start with the simpler case: pionic $0\nu 2\beta$ decay

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
 - 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
- 4 Outlook for g_{v}^{NN}

Challenge: massless neutrino

How to combine massless propagator into lattice calculation?

Challenge: massless neutrino

How to combine massless propagator into lattice calculation?

 \succ Traditional method QED_L: subtract zero mode of neutrino

large O(1/L) finite volume errors

New method: Infinite volume reconstruction $\mathcal{A} = -2T_{lept} \int d^4x \, H(x) S_0(x)$

 $S_0(x)$: keep the infinite volume version

Improving finite volume errors

Benefit of new method: $O(e^{-mL})$ FV errors

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
 - 3 Lattice work 2: sterile neutrino contribution
- 4 Outlook for g_{ν}^{NN}

Lattice work 2: sterile neutrino contribution

Sterile neutrino: explain the source of tiny mass of neutrino through the

seesaw mechanism, the hypothesis of many BSM models

Lattice work 2: sterile neutrino contribution

Sterile neutrino: explain the source of tiny mass of neutrino through the seesaw mechanism, the hypothesis of many BSM models

Enhancement due to sterile neutrino

W. Dekens, J. de Vries, K. Fuyuto, E. Mereghetti, and G. Zhou, JHEP 06, 097 (2020)

 $0\nu 2\beta$ decay can be enhanced by sterile neutrino contribution in pion exchange diagram

Lattice calculation of $g_{LR}^{\pi\pi}(m_{\nu})$

X. Tuo, X. Feng, L. Jin, PRD106 (2022) 074510, arXiv:2206.00879

Lattice calculation of $g_{LR}^{\pi\pi}(m_{\nu})$

X. Tuo, X. Feng, L. Jin, PRD106 (2022) 074510, arXiv:2206.00879

^{13/16}

Lattice calculation of $g_{LR}^{\pi\pi}(m_{\nu})$

X. Tuo, X. Feng, L. Jin, PRD106 (2022) 074510, arXiv:2206.00879

Nontrivial consistency check !

Enhancement due to $g_{LR}^{\pi\pi}(m_{\nu})$

Help to reduce the uncertainties from LEC $g_{LR}^{\pi\pi}(m_{\nu})$ and determine the peak shape

Plan

- 1 Background: Lattice QCD and $0\nu 2\beta$ decay
- 2 Lattice work 1: pionic $0\nu 2\beta$ decay
- 3 Lattice work 2: sterile neutrino contribution
 - 4 Outlook for g_{ν}^{NN}

Outlook: nucleon sector g_{ν}^{NN}

[1] Zohreh Davoudi, et al. Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory[C]. Snowmass 2021.

Three stages:

1. Calculation of two-nucleon

spectra and elastic scattering

2. Calculation of two-nucleon

 $0\nu 2\beta$ matrix elements

3. Relating lattice quantities

to physical g_{ν}^{NN}

Outlook: nucleon sector g_{ν}^{NN}

[1] Zohreh Davoudi, et al. Report of the Snowmass 2021 Topical Group on Lattice Gauge Theory[C]. Snowmass 2021.

Three stages:

1. Calculation of two-nucleon

spectra and elastic scattering

2. Calculation of two-nucleon

 $0\nu 2\beta$ matrix elements

3. Relating lattice quantities

to physical g_{ν}^{NN}

Challenging due to signal-to-

noise problem, main goal of

future lattice QCD study

[2] Xu Feng, Lu-Chang Jin, Zi-Yu Wang, Zheng Zhang. Phys Rev D. 2021, 103(3):034508
[3] Zohreh Davoudi, Saurabh V. Kadam. Phys Rev Lett. 2021, 126(15):152003

In progress ...

Outlook: nucleon sector g_{ν}^{NN}

