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Introduction

□ Machine learning has blossomed in the last decades and becomes essential in many fields.

□ It played a significant role in solving High Energy physics problems, such as reconstruction, particle
identification.

□ and handling high dimensional and complex problems using deep learning.

□ Quantum computing is a new idea for our workstations to process data faster than currently achievable.

□ Machine learning & quantum computing may:
◦ locating more computationally complex feature spaces
◦ better data classification
◦ smarter algorithms that can give us accurate prediction.

□ Companies such as Google, IBM and Origin are committed to accelerating the development of quantum
technology.

□ Objectives:
◦ Apply quantum machine learning to high energy physics
◦ Support-vector machine algorithm in quantum computers
◦ Building the quantum algorithm using IBM quantum simulator
◦ Comparing the performance in different real quantum computers
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IBM quantum computer

Credited to Thomas Prior
for TIME

□ IBM has ambitious pursuits:
◦ 433-qubit IBM Quantum Osprey
◦ three times larger than the Eagle processor
◦ going up to 10k-100k qubits

□ Taking quantum computing out of the lab:
◦ NY provides over 20 quantum computing
◦ Scales the processors with high availability

IBM Quantum Osprey

NY Quantum Computing
Data Center

□ IBM provides up to 7 qubits for free with an opportunity to apply for a researcher account with more qubits.
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Origin quantum computer (Wuyuan)

□ Origin Quantum 64-qubit superconductor QPU
◦ single-qubit gate fidelity > 99.9%
◦ double-qubit gate fidelities > 98%
◦ readout fidelity > 96%

□ A quantum computing control system dedicated
to superconducting quantum chips

KF-C64-200

TJ-SQMC-300

□ This is the first Quantum Computer Operating System in China. One could use up to 6 qubits for free.
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Data encoding and processing

□ Encoding the e+e− → ZH → qq̄γγ and e+e− → (Zγ∗)γγ datasets to high dimensional quantum dataset.

□ Seven variables are passed through preliminary mapping and then passed to a quantum circuit for evaluation.

□ The Quantum support-vector machines kernel (QSVM-Kernel) is evaluated for each data point and the rest.
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Feature map and quantum kernel estimation

□ Quantum feature map dictate the QSVM-Kernel:
◦ two identical layers
◦ single-qubit rotation gates
◦ two-qubit CNOT entangling gates

□ QSVM-Kernel estimation:

◦ Using 6 variables mapped to 6-qubit
◦ the expectation of each data point
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AUCs as function of the event
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□ The QSVM-Kernel and classical SVM classifiers with different dataset size from 1000 to 12500 events.

□ The quoted errors are the standard deviations for AUCs calculated from several shuffles of the dataset.
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Performance of the quantum simulator
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□ The performance of the QSVM-Kernel and the SVM classification using StatevectorSimulator from IBM.

Abdualazem Fadol Mohammed | Quantum Machine Learning: A Status Report



10
Nairobi Noise Model

Noise in quantum computers

Quantum computers are susceptible to all sort of noise sources: electromagnetic signal coming from a WiFi or a
disturbance in the earth magnetic field etc. All these are considered as noise and can lead to error in the
calculation.

□ The device noise model used automatically generate a
simplified noise model for a real device.

□ The noise model takes into account the following:
◦ the gate error probability of each basis gate
◦ the gate length of each basis gate
◦ T1 and T2 relaxation time constant
◦ the readout error probability

□ The standard deviation of results generated using
different seeds is taken as statistical fluctuations.

□ The estimated noise in IBM Nairobi computer is 0.017.
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The performance with actual quantum computers

The receiver operating characteristic curve

□ The ROC curves of the QSVM-Kernel classifiers from the IBM Nairobi quantum computer,

□ the Origin quantum computer (Wuyuan) and the state-vector quantum simulators from IBM.

□ Signal and Standard Model backgrounds:
◦ e+e− → ZH → qq̄γγ
◦ e+e− → (Zγ∗)γγ

□ with 100 events for both signal and backgrounds

□ 6-qubit superconducting quantum chip systems

IBM Nairobi quantum Origin Wuyuan quantum

□ Estimated uncertainties of:
◦ Noise: ±0.017
◦ Statistical fluctuation: ±0.022
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Quantum Machine Learning Tutorial

□ Inspire further development in this exciting field, and identify opportunities for future research.
□ We are developing this example in GitHub to help you get started (Still work in progress!)
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Current and future plans

□ Kernel-based QML with the H → bb̄, cc̄, gg
◦ Performed with MVA 2203.01469
◦ Using about 16-24 variables
◦ Collaborating with Origin Quantum
◦ Granted 24-qubit for the analysis

□ One-shot idea to speed the kernel calculation
◦ Quafu offers up to 50-qubit
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□ Quantum transformer:
◦ Deep learning quantum-based model
◦ Adopts self-attention mechanism

□ Manpower:
◦ 3 seniors for IHEP, Peking University and

Qujing Normal University
◦ 2 postdocs so far from IHEP and Peking

University
◦ 3 PhD students from IHEP
◦ Technical support from IHEP computing

centre
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https://inspirehep.net/literature/2044816
http://quafu.baqis.ac.cn/
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Conclusion

□ We studied the e+e− → ZH → qq̄γγ signal optimisation using quantum/classical ML algorithm.

□ Support-vector machines were compared:
◦ Quantum support-vector machines (QSVM-Kernel) with IBM quantum simulator
◦ Classical support-vector machines (SVM)

□ Each QSVM and SVM algorithm is optimised to its best before comparing them.

□ Real quantum computing system with 100 events for signal and background:
◦ Wuyuan vs IBM
◦ IBM vs IBM simulator

□ We obtained a similar classification performance to the classical SVM algorithm with different dataset size.

□ We also studied the effect of the noise based on a simple noise Model on IBM Nairobi.

□ And providing a quick tutorial as an example for quantum machine learning using jupyter-lab.

□ This talk is based on 2209.12788 [hep-ex]— submitted to Physics Letters B journal.
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