High/Low Gain Study

--<u>Zhen Wang</u>, Zixun Xu, Yukun Shi, Hongbin Diao

- Ratio between high gain and low gain.
- Saturation threshold of high gain.
- Check overall channel quality.

chip1:0 1 2 chip2: 11 12 15

2023/2/16

Problematic types --DAC

Ration of bad channels

20/12960 (0.154%)

Problematic types -- Mu

225 bad channels (including light leak) ${\sim}1.7\%$

33 bad channels (excluding light leak) ~0.26%

Noise at different places

Muon calib performance

Different chips have similar slopes and saturation platforms

Ratio between DAC and Muon

Ratio Distribution of Muon and DAC

Saturation of high gain is similar

L/H ratio is different between DAC and muon calibration

Conclusion

- Different chips have similar slopes and saturation plats.
- DAC calibration bad channel ratio ~ 0.15%
- Beam test muon calibration bad channel ratio ~0.26% (1.7%)
- Provide L/H ratio and saturation platform to Yukun

Backup

All bad channels in beam test muon data

