

ALICE: arXiv:2211.04384

The present and future of QCD arXiv:2303.02579

Experimental results from the RHIC beam energy scan program and outlook

Bedanga Mohanty (NISER)

Quark gluon phase and properties — what we know so far

QCD matter produced in relativistic heavy-ion collisions at RHIC and LHC have **quark and gluon degrees of freedom.**

Matter attained *high temperature,* has large energy density and exhibits *partonic collectivity.*

Shows emergent properties like:

(1) Perfect fluid
(2) Vortical fluid
(3) Heavy-quarks exhibiting Brownian motion in fluid of light quarks.

What this talk will cover

Physics Today **63**, 5, 39 (2010)

Phase diagram of QCD

Hyperon polarization

Spin alignment of vector mesons

Nuclei production

QCD phase diagram

Known (Theory/Experiment)

- Two distinct phases quark–gluon degrees of freedom/hadronic d.o.f
- Transition temperature at $\mu_B = 0$ MeV
- Small μ_B crossover

Relativistic heavy-ion collisions allows access to the phase diagram of QCD

Thermalization

Why address this topic ?

- 1. To establish quark–gluon plasma
- 2. To establish the QCD phase diagram
- To understand several physics conclusions at Relativistic Heavy Ion Collisions

Ways to address the topic

- Maximum entropy dS/dt = 0 (Our system short lived) -- To show experimentally is challenging (impossible?)
- 2. Interactions among constituents saturate. (State in thermal equilibrium has no knowledge of past) -- *Can we demonstrate this experimentally ?*
- 3. Space-momentum distributions reach equilibrium value -- *Can we access this experimentally* ?

Mean yields have been successfully explained by thermal models. But that is not the full distribution.

Higher moments and thermal model

Measurements in central collisions agrees with thermal model Peripheral collisions do not.

Fits to moments of multiplicity distributions

Higher moments and thermal model

Future: (1) Try canonical approach specially at lower collision energies. (2) Fixed target energies and (3) Try the approach in multiplicity dependent proton–proton collisions

QCD thermodynamics

Ordering of ratios (Net–baryon): LQCD –

Susceptibility ratio ordering PHYS. REV. D 101, 074502 (2020)

Measurements

QCD critical point

Beam energy scan phase - I

QCD critical point search

STAR: PRL 130, 82301 (2023) STAR: PRL128, 202303 (2022) STAR: PRL 127, 262301 (2021) STAR: PRL 126, 092301 (2021) STAR: PRC 104, 024902 (2021)

Beam energy scan phase – II

QCD critical point search

Largest search range in T vs. μ_B of the QCD phase diagram in a single experiment

Compressed baryonic matter experiment

QCD critical point search

e-Print: 2209.05009 [nucl-ex]

Future experiments like CBM and NICA will probe high baryon density regime

Crossover at $\mu_B = 0$ MeV

Search for direct experimental evidence of crossover

STAR: PRL 127, 262301 (2021)

0.02 ິບິ m/T=0-0.02-0.04 PQM 0.2 0.1 C₈ °°[∞] m/T=0 -0.1-0.2 0.8 1.2 0.6 T/T_{pc}

C₆

HotQCD: PRD101, 074502 (2020), S. Borsanyi et al, JHEP10 (2018) 205, B. Friman et al,EPJC71, 1694(2011)

A. Pandav, STAR Collaboration, SQM22

STAR BUR Run22, STAR note 0773, ALICE: arXiv1812.06772

Going to still higher moments

Search for signals of first order phase transition First order phase transition:

- Multiplicity distribution bi-modal (two phases)
- Proton factorial cumulants κ_n : with increasing order, increase rapidly in magnitude with alternating sign.

Proper theory calculations with 1st order phase transition needed for interpretation the data

Search for 1st order phase transition signals

□ For $\sqrt{s_{NN}} \ge 11.5$ GeV, the proton κ_n within uncertainties does not support the two– component shape of proton distributions. Possibility of sign change at low energy.

STAR: PRL 130 , 82301 (2023) STAR: PRL128, 202303 (2022) STAR: PRL 127, 262301 (2021) STAR: PRL 126, 092301 (2021) STAR: PRC 104, 024902 (2021) Peripheral data and UrQMD calculations consistent with zero at all energies.

Moat regime

New feature in QCD phase diagram that high baryon density experiments could look for

18

Experimental observable

e-Print: 2301.11484 [hep-ph]

Quarkyonic matter

Experimental signature

Y. Hidaka, L.D. McLerran, R.D. Pisarski Nucl. Phys. A, 808 (2008), p. 117 For high baryon density regime experiments to look for

Summary – QCD phase structure

• Programs to carry out systematic study of the phase structure of QCD phase diagram through relativistic heavy ion collisions underway

- Higher moments measurements seem to follow QCD thermodynamics except at 3 GeV
- Experimental evidences of signatures related
 to critical point observed at a 3 σ level
- Lattice QCD clearly shows cross over at $\mu_B = 0$.
- Experimental indications of cross over at μ_B = 20 MeV observed at < 2 σ level
- Hints of change of equation of state at high μ_B
- Need to continue the dedicated programs in the high baryon density regime to unfold the QCD phase diagram. This includes looking for Moat Quarkyonic matter regimes
- Experiments: STAR@RHIC BES-II, CBM@FAIR, NICA@JNIR, SHINE@CERN-SPS, J-PARC-HI and CEE-HIAF complementary to each other

Angular momentum and magnetic field

Polarization of hyperons

Global hyperon polarization

BES-II higher statistics will allow for estimate of magnetic field

Spin alignment of vector mesons

K. Schilling et al., Nucl. Phys. B 15 (1970) 397

Physics processes and theory expectations

Physics process	Theory	Remarks	Reference
Vorticity (ω)	ρ ₀₀ (ω) < 1/3	$\rho_{00}(\omega) \sim \frac{1}{3} - \frac{1}{9}(\beta \omega)^2$	<i>F. Becattini et al., Phys. Rev.</i> <i>C 95 (2017) 054902</i>
Magnetic field (B)	$\rho_{00}(B) > 1/3$ $\sim \frac{1}{3} - \frac{1}{9}\beta \frac{q_1q_2}{m_1m_2} B^2$ $\rho_{00}(B) < 1/3$	Electrically neutral vector mesons Electrically charged vector mesons	Y. Yang et. al., Phys. Rev. C 97 (2018) 034917
Hadronization	$\begin{array}{l} \rho_{00}(\text{rec}) < 1/3 \\ \sim \frac{1 - P_q P_q}{3 + P_q P_q} \\ \rho_{00}(\text{frag}) > 1/3 \\ \sim \frac{1 + \beta P_q P_q}{3 - \beta P_q P_q} \end{array}$	Recombination Fragmentation	Z. Liang et. al., Phys. Lett. B 629 (2005) 20 (2005) Z. Liang and X. N. Wang Phys.Rev.Lett. 94 (2005) 102301
Effective meson field	ρ ₀₀ > 1/3	φ mesons	X. L. Sheng et. al., arXiv:1910.13684

Spin alignment of vector mesons

BES–II – higher statistics will allow for differential measurements

Probing magnetic field in HIC using correlations

Nuclei production in heavy-ion collisions

30

Nuclei production: thermal vs. coalescence

STAR: Phys. Rev. C 99, 064905 (2019)

Anti-particle to particle ratio explained by thermal model for a wide range of $\sqrt{s_{NN}}$.

Collectivity in light nuclei

 $p_T/A \leq 1.5 \text{ GeV/c.}$

1 1.5 20 0.5 1.5 20 0.5 1.5 20 0.5 0.5 1 1 p_/A (GeV/c) v₂ values at mid-rapidity for all light nuclei are negative and no scaling is observed with the atomic mass number.

8888888

-0.2 < v < -0.1

(f) -0.2 < v < -0.1

3 4 0 p_τ (GeV/c)

(c) -0.3 < y < -0.2

1

-- p: v_+0.5v₁

(q) -0.3 < y < -0.2

2

3

40

GeV Au+Au Collisior

10-40%

(a) -0.1 < y < 0

(e) -0.1 < y < 0

+³He

•d

^₄⁴He

3

40

 \cap

-0.

-0.

0.05

-0.05

-0.

2

v₂ /A

(d) -0.4 < y < -0.3

(h) -0.4 < y < -0.3

1.5

Deuteron number fluctuations and proton-deuteron correlations

Discriminates some thermal models and some coalescence models depending on collision energy

Hypernuclei – lifetime

Properties of hypernuclei give access to the study of interactions among hyperons and nucleons.

32

Hypertriton lifetime

Small separation energy of the Λ to the pn core implies the lifetime of the hypertriton is very close to that of the free Λ hyperon.

In a quantum–mechanical model, the RMS radius of this hypernucleus is about 10.6 fm, if a deuteron– Λ bound state is assumed.

The Λ is with a very high probability several femtometer away from the other nucleons.

Summary — polarization & nuclei

- Experimental measurements of polarization of hyperons and spin alignment of vector mesons have spurred systematic theoretical study of relativistic spin magneto hydrodynamics
- Finite global polarization of hyperons observed, which increases as we go to lower collision energies.
- Finite spin alignment of vector mesons observed, it has implications of new kinds of mesonic fields
- Nuclei production mechanism still under debate, several kinds of experimental measurements exists and with higher statistics will be available in future.

136 (1964) B1803

20 (1968) 819

- Hypernuclei lifetime measurements are interesting inputs to hyperon–nucleon interactions and has implications beyond the field of heavy–ion collisions
- Experiments: STAR@RHIC BES–II, CBM@FAIR, NICA@JNIR, SHINE@CERN–SPS, J–PARC–HI and CEE–HIAF complementary to each other

Fixed target vs. collider energies at RHIC

Hadronic degrees of freedom vs. quark gluon degrees of freedom

STRA: Phys.Lett.B 827 (2022) 137003 *STAR: PRL 130 , 82301 (2023)*

Experimental program for high baryon density matter

AAPPS Bull. 31 (2021) 1

36

Acknowledgements

All members of the STAR Collaboration, ALICE Collaboration, CBM Collaboration, D. Mishra, R. Pisarski, F. Karsch, S. Gupta & R. Gavai, A Jaiswal, V. Roy, N. Haque, S. Chatterjee.

Thanks to the organizers for the invitation.

Back up

energies

$\sqrt{s_{NN}}$ (GeV)	7.7	11.5	14.5	19.6	27	39	54.4	62.4	200
Probability (in %)	0.858	2.5991	8.0209	0.1756	0.1424	0.6911	2.192	10.0739	2.0769

Experimental results from the RHIC beam energy scan program and outlook

Bedanga Mohanty (NISER)

4