Dense nuclear matter equation of state from heavy-ion collisions

Agnieszka Sorensen University of Washington

March 14th, 2023

Properties of nuclear matter are reflected in the EOS

1) Uncovering the phase diagram of QCD matter

PHASE DIAGRAM OF NUCLEAR MATTER *

Agnieszka Sorensen

The Hot QCD White Paper for LRP 2015

1) Uncovering the phase diagram of QCD matter

3) Understanding extreme behavior at high baryon densities: is $c_s^2 > 1/3$ for symmetric matter?

P. Bedaque and A. W. Steiner, Phys. Rev. Lett. 114, no.3, 031103 (2015), arXiv: 1408.5116 I. Tews, J. Carlson, S. Gandolfi and S. Reddy, Astrophys. J. 860, no.2, 149 (2018), arXiv:1801.01923

The QCD phase diagram: enormous interest in behavior at high n_B

The QCD phase diagram: enormous interest in behavior at high n_B

Relativistic viscous hydrodynamic simulations with LQCD EOS: amazing agreement with data from high-energy collisions

C. Gale, S. Jeon, B. Schenke, P. Tribedy, R. Venugopalan, Phys. Rev. Lett. **110** (2013) 1, 012302, arXiv:1209.6330

fast equilibration = hydro applies

Hadronic transport simulations:

systems out of equilibrium = microscopic approach needed

J. Mohs, S. Ryu, H. Elfner, J. Phys. G **47** (2020) 6, 065101 arXiv:1909.05586 ~155 MeV ð MESONS AND BARYONS NP

Intermediate-energy heavy-ion collisions probe wide ranges of density and temperature

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996

Intermediate-energy heavy-ion collisions probe wide ranges of density and temperature

HICs = the only means to probe densities away from n_0 in controlled terrestrial experiments Hadronic transport is necessary to interpret the results: BES FXT, HADES, CBM, FRIB, FRIB400

The EOS is a common effort within the nuclear physics community

A. Sorensen *et al.*, arXiv:2301.13253

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions *

Agnieszka Sorensen¹, Kshitij Agarwal², Kyle W. Brown^{3,4}, Zbigniew Chajecki⁵, Paweł Danielewicz^{3,6}, Christian Drischler⁷, Stefano Gandolfi⁸, Jeremy W. Holt^{9,10}, Matthias Kaminski¹¹, Che-Ming Ko^{9,10}, Rohit Kumar³, Bao-An Li¹², William G. Lynch^{3,6}, Alan B. McIntosh¹⁰, William G. Newton¹², Scott Pratt^{3,6}, Oleh Savchuk^{3,13}, Maria Stefaniak¹⁴, Ingo Tews⁸, ManYee Betty Tsang^{3,6}, Ramona Vogt^{15,16}, Hermann Wolter¹⁷, Hanna Zbroszczyk¹⁸

Endorsing authors:

Navid Abbasi¹⁹, Jörg Aichelin^{20,21}, Anton Andronic²², Steffen A. Bass²³, Francesco Becattini^{24,25}, David Blaschke^{26,27,28}, Marcus Bleicher^{29,30}, Christoph Blume³¹, Elena Bratkovskaya^{14,29,30}, B. Alex Brown^{3,6}, David A. Brown³², Alberto Camaiani³³, Giovanni Casini²⁵, Katerina Chatziioannou^{34,35}, Abdelouahad Chbihi³⁶, Maria Colonna³⁷, Mircea Dan Cozma³⁸, Veronica Dexheimer³⁹, Xin Dong⁴⁰, Travis Dore⁴¹, Lipei Du⁴², José A. Dueñas⁴³, Hannah Elfner^{14,21,29,30}, Wojciech Florkowski⁴⁴, Yuki Fujimoto¹, Richard J. Furnstahl⁴⁵, Alexandra Gade^{3,6}, Tetyana Galatyuk^{14,46}, Charles Gale⁴², Frank Geurts⁴⁷, Sašo Grozdanov^{48,49}, Kris Hagel¹⁰, Steven P. Harris¹, Wick Haxton^{40,50}, Ulrich Heinz⁴⁵, Michal P. Heller⁵¹, Or Hen⁵², Heiko Hergert^{3,6}, Norbert Herrmann⁵³, Huan Zhong Huang⁵⁴, Xu-Guang Huang^{55,56,57}, Natsumi Ikeno^{10,58}, Gabriele Inghirami¹⁴, Jakub Jankowski²⁶, Jiangyong Jia^{59,60}, José C. Jiménez⁶¹, Joseph Kapusta⁶², Behruz Kardan³¹, Iurii Karpenko⁶³, Declan Keane³⁹, Dmitri Kharzeev^{60,64}, Andrej Kugler⁶⁵, Arnaud Le Fèvre¹⁴, Dean Lee^{3,6}, Hong Liu⁶⁶, Michael A. Lisa⁴⁵, William J. Llope⁶⁷, Ivano Lombardo⁶⁸, Manuel Lorenz³¹, Tommaso Marchi⁶⁹ Larry McLerran¹, Ulrich Mosel⁷⁰, Anton Motornenko²¹, Berndt Müller²³, Paolo Napolitani⁷¹ Joseph B. Natowitz¹⁰, Witold Nazarewicz^{3,6}, Jorge Noronha⁷², Jacquelyn Noronha-Hostler⁷² Grażyna Odyniec⁴⁰, Panagiota Papakonstantinou⁷³, Zuzana Paulínyová⁷⁴, Jorge Piekarewicz⁷⁵, Robert D. Pisarski⁶⁰, Christopher Plumberg⁷⁶, Madappa Prakash⁷, Jørgen Randrup⁴⁰ Claudia Ratti⁷⁷, Peter Rau¹, Sanjay Reddy¹, Hans-Rudolf Schmidt^{2,14}, Paolo Russotto³⁷, Radoslaw Ryblewski⁷⁸, Andreas Schäfer⁷⁹, Björn Schenke⁶⁰, Srimoyee Sen⁸⁰, Peter Senger⁸¹, Richard Seto⁸², Chun Shen^{67,83}, Bradley Sherrill^{3,6}, Mayank Singh⁶², Vladimir Skokov^{83,84}, Michał Spaliński^{85,86}, Jan Steinheimer²¹, Mikhail Stephanov⁸⁷, Joachim Stroth^{14,31}, Christian Sturm¹⁴, Kai-Jia Sun⁸⁸, Aihong Tang⁶⁰, Giorgio Torrieri^{89,90}, Wolfgang Trautmann¹⁴, Giuseppe Verde⁹¹, Volodymyr Vovchenko⁷⁷, Ryoichi Wada¹⁰, Fuqiang Wang⁹², Gang Wang⁵⁴, Klaus Werner²⁰, Nu Xu⁴⁰, Zhangbu Xu⁶⁰, Ho-Ung Yee⁸⁷, Sherry Yennello^{9,10,93}, Yi Yin⁹⁴

Agnieszka Sorensen

Hot QCD

Low energy + Astro

Transport model simulations of heavy-ion collisions

- Boltzmann-Uehling-Uhlenbeck (BUU)-type codes:
 - solve coupled Boltzmann equations

with the method of test particles: the distribution is *over* sampled with a *large* number of discrete test-particles, which are evolved according to the single-particle EOMs (test particles probe the evolution in the phase space)

- collision term based on measured cross-sections for scatterings and decays
- Quantum Molecular Dynamics (QMD)-type codes - solve molecular dynamics problem (evolve nucleons according to their EOMs)

 - collisions based on measured cross-sections for scatterings and decays

Agnieszka Sorensen

$$\forall i: \qquad \frac{\partial f_i}{\partial t} + \frac{d\mathbf{x}_i}{dt} \frac{\partial f_i}{\partial \mathbf{x}_i} + \frac{d\mathbf{p}_i}{dt} \frac{\partial f_i}{\partial \mathbf{p}_i} = I_{\text{coll}}^{(i)}$$

- forces from gradients of single-particle energies (mean-fields: needs a robust density calculation!)

- forces: in principle distance-dependent particle-particle interactions, in practice: often mean-fields!

Transport model simulations of heavy-ion collisions

- Boltzmann-Uehling-Uhlenbeck (BUU)-type codes:
 - solve coupled Boltzmann equations

with the method of test particles: the distribution is *over*sampled with a *larae* number of discrete test-particles, wh Transport *automatically* includes: (test particles pro • non-equilibrium evolution, including triggered by probing unstable regions of the phase diagram - forces from gradi nsity calculation!) • effects due to the interplay between participants and

- collision term bas
- spectators
- Quantum Molecular Dynamics (QMD)-type codes - solve molecular dynamics problem (evolve nucleons according to their EOMs)

 - collisions based on measured cross-sections for scatterings and decays

Agnieszka Sorensen

$$\forall i: \quad \frac{\partial f_i}{\partial t} + \frac{d\mathbf{x}_i}{dt} \frac{\partial f_i}{\partial \mathbf{x}_i} + \frac{d\mathbf{p}_i}{dt} \frac{\partial f_i}{\partial \mathbf{p}_i} = I_{\text{coll}}^{(i)}$$

baryon, strangeness, charge transport/diffusion

- forces: in principle distance-dependent particle-particle interactions, in practice: often mean-fields!

Two ways of using hadronic transport

1) Use it as a "non-critical baseline"

Most would agree this means "perform simulations as if there is no hadron-QGP transition". BUT that doesn't mean there are no interactions.

Agnieszka Sorensen

Consequences of these interactions may be significant

11

Two ways of using hadronic transport

2) Use it to map out the QGP-hadron phase transition e.g., use parametrizable interactions to search for the softening of the EOS

Flow observables in heavy-ion collisions

HADES (AuAu) Protons (10-30%) FOPI (AuAu) Protons (b_=0.25-0.45) FOPI (AuAu) Z=1 (b=2-5.5fm) Plastic Ball (AuAu) Z=1 INDRA (AuAu) Z=1 (b=2-5.5fm) Star FXT (AuAu) Protons (10-40%) Star FXT (AuAu) Protons (10-25%) NA61/SHINE (PbPb) Protons (15-35%) • HADES (AuAu) Protons (10-30%) • FOPI (AuAu) Protons (15-29%) □ FOPI (AuAu) Z=1 (20-30%) in-plane E895 (AuAu) Protons (12-25% E877 (AuAu) Protons Star FXT (AuAu) Protons (10-40%) Star FXT (AuAu) Protons (0-30%) Star BES (AuAu) Protons (10-40%) Star BES (AuAu) h[±] (10-20%) Star (AuAu) h[±] (0-60%) PHOBOS (AuAu) h[±] (0-60%) NA49 (PbPb) Protons (12.5-33.5%) **VVA98** (PbPb) h[±] (10-30) 10^{2} √s_{NN}-2m_N (GeV) 13

Flow observables in heavy-ion collisions

Flow observables are the canonical observables for extracting the EOS x (fm) 10 - 10 010 - 10 010 - 10 0 $-10 \ 0$ 0x10⁻²⁴ s 30 y (fim) 10 Z (fim) 10 - 10 010 - 10 010 - 10 0 $-10 \ 0$ x (1m)

P. Danielewicz, R. Lacey, W. G. Lynch, Science 298, 1592–1596 (2002), arXiv:nucl-th/0208016

Agnieszka Sorensen

J. Xu et al. (TMEP Collaboration), in preparation

Flow observables in heavy-ion collisions

Flow observables are the canonical observables for extracting the EOS x (fm) 10 - 10 010 - 10 0 $-10 \ 0$ $-10 \ 0$ 10 0x10⁻²⁴ s 30 y (fim)

Comparisons between different codes are needed to understand the dependence on: 1) different physics assumptions 2) different implementation solutions See efforts by, e.g., TMEP collaboration

Standard way of modeling the EOS: Skyrme potential

The most common form of the EOS is the "Skyrm

DLL used something a bit more sophisticated:

Agnieszka Sorensen

he potential":
$$U(n_B) = A\left(\frac{n_B}{n_0}\right) + B\left(\frac{n_B}{n_0}\right)^{\tau}$$

$$U(n_B) = \left(an_B + bn_B^{\tau}\right) / \left[1 + (0.4n_B/n_0)^{\tau - 1}\right] + U_p$$

Science **298**, 1592–1596 (2002), arXiv:nucl-th/0208016

Standard way of modeling the EOS: Skyrme potential

Standard way of modeling the EOS: Skyrme potential

Relativistic vector density functional (VDF) model

A. Sorensen, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635

1) Postulate the energy density of the system:

$$\mathscr{E}_{N} = \mathscr{E}_{N}[f_{\mathbf{p}}] = g \int \frac{d^{3}p}{(2\pi)^{3}} \epsilon_{\mathrm{kin}} f_{\mathbf{p}} + \sum_{i=1}^{N} C_{i} (j_{\mu} j^{\mu})^{\frac{b_{i}}{2}-1} \left[j^{0} j^{0} - g^{00} \left(\frac{b_{i}-1}{b_{i}} \right) j_{\lambda} j^{\lambda} \right] \leftarrow \text{Lorentz covarian}$$

$$\epsilon_{\rm kin} = \sqrt{\left(\vec{p} - \sum_{i=1}^{N} C_i (j_\mu j^\mu)^{\frac{b_i}{2} - 1} \vec{j}\right)^2 + m^2} \qquad \qquad \mathcal{E}_N \bigg|_{\substack{\rm rest \\ \rm frame}} = g \int \frac{d^3 p}{(2\pi)^3} \sqrt{\vec{p}^2 + m^2} f_{\mathbf{p}} + \sum_{i=1}^{N} \frac{C_i}{b_i} n_B^{b_i}$$

 $\varepsilon_{\mathbf{p}} \equiv \frac{\delta \mathscr{E}[f_{\mathbf{p}}]}{\delta f_{\mathbf{p}}} = \epsilon_{\mathrm{kin}} + \sum_{i=1}^{N} C_{i} (j_{\mu} j^{\mu})^{\frac{b_{i}}{2} - 1} j^{0}$ 2) Quasiparticle energy: input to transport code; 3) Get EOMs use in Boltzmann eq. to obtain $T^{\mu\nu}$

4) Use $T^{\mu\nu}$ to get the pressure:

 $P_N = \frac{1}{3} \sum T^{kk}$ res frar

Agnieszka Sorensen

inspired by relativistic Landau Fermi-liquid theory: G. Baym, S. A. Chin, Nucl. Phys. A 262, 527 (1976)

> mean-field interactions parameterized by C_i and b_i

$$=g\int \frac{d^3p}{(2\pi)^3} T \ln \left[1 + e^{-\beta(\varepsilon_{\mathbf{p}} - \mu_B)}\right] + \sum_{i=1}^N C_i \frac{b_i - 1}{b_i} n_B^{b_i}$$

VDF model: two 1st order phase transitions

- **A. Sorensen**, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635 Systems with two 1st order phase transitions: nuclear and "quark/hadron", or "QGP-like"
 - degrees of freedom: nucleons
 - "QGP-like" PT: "more dense" matter coexists with "less dense" matter
 - minimal model: 4 interactions terms = 8 parameters to fix:

$$P = g \int \frac{d^3 p}{(2\pi)^3} T \ln \left[1 + e^{-\beta(\varepsilon_p - \mu_B)} \right] + \sum_{i=1}^{N=4} C_i \frac{b_i}{k}$$

 C_i and b_i are fitted to reproduce: $n_0 = 0.160 \text{ fm}^{-3}, E_{\rm B} = -16.3 \text{ MeV}$ $T_{\rm c}^{\rm (N)} = 18 \text{ MeV}, n_{\rm c}^{\rm (N)} = 0.375 n_{\rm O}$ $T_{\rm c}^{\rm (Q)} = ?, n_{\rm c}^{\rm (Q)} = ?$ $\eta_L = ?, \eta_R = ?$

Agnieszka Sorensen

17

VDF model: two 1st order phase transitions

- **A. Sorensen**, V. Koch, Phys. Rev. C **104** (2021) 3, 034904, arXiv:2011.06635 Systems with two 1st order phase transitions: nuclear and "quark/hadron", or "QGP-like"
 - degrees of freedom: nucleons
 - "QGP-like" PT: "more dense" matter coexists with "less dense" matter
 - minimal model: 4 interactions terms = 8 parameters to fix:

$$P = g \int \frac{d^3 p}{(2\pi)^3} T \ln \left[1 + e^{-\beta(\varepsilon_p - \mu_B)} \right] + \sum_{i=1}^{N=4} C_i \frac{b_i}{k}$$

 C_i and b_i are fitted to reproduce: $n_0 = 0.160 \text{ fm}^{-3}, E_{\rm B} = -16.3 \text{ MeV}$ $T_{\rm c}^{\rm (N)} = 18 \text{ MeV}, n_{\rm c}^{\rm (N)} = 0.375 n_{\rm o}$ $T_{\rm c}^{\rm (Q)} = ?, n_{\rm c}^{\rm (Q)} = ?$ $\eta_L = ?, \eta_R = ?$

Agnieszka Sorensen

17

VDF model: two 1st order phase transitions

A. Sorensen, V. Koch, Phys. Rev. C 104 (2021) 3, 034904, arXiv:2011.06635

Results from UrQMD with (non-relativistic) VDF

J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch, M. Bleicher, Eur. Phys. J. C 82, 10, 911 (2022) arXiv:2208.12091

Results from UrQMD with (non-relativistic) CMF

J. Steinheimer, A. Motornenko, **A. Sorensen**, Y. Nara, V. Koch, M. Bleicher, Eur. Phys. J. C **82**, 10, 911 (2022) arXiv:2208.12091

Generalized VDF model: custom c_s^2

VDF model:

$$\mathscr{C}_{N} = g \int \frac{d^{3}p}{(2\pi)^{3}} \epsilon_{kin}^{*} f_{\mathbf{p}} + \sum_{i=1}^{N} A_{k}^{0} j_{0} - g^{00} \sum_{i=1}^{N} \left(\frac{b_{i}-1}{b_{i}}\right) A_{k}^{\lambda} j_{\lambda}$$

$$\varepsilon_{\mathbf{p}} = \epsilon_{kin} + \sum_{i=1}^{N} A_{i}^{0}$$

 $e^{\beta(\varepsilon_{\mathbf{p}}-\mu_{B})} = e^{\beta(\varepsilon_{\mathrm{kin}}+\sum_{i=1}^{N}A_{i}^{0}-\mu_{B})} = e^{\beta(\varepsilon_{\mathrm{kin}}-\mu^{*})}$ The distribution (Fermi or Boltzmann) will have factors of

 $A^{\mu} = \alpha(n_B) j^{\mu}$ Assume arbitrary vector interactions:

The effective chemical potential is μ

At T = 0, $\epsilon_F = \mu^*$ and the density is given by \boldsymbol{n}

Combining the two allows one to solve for μ_{R}

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996

$$j_{\mu}j^{\mu} = n_B^2$$

$$A_k^{\mu} = C_k (j_{\lambda} j^{\lambda})^{\frac{b_k}{2} - 1} j^{\mu}$$

$$\mu^{*} = \mu_{B} - \alpha(n_{B})n_{B}$$

$$\mu_{B} = \frac{g}{6\pi^{2}}p_{F}^{3} = \frac{g}{6\pi^{2}}\left(\mu^{*2} - m^{2}\right)^{3/2}$$

$$\mu_{B}(n_{B}) = \alpha(n_{B})n_{B} + \sqrt{m^{2} + \left(\frac{6\pi n_{B}}{g}\right)^{2/3}}$$

Generalized VDF model: custom

Assume arbitrary vector interactions:

$$A^{\mu} = \alpha(n_B)j^{\mu}$$
The effective chemical potential defined as

$$\mu^* = \mu_B - \alpha(n_B)n_B$$
At $T = 0$, $e_F = \mu^*$ and the density is given by

$$n_B = \frac{g}{6\pi^2} \left(\mu^{*2} - m^2\right)^{3/2}$$
Combining the two allows one to solve for

$$\mu_B(n_B) = \alpha(n_B)n_B + \sqrt{m^2 + \left(\frac{6\pi n_B}{g}\right)^{2/3}}$$
On the other hand, $c_s^2 \Big|_{T=0} = \frac{d \ln \mu_B}{d \ln n_B}$, and solving for μ_B :

$$\mu_B(n_B) = \mu_B(n_B) = \mu_B(n_B^{(0)}) \exp\left(\int_{n_B^{(0)}}^{n_B} d \ln n \ c_s^2(n)\right)$$

Solve for vector interactions: $\alpha(n_B) = \frac{1}{n_B} \left| \mu_B(n_B) \right|$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996

$$c_s^2$$

$$n_B^{(0)}\right) \exp\left(\int_{n_B^{(0)}}^{n_B} d\ln n \ c_s^2(n)\right) - \sqrt{m^2 + \left(\frac{6\pi n_B}{g}\right)^{2/3}}$$

Generalized VDF model: custom c_s^2

Assume arbitrary vector interactions:

The effective chemical potential defined as $\mu^* = \mu_B - \alpha(n_B)n_B$

Solve for vector interactions: $\alpha(n_B) = \frac{1}{m} | \mu_B(n_B)|$

 n_B

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996

Agnieszka Sorensen

 $A^{\mu} = \alpha(n_R) j^{\mu}$

These interactions, parametrized with a chosen shape of c_s^2 as a function of n_R , can be used in hadronic transport simulations!

$$(n_B^{(0)}) \exp\left(\int_{n_B^{(0)}}^{n_B} d\ln n \ c_s^2(n)\right) - \sqrt{m^2 + \left(\frac{6\pi n_B}{g}\right)^{2/3}}$$

Better suited for detailed studies: piecewise parametrization of c_{c}^{2}

Piecewise parametrization of $c_s^2(n_R)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \cdots \\ c_m^2, & n_m < n_B \end{cases}$$

Single-particle potential $U(n_B) = \alpha(n_B)n_B$:

$$U(n_B) = \begin{cases} U_{\rm Sk}(n_B) ,\\ \left[U_{\rm Sk}(n_1) + \mu^*(\rho_1) \right] \left(\frac{\rho}{n_1}\right)^{c_1^2} - \mu^*(n_B) \\\\ \left[U_{\rm Sk}(n_1) + \mu^*(n_1) \right] \left(\frac{n_B}{n_k}\right)^{c_k^2} \prod_{i=2}^k \left(\frac{n_i}{n_i}\right)^{c_k^2} \end{cases}$$

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996

Agnieszka Sorensen

$$n_1 < n_B < n_2$$

 $\frac{n_i}{n_{i-1}} \Big)^{c_{i-1}^2} - \mu^*(n_B) , \qquad n_k < n_B < n_{k+1}$

Gradients of $U(n_R)$ enter the EOMs!

Better suited for detailed studies: piecewise parametrization of c_s^2

Piecewise parametrization of $c_s^2(n_B)$:

$$c_s^2(n_B) = \begin{cases} c_s^2(\text{Skyrme}), & n_B < n_1 = 2n_0 \\ c_1^2, & n_1 < n_B < n_2 \\ c_2^2, & n_2 < n_B < n_3 \\ \dots \\ c_m^2, & n_m < n_B \end{cases}$$

Single-particle potential $U(n_B) = \alpha(n_B)n_B$:

$$U(n_B) = \begin{cases} U_{\rm Sk}(n_B) ,\\ \left[U_{\rm Sk}(n_1) + \mu^*(\rho_1) \right] \left(\frac{\rho}{n_1}\right)^{c_1^2} - \mu^*(n_B) \\\\ \left[U_{\rm Sk}(n_1) + \mu^*(n_1) \right] \left(\frac{n_B}{n_k}\right)^{c_k^2} \prod_{i=2}^k \left(\frac{n_i}{n_i}\right)^{c_k^2} \end{cases}$$

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996

Agnieszka Sorensen

Gradients of $U(n_B)$ enter the EOMs!

Hadronic transport with c_s^2 -parametrized mean-fields

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Generalized VDF (n_R -dependent interaction coefficients): mean-field potential piecewise parametrized by (constant) values of c_s^2 for $n_i < n_B < n_i$

Agnieszka Sorensen

23

Hadronic transport with c_s^2 -parametrized mean-fields

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, Generalized VDF (n_B -dependent interaction coefficients): mean-field potential piecewise parametrized by (constant) values of c_s^2 for $n_i < n_B < n_i$

Agnieszka Sorensen

23

STAR and E895 data cannot be simultaneously described

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996

STAR and E895 data cannot be simultaneously described

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996

Bayesian analysis of STAR flow data with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

The maximum a posteriori probability (MAP) parameters are $K_0 = 300 \pm 60 \text{MeV}, \quad c_{[2,3]n_0}^2 = 0.47 \pm 0.12, \quad c_{[3,4]n_0}^2 = -0.08 \pm 0.14$

Agnieszka Sorensen

Bayesian analysis of STAR flow data with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

Agnieszka Sorensen

Bayesian analysis of STAR flow data with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

Agnieszka Sorensen

Agnieszka Sorensen

Bayesian analysis of STAR flow data with varying K_0 , $c_{[2,3]n_0}^2$, $c_{[3,4]n_0}^2$

 $K_0 = 300 \pm 60$ MeV, $c_{[2,3]n_0}^2 = 0.47 \pm 0.12$, $c_{[3,4]n_0}^2 = -0.08 \pm 0.14$

EOS of symmetric nuclear matter: selected results

Momentum-dependent mean-fields are a necessary component

Measured in scattering experiments:

Momentum-dependent mean-fields are a necessary component

Work in progress: Flexible momentum-dependent mean-fields

Measured in scattering experiments:

VSDF model:
$$\mathscr{E}_{N,M} = g \int \frac{d^3 p}{(2\pi)^3} e_{kin}^* f_{\mathbf{p}} + \sum_{i=1}^N A_k^0 j_0 - g^{00} \sum_{i=1}^N \left(\frac{b_i - 1}{b_i}\right) A_k^\lambda j_\lambda + g^{00} \sum_{m=1}^M G_m \left(\frac{d_m - 1}{d_m}\right) n_s^{d_m}$$

A. Sorensen, "Density Functional Equation of State and Its Application to the Phenomenology of Heavy-Ion Collisions," arXiv:2109.08105, Sorensen:2021zxd

Agnieszka Sorensen

Solution: vector+scalar density functional model (VSDF) Challenge: scalar fields are costly to compute

$${}^{0}\sum_{i=1}^{N} \left(\frac{b_{i}-1}{b_{i}}\right) A_{k}^{\lambda} j_{\lambda}$$

$$A_{k}^{\mu} = C_{k} (j_{\lambda} j^{\lambda})^{\frac{b_{k}}{2}-1} j^{\mu} , \qquad j_{\mu} j^{\mu} = n_{B}^{2} , \qquad j^{\mu} = g \int \frac{d^{3}p}{(2\pi)^{3}} \frac{p^{\mu}-A}{\epsilon_{kin}^{*}}$$

$$m^* = m_0 - \sum_{m=1}^M G_M n_s^{d_m - 1} \qquad n_s = g \int \frac{d^3 p}{(2\pi)^3} \frac{m^*}{\epsilon_{\rm kin}^*}$$

Work in progress: Flexible momentum-dependent mean-fields

Measured in scattering experiments:

Agnieszka Sorensen

vector+scalar density functional model (VSDF) Challenge: scalar fields are costly to compute

D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

Agnieszka Sorensen

Phys. Rev. C 105 3, 034906 (2022), arXiv:2012.11454

Realistic description of light cluster production needed:

- coalescence: doesn't take into account the dynamic role of light clusters throughout the evolution
- nucleon/pion catalysis: consider as separate degrees of freedom (pBUU, SMASH), produced through N or π
- the Holy Grail: dynamical production through potentials

collisions

STAR, Phys. Lett. B 827, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

Agnieszka Sorensen

Strange baryons are not well described - the results may depend on:

- nucleon-hyperon and Hyperon-hyperon interactions
- in-medium modifications of interactions

Models of interactions exists and could be tested; interactions could be based on those obtained within first-principle calculations (e.g., HALQCD collaboration, HALQCD, HUG. Phys. A 998)

STAR, Phys. Lett. B **827**, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

D. Oliinychenko, **A. Sorensen**, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

STAR, Phys. Lett. B 827, 137003 (2022) arXiv:2108.00908 D. Oliinychenko, A. Sorensen, V. Koch, L. McLerran, arXiv:2208.11996 **A. Sorensen** *et al.*, arXiv:2301.13253

//c -		0.2 <	$p_{\rm T} < 1.6 ~{\rm GeV/c}$		0.4 < j	$p_{\rm T} < 1.6 \; {\rm GeV/c}$	
approaches (LQCD, χ EFT) g of collision dynamics						UrQMD	
rent	anc	l upcomi	ing experi	menta	l data		

Precision era of heavy-ion collisions needs precision simulations

A. Sorensen et al., arXiv:2301.13253

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions *

Agnieszka Sorensen¹, Kshitij Agarwal², Kyle W. Brown^{3,4}, Zbigniew Chajecki⁵, Paweł Danielewicz^{3,6}, Christian Drischler⁷, Stefano Gandolfi⁸, Jeremy W. Holt^{9,10},

Matthias Kaminski¹¹, Che-Ming Ko^{9,10}, Rohit Kumar³, Bao-An Li¹², William G. Lynch^{3,6}, Alan B. McIntosh¹⁰, William G. Newton¹², Scott Pratt^{3,6}, Oleh Savchuk^{3,13}, Maria Stefaniak¹⁴, Ingo Tews⁸, ManYee Betty Tsang^{3,6}, Ramona Vogt^{15,16}, Hermann Wolter¹⁷, Hanna Zbroszczyk¹⁸

Endorsing authors:

Navid Abbasi¹⁹, Jörg Aichelin^{20,21}, Anton Andronic²², Steffen A. Bass²³, Francesco Becattini^{24,25}, David Blaschke^{26,27,28}, Marcus Bleicher^{29,30}, Christoph Blume³¹, Elena Bratkovskaya^{14,29,30}, B. Alex Brown^{3,6}, David A. Brown³², Alberto Camaiani³³, Giovanni Casini²⁵, Katerina Chatziioannou^{34,35}, Abdelouahad Chbihi³⁶, Maria Colonna³⁷, Mircea Dan Cozma³⁸,

Agnieszka Sorensen

2023

THE EQUATION OF STATE FROM 0 TO $5n_0$ II.

A. Transport model simulations of heavy-ion collisions

3. Challenges and opportunities

Selected results presented in Fig. 9 showcase significant achievements in determining the EOS and, simultaneously, the need to develop improved transport models to obtain tighter and more reliable constraints. Answering this need will require support for a sustained collaborative effort within the community to address remaining challenges in modeling collisions, in particular in the intermediate energy range ($E_{\rm lab} \approx 0.05-25 \ A {\rm GeV}$, or $\sqrt{s_{NN}} \approx 1.9-7.1 \ {\rm GeV}$). In the following, we will address selected areas where we see the need for such developments: (1) comprehensive treatment of both mean-field potentials and the collision term in transport codes, (2) use of microscopic information on mean fields and in-medium cross sections, such as discussed in Section IIB, in transport, (3) better description of the initial state of heavy-ion collisions in hadronic transport codes, (4) deeper understanding of fluctuations in transport approaches, which affect many aspects of simulations, (5) inclusion of correlations beyond the mean field into transport, which is crucial for a realistic description of, e.g., light-cluster production, (6) treatment of short-range-correlations in transport, which are tightly connected to multi-particle collisions as well as off-shell transport, (7) sub-threshold particle production, (8) connections between quantum many-body theory and semiclassical transport theory, (9) investigations focused on extending the limits of applicability of hadronic transport approaches, (10) studies of new observables, e.g., azimuthally resolved spectra, to obtain tighter constraints on the EOS, (11) the question of quantifying the uncertainty of results obtained in transport simulations, and (12) the use of emulators and flexible parametrizations for wide-ranging explorations of all possible EOSs. Fortunately, advances in transport theory as well as the greater availability of high-performance computing make many of these improvements possible. Support for these developments will lead to a firm control and greater understanding of multiple complex aspects of the collision dynamics, allowing comparisons of transport model calculations and heavy-ion experiment measurements to provide an important contribution to the determination of the EOS of dense nuclear matter, which, in particular, cannot be determined by any other method at intermediate densities $(1-5)n_0$.

Precision era of heavy-ion collisions needs precision simulations

5

A. Sorensen et al., arXiv:2301.13253

Dense Nuclear Matter Equation of State from Heavy-Ion Collisions *

Agnieszka Sorensen¹, Kshitij Agarwal², Kyle W. Brown^{3,4}, Zbigniew Chajecki⁵, Paweł Danielewicz^{3,6}, Christian Drischler⁷, Stefano Gandolfi⁸, Jeremy W. Holt^{9,10},

Matthias Kaminski¹¹, Che-Ming Ko^{9,10}, Rohit Kumar³, Bao-An Li¹², William G. Lynch^{3,6}, Alan B. McIntosh¹⁰, William G. Newton¹², Scott Pratt^{3,6}, Oleh Savchuk^{3,13}, Maria Stefaniak¹⁴, Ingo Tews⁸, ManYee Betty Tsang^{3,6}, Ramona Vogt^{15,16}, Hermann Wolter¹⁷, Hanna Zbroszczyk¹⁸

Endorsing authors:

Navid Abbasi¹⁹, Jörg Aichelin^{20,21}, Anton Andronic²², Steffen A. Bass²³, Francesco Becattini^{24,25}, David Blaschke^{26,27,28}, Marcus Bleicher^{29,30}, Christoph Blume³¹, Elena Bratkovskaya^{14,29,30}, B. Alex Brown^{3,6}, David A. Brown³², Alberto Camaiani³³, Giovanni Casini²⁵, Katerina Chatziioannou^{34,35}, Abdelouahad Chbihi³⁶, Maria Colonna³⁷, Mircea Dan Cozma³⁸,

Agnieszka Sorensen

202

CONTENTS

I. Introduction

- A. Constraining the nuclear matter EOS using heavy-ion collisions
- B. Connections to fundamental questions in nuclear physics
- C. Upcoming opportunities
- D. Scientific needs

II. The equation of state from 0 to $5n_0$

- A. Transport model simulations of heavy-ion collisions
- B. Microscopic calculations of the EOS
- C. Neutron star theory

III. Heavy-ion collision experiments

- A. Experiments to extract the EOS of symmetric nuclear matter
- B. Experiments to extract the symmetry energy

IV. The equation of state from combined constraints

- A. Constraints
- B. EOS obtained by combining various constraint sets

V. Connections to other areas of nuclear physics

- A. Applications of hadronic transport
- **B.** Hydrodynamics

VI. Exploratory directions

- A. Dense nuclear matter EOS meeting extreme gravity and dark matter in supermassive neutron stars
- B. Nuclear EOS with reduced spatial dimensions
- C. Interplay between nucleonic and partonic degrees of freedom: SRC effects on nuclear EOS, heavy-ion reactions, and neutron stars
- D. High-density symmetry energy above $2n_0$
- E. Density-dependence of neutron-proton effective mass splitting in neutron-rich matter

69

Summary

What's different, new, exciting about *now*?

- New analyses, new understanding: e.g., triangular flow, quark number scaling, cumulants
- New detectors, new data: unprecedented measurements, from ultra-precise triple-differential flow observables to hyperonhyperon interactions
- New computing capabilities: large-scale simulations possible with state-of-the-art, benchmarked hadronic transport codes
- New approach to constraining the EOS: Bayesian analyses using flexible parametrizations of the EOS

Agnieszka Sorensen

Thank you for your attention

VDF in SMASH: tests in the spinodal region

