Dileptons and BES Physics

Frank Geurts

Outline

- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- Some experimental considerations
- The Dilepton Multitool
spectrometer, chronometer, thermometer, barometer, polarimeter, multimeter
- Future prospects

QCD phase diagram

Experimentally, one can access different regions of phase diagram by varying centre-of-mass energy
> experimental data over 3-4 orders of magnitude in Vsnn

LHC, RHIC, and FAIR provide access to low μ_{B} region

Fig. 1. Schematic phase diagram of hadronic matter. ρ_{B} is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

Several experiments/facilities give access to $\mu_{\text {в }}$ regions that both cover cross-over, possible $1^{\text {st }}$ order PT and a conjectured CP

- AGS, SPS (NA61/SHINE)
- SIS18/FAIR (Hades)
- RHIC beam energy scan (BES)

Charting the QCD phase diagram

- Turn-off of QGP signatures - suppression, elliptic flow
- First-order phase transition - changes in EoS due to attractive force (softest point)
> "step" in mean transverse mass of identified particles
$>$ non-monotonic behavior of directed flow slope at mid-rapidity $\quad\left(\mathrm{d} v_{1} / \mathrm{d} y / y=0\right)$
- Critical point - divergence of the correlation length \Rightarrow non-monotonic behavior of higher moments of conserved quantities
$>$ experimentally, skewness S, and kurtosis κ of event-by-event net-particle distributions

Outline

- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- Some experimental considerations
- The Dilepton Multitool
spectrometer, chronometer, thermometer,
barometer, polarimeter, multimeter

What can dileptons do?

Dileptons are excellent penetrating probes

- colorless objects \therefore no coupling to strongly interacting matter
- produced in various ways throughout the system's evolution
- long mean free paths
- experimentally provide an additional "knob": invariant mass

Dilepton invariant mass spectrum

- Primordial emissions, pre-equilibrium
- Drell-Yan, $N N \rightarrow e^{+} e^{-} X$
- heavy flavor production $(c \bar{c}, b \bar{b})$, quarkonia \& open charm
- Thermal radiation from QGP/hadronic matter
- QGP thermal radiation $q \bar{q} \rightarrow e^{+} e^{-}$
- HG thermal radiation $\pi^{+} \pi^{-} \rightarrow e^{+} e^{-}$
- in-medium ρ
- other 4π, multi-meson interactions, incl. $\rho-a_{1}$ mixing
- Long-lived hadron and resonance decays
- decays of light mesons of $\pi^{0}, \eta, \omega, \varphi$ (incl. Dalitz decays)
- in-medium modification of vector mesons
- decays of quarkonia $J / \Psi, \Psi^{\prime}$ and correlated $D \bar{D}$ pairs
- nuclear modification effects

Dilepton invariant mass spectrum

- High Mass Range (HMR)

$$
M_{e e}>3 \mathrm{GeV} / \mathrm{c}^{2}
$$

- primordial emission, Drell-Yan
- Heavy quarkonia: J/ Ψ and \curlyvee suppression
- Intermediate Mass Range (IMR)

$$
1.1<\mathrm{M}_{\mathrm{ee}}<3 \mathrm{GeV} / \mathrm{c}^{2}
$$

- QGP thermal radiation
- Semi-leptonic decay of correlated charm heavy-flavor modification
- Low Mass Range (LMR)
$M_{e e}<1.1 \mathrm{GeV} / \mathrm{c}^{2}$
- in-medium modification of vector mesons
- fireball lifetime measurement
- transport coefficients (electrical conductivity)

EM production rates

From thermal field theory ${ }^{\dagger}$, using EM current-current correlation function:

$$
\begin{gathered}
\Pi_{e m}^{\mu v}\left(q_{0}, q\right)=-i \int d^{4 x} e^{i q x} \Theta\left(x^{0}\right)\left\langle\left\langle\left[j^{\mu}(x), j^{v}(0)\right]\right\rangle\right\rangle \\
j^{\mu}=\sum_{q} e_{q} \bar{q} \gamma^{\mu} q=\frac{2}{3} \bar{u} \gamma^{\mu} u-\frac{1}{3} \bar{d} \gamma^{\mu} d-\frac{1}{3} \bar{s} \gamma^{\mu} s
\end{gathered}
$$

with the thermal emission rates

- photons:

$$
p_{0} \frac{d N_{\gamma}}{d^{4} x d^{3} p}=-\frac{\alpha_{e m}}{\pi^{2}} f^{B}\left(p_{0} ; T\right) \frac{1}{2} g_{\mu \nu} \operatorname{Im} \Pi_{\mathrm{em}}^{\mu \nu}\left(M=0, p ; \mu_{B}, T\right)
$$

- dileptons:

$$
\frac{d N_{l l}}{d^{4} x d^{4} p}=-\frac{\alpha_{e m}^{2}}{\pi^{3} M^{2}} L(M) f^{B}\left(p_{0} ; T\right) \frac{1}{3} g_{\mu \nu} \operatorname{Im} \Pi_{\mathrm{em}}^{\mu \nu}\left(M, p ; \mu_{B}, T\right)
$$

$L(M)$ is lepton space factor and $f^{B}(p ; T)$ is the thermal Bose distribution

- both governed by same underlying spectral functions
- but different kinematic regimes (lightlike and timelike)

Connection with vector mesons

For lightest quarks
Im Π_{em} is well understand in vacuum:

$$
j^{\mu}=\sum_{q} e_{q} \bar{q} \gamma^{\mu} q=\frac{2}{3} \bar{u} \gamma^{\mu} u-\frac{1}{3} \bar{d} \gamma^{\mu} d-\frac{1}{3} \bar{s} \gamma^{\mu} s
$$

or grouping into isospin states $I=1(\rho), 0(\omega, \varphi)$:

$$
\begin{gathered}
j^{\mu}=\frac{1}{2}\left(\bar{u} \gamma^{\mu} u-\bar{d} \gamma^{\mu} d\right)+\frac{1}{6} \bar{d} \gamma^{\mu} d\left(\bar{u} \gamma^{\mu} u+\bar{d} \gamma^{\mu} d\right)-\frac{1}{3} \bar{s} \gamma^{\mu}{ }_{S}^{1} \\
=\frac{1}{\sqrt{2}} j_{\rho}^{\mu}+\frac{1}{3 \sqrt{2}} j_{\omega}^{\mu}+\frac{1}{3} j_{\phi}^{\mu}
\end{gathered}
$$

which leads at low M :

$$
\operatorname{Im} \Pi_{\mathrm{em}} \sim D_{\rho}+\frac{1}{9} D_{\omega}+\frac{2}{9} D_{\phi}
$$

vector meson dominance

- carry same quantum numbers as photons
- can directly decay into dileptons

- $\rho(770)$ dominant source

In-medium vector mesons (1)

ρ meson will interact with hadrons in the medium propagator will have various contributions to the self-energy

$$
D_{\rho}\left(M, q ; T, \mu_{B}\right)=\frac{1}{\left(M^{2}-m_{\rho}^{2}-\Sigma_{\rho \pi \pi}-\Sigma_{\rho M}-\Sigma_{\rho B}\right)}
$$

in-medium pion cloud

direct ρ-hadron scattering
strong broadening of ρ spectral function
\rightarrow baryons are important

Rapp, Acta Phys. Polon. B42 (2011) 2823

In-medium vector mesons (2)

QCD langrangian contains subgroup $S U_{L}\left(n_{f}\right) \times S U_{R}\left(n_{f}\right)$

- chiral symmetric in limit of vanishing quark masses
- lattice QCD: dynamical formation of $\langle q \bar{q}\rangle \sim \Delta_{\mathrm{l}, \mathrm{s}}$ breaks chiral symmetry
- profound effect on chiral partners

$$
\langle q \bar{q}\rangle=\left\langle q_{L} \bar{q}_{R}+q_{R} \bar{q}_{L}\right\rangle
$$

significant mass splitting between chiral partners $\rho(770)-a_{1}(1260)$, nucleon(940) $-N(1535), \sigma-\pi$

- Weinberg (chiral) sum rules connect SFs to condensates:

$$
\int_{0}^{\infty} \frac{d s}{\pi}\left(\Pi_{V}(s)-\Pi_{\mathrm{A}}(\mathrm{~s})\right)=m_{\pi}^{2} f_{\pi}^{2}=-2 m_{q}\langle q \bar{q}\rangle
$$

Chiral symmetry restoration

- restoration of chiral symmetry manifests itself in mixing of V and A correlators
- ρ mesons melts in hot matter while a_{1} decreases and degenerates
$>$ chiral mass splitting "burns off"

Massive Yang-Mills in hot pion gas

Chiral symmetry restoration: $\rho-a_{1}$ mixing

$$
\pi a_{1} \rightarrow \rho^{\prime} \rightarrow l^{+} l^{-}
$$

$>$ mixing "moves strength from the axialvector to the vector channel" Rapp, Wambach, Adv. Nucl.Phys. 25 (2000) 1

- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- Some experimental considerations
- The Dilepton Multitool

Outline

 \section*{Outine}

 \section*{Outine}}

[^0]

3
frextideypormexy

The experimental challenge

- di-leptons need large acceptance + high purity PID - good momentum resolution
- electron PID from a combination of a tracker with time-of-flight (velocity), energy loss measurements (dE/dx), or RICH (very high γ thresholds) information.
- muon PID from employing hadron absorber with tracking before and after the absorber
- dileptons are rare probes: production rate is very low
for example: $\frac{\rho \rightarrow e^{+} e^{-}}{\rho \rightarrow \pi^{+} \pi^{-}} \sim 5 \times 10^{-5}$
- large combinatorial background
- photon conversions from detector materials
- Dalitz decays from light mesons
- purity of muons, "fake" muons from weak decays
- signal/background can be as low as 1\%

Outline

- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- Some experimental considerations
- The Dilepton Multitool spectrometer, chronometer, thermometer, barometer, polarimeter, multimeter
- Future prospects

SPS dielectrons spectra (CERES)

First observation of a significant LMR enhancement - PRL 75 (1995) 1272

Vacuum ρ unable to describe this data
> Introduce in-medium modifications

- decrease of ρ mass (Brown-Rho)
- mass expected to scale with q-qbar condensate
- broadening of ρ spectral function (Rapp-Wambach)
- hadronic (baryons) scattering

Both rely on high baryon densities
Both showed good agreement with 158 and 40 AGeV

dashed $=$ vacuum ρ; dash-dotted $=\mathrm{DM}$; solid $=\mathrm{RB}$

SPS dimuons spectra (NA60)

Excess in LMR $\mu^{+} \mu^{-}-$EPJ C61 (2009) 711

- rules out: dropping-mass scenario
- very good agreement with Resonance Width Broadening for $\mathrm{M}_{\mu \mu}<0.9 \mathrm{GeV} / c^{2}$

RHIC dielectron spectra at 200 GeV
 \checkmark STAR

R. Rapp,PRC 63 (2001) 054907
O. Linnyk et al., PRC 85024910 (2012)

\checkmark PHENIX

Data does not support vacuum ρ

Within uncertainties agreement between experiment and theory
TABLE VIII. Reduced χ^{2} for model calculations compared to the excess data in the invariant-mass region of $0.3-1.0 \mathrm{GeV} / c^{2}$.

Model	$\chi^{2} /$ ndf	p value
Rapp: vacuum $\rho+$ QGP	$41.3 / 8$	2.4×10^{-7}
Rapp: broadened $\rho+$ QGP	$8.0 / 8$	0.32
PHSD: broadened $\rho+$ QGP	$16.5 / 8$	0.040

RHIC dielectron production from BES

- Excess established at RHIC by PHENIX \& STAR
- in-medium modification?
- indications of chiral symmetry restoration?
- RHIC Beam Energy Scan
- explore low-mass range down to SPS energies
- opportunity to determine excitation function
- dependence on temperature, total baryon density, and medium lifetime
- normalized excess yield shows no significant V_{NN} dependence
- nor does the total baryon density
- BES Phase 1: limited precision to constrain model assumptions
- especially for $V \mathrm{~s}_{\mathrm{NN}}<19 \mathrm{GeV}$

- What role can dileptons play?
- Some theoretical considerations
- The Dilepton Multitool
spectrometer, chronometer, thermometer, barometer, polarimeter, multimeter
 \section*{\section*{Outline
 \section*{\section*{Outline

 }}

- Some experimental considerations

- Future prospects

1.

8

83

- QCD Phase Diagram

\qquad

Dileptons as chronometer

- ρ peak as a clock for fireball lifetimes
- see e.g., U.Heinz, KS.Lee, PLB 259 (1991) 162
- NA60: " ρ clock"
- centrality dependence of excess yield
- reaches up to 6 generations
- Normalized excess yields in LMR track medium lifetime

- sensitive to onset of $1^{\text {st }}$ order phase transition?
- sensitive to anomalous variations in lifetime in vicinity of CP?

Dileptons as chronometer

- Integrated excess radiation
- measured below free ρ / ω mass
- results from HADES, NA60, STAR look promising
- Experimental uncertainties are large
- high statistics measurements needed

STAR, PLB 750 (2015) 64
STAR, arXiv 1810.10159

- The Dilepton Multitool
spectrometer, chronometer, thermometer, barometer, polarimeter, multimeter
barometer, polarimeter, multimeter
- Future prospects

 \section*{\section*{Outline}}
 \section*{\section*{Outline}} dor och

Bn

$$
1
$$

-
-
$-$

Dileptons as thermometer

Reall thermal dilepton radiation:

- LMR - dilepton spectra saturated by light vector mesons
- IMR - quark-antiquark continuum

IMR dilepton rate

$$
\frac{d R_{l l}}{d M} \propto\left(\frac{M}{T}\right)^{\frac{3}{2}} \exp \left(-\frac{M}{T}\right)
$$

- M by construction Lorentz-invariant
- independent of flow \rightarrow no blue-shift effects
- average over the system evolution
- Other bulk temperature measurements rely on hadron yields and spectra
- chemical and kinetic freezout
- separation between $T_{\text {chem }}$ and $T_{\text {kin }}$ grows with $V s_{\mathrm{NN}}$

LMR temperature measurements

At SPS/RHIC energies

- predominantly thermal dileptons from in-medium ρ
- include Breit-Wigner in $\mathrm{T}_{\text {LMR }}$ fit
- recent STAR results at $V \mathrm{~s}_{\mathrm{NN}}=27$ and 54 GeV show similar mass spectra and extracted $\mathrm{T}_{\text {LMR }}$
$>$ compared with NA60 at 17.3 GeV

$>$ temperatures close to $T_{c h}$ and $T_{p c}$
- emitted from hadronic phase
- predominantly around phase transition

LMR temperature measurements at higher μ_{B}

At lower energies

- higher baryon density ($\mu_{\mathrm{B}}^{\sim} 700-900 \mathrm{MeV}$)
- in-medium ρ substantially modified through frequent scattering with baryons
- almost structureless exponential distribution
$>$ HADES: $T_{L M R}=70-80 \mathrm{MeV}$
- AutAu @ 2.42GeV and Ag+Ag @ 2.55 GeV

IMR temperature measurements

$>$ Access to $q \bar{q}$ radiation

- $\mathrm{NA} 60^{+}$first $\mu^{+} \mu^{-}$measurement: $\mathrm{T}_{\mathrm{IMR}}=205 \pm 12 \mathrm{MeV}$
- range $1.2<\mathrm{M}<2.0 \mathrm{GeV} / \mathrm{c}^{2}$
- Recent STAR IMR e ${ }^{+} e^{-}$results: $\mathrm{T}_{\mathrm{IMR}} \sim 320 \mathrm{MeV}$
- compare with $\mathrm{T}_{\text {IMR }}(\mathrm{NA} 60)^{++}=246 \pm 15 \mathrm{MeV}$
- range $1.2<\mathrm{M}<2.5 \mathrm{GeV} / \mathrm{c}^{2}$
- average $\mathrm{T}_{\mathrm{IMR}}$ higher due to longer lifetime?
- supported by generally higher yields

\checkmark Average $T_{I M R}$ well above $T_{p c}$

Outline

- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- Some experimental considerations
- The Dilepton Multitool
spectrometer, chronometer, thermometer,
barometer, polarimeter, multimeter
- Future prospects

Dileptons as barometer

m_{T} distributions:

take medium flow into account

$$
\frac{1}{m_{T}} \frac{d N}{d m_{T}} \propto \exp \left(-\frac{m_{T}}{T_{e f f}}\right)
$$

- LMR: inverse slopes show mass dependence $-T_{\text {eff }}$ linearly rises, and peaks at m_{ρ} -radiation pushed by radial flow
- IMR: no indication of mass dependence
- sudden drop of $\mathrm{T}_{\text {eff }}$ by $\sim 50 \mathrm{MeV}$

-dominant source from hadronic to partonic matter
$-T_{\text {eff }} \sim 200 \mathrm{MeV}$

Dileptons as barometer

v_{2} from π^{0} Dalitz decay consistent with simulations based on published $\pi^{0} \mathrm{~V}_{2}$

Azimuthal anisotropy

challenge: isolate v_{2} of excess dielectrons
to distinguish between HG and QGP need uncertainties <4\% ...

Dileptons as a polarimeter

Use the angular distribution of dilepton rates

$$
\frac{d R}{d^{4} q d \Omega_{l}}=N\left(1+\lambda_{\theta} \cos ^{2} \theta_{l}+\lambda_{\varphi} \sin ^{2} \theta_{l} \cos 2 \varphi_{l}+\cdots\right)
$$

- anistropy coefficients λ :
- give info on γ^{*} polarization
- relate to production mechanisms
- e.g., $\lambda_{\theta}=+1(T)$ for $D Y$, and $-1(L)$ in $\pi \pi$ annihilation
- integrated over M, q_{T}, y coefficients $\lambda_{\theta} \leqslant 1 \%$
- expect small, but finite polarization in a thermal system
- consistent NA60's null finding within uncertainties
- need high-statistics future experiments
- systematic study of all relevant process required

Dileptons as multimeter: electrical conductivity

- Electrical conductivity defined as

$$
J^{\mu}=\sigma_{e l} E^{\mu}
$$

- Can be extracted from EM correlator in the zero- ${ }^{0.05}$ momentum, low-energy limit:

$$
\sigma_{e l}(T)=-e^{2} \lim _{q_{o} \rightarrow 0} \frac{\operatorname{Im} \Pi_{\mathrm{em}}\left(\mathrm{q}_{0}, \vec{q}=0, T\right)}{q_{0}}
$$

$>$ wide range of theory predictions

e.g. Greif, Greiner, Denicol, PRD93 (2016) 096012 Atchinson, Rapp, J.Phys.Conf.Ser. 832 (2017) 012057

Experimental challenge:

- low invariant mass and low p_{T}
- precise knowledge of (elastic) cross sections among hadrons

HMBT, Atchison \& Rapp
Boltzmann eq., Greif et al.
Boltzmann eq., Greif et al.
Chapman-Enskog, Ghosh et al.
--- ChPT, Fernández-Fraile \& Nicola SYM, Huot et al. FRG-VMD, Sass \& Tripolt --- Hologr. mod., Finazzo \& Rougemont $\bullet \quad$ Lattice QCD - Aarts et al.

- QCD Phase Diagram
- What role can dileptons play?
- Some theoretical considerations
- The Dilepton Multitool
spectrometer, chronometer, thermometer, barometer, polarimeter, multimeter
- Future prospects

Outline

- Some experimental considerations
 - Some experimental considerations

Future prospects

barometer, polarimeter, multimeter

8

1

Future Prospects

Future Measurements

- high statistics
- high interaction rates
- large acceptance
- precise references
- cocktail (mesons, HF, DY)
- multipurpose detectors
- good control on backgrounds
- materials: conversion rejection
- $\mathrm{e}^{+/-} \mu^{+/-}$purity

Summary

- Dilepton measurements provide access to wide range of unique physical observables
- lifetime, temperature, transport properties, chiral symmetry restoration, ...
- Potential of accurate dilepton measurements is well demonstrated at SPS, SIS18, RHIC, and LHC energies
- combined with new theoretical developments and insights
- For future experimental progress highstatistics data is key
- an increasing world-wide effort to map out the QCD phase map and deliver its landmarks

[^0]: spectrometer, chronometer, thermometer,
 barometer, polarimeter, multimeter

 - Future prospects

 2 - 120

