RHIC-BES seminar – 09/05/2023

Vector meson polarization from pp to Pb-Pb collisions at the LHC

Luca Micheletti (INFN Torino)

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

Luca Micheletti 09/05/2023 RHIC-BES seminar

 \checkmark For a vector meson (v) the total angular momentum (J, J_z) state can be expressed as:

$$|\mathbf{v}: \mathbf{J}, \mathbf{J}_{z}\rangle = \mathbf{b}_{+1}|1, +1\rangle + \mathbf{b}_{0}|1, 0\rangle + \mathbf{b}_{-1}|1, -1\rangle$$

<u>Polarization \Leftrightarrow decay products angular distribution</u>

EPJC 69 (657-673), 2010, Faccioli et al.

- $W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta+\lambda_{\phi}\sin^2\theta\cos2\phi+\lambda_{\theta\phi}\sin2\theta\cos\phi)$
- θ and φ: polar and azimuthal angle of the daughter particle with respect to the quantization axis

Luca Micheletti 09/05/2023 RHIC-BES seminar

 \checkmark For a vector meson (v) the total angular momentum (J, J_z) state can be expressed as:

 $|\boldsymbol{\nu}:\boldsymbol{J},\boldsymbol{J}_{z}\rangle = \boldsymbol{b}_{+1}|1,+1\rangle + \boldsymbol{b}_{0}|1,0\rangle + \boldsymbol{b}_{-1}|1,-1\rangle$

Polarization \Leftrightarrow decay products angular distribution \bigotimes EPJC 69 (657-673), 2010, Faccioli et al.

• $W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta+\lambda_{\phi}\sin^2\theta\cos2\phi+\lambda_{\theta\phi}\sin2\theta\cos\phi)$

- θ and ϕ : polar and azimuthal angle of the daughter particle with respect to the **quantization axis**
- $\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi}$: polarization parameters

 $\begin{pmatrix} \lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi} \end{pmatrix} = (0,0,0) \implies \text{No polarization}$ $\begin{pmatrix} \lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi} \end{pmatrix} = (+1,0,0) \implies \text{Transverse polarization}$ $\begin{pmatrix} \lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi} \end{pmatrix} = (-1,0,0) \implies \text{Longitudinal polarization}$

Luca Micheletti 09/05/2023 RHIC-BES seminar

 \checkmark For a vector meson (v) the total angular momentum (J, J_z) state can be expressed as:

 $|\boldsymbol{\nu}:\boldsymbol{J},\boldsymbol{J}_{z}\rangle = \boldsymbol{b}_{+1}|1,+1\rangle + \boldsymbol{b}_{0}|1,0\rangle + \boldsymbol{b}_{-1}|1,-1\rangle$

Polarization \Leftrightarrow decay products angular distribution \bigotimes EPJC 69 (657-673), 2010, Faccioli et al.

 $W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos^2\phi + \lambda_{\theta\phi}\sin^2\theta\cos\phi)$

Spin alignment \Leftrightarrow decay products angular distribution

• $W(\cos\theta) \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta$

 ρ_{00} = spin density matrix element

 $\rho_{00} = 1/3$ no spin alignment

Luca Micheletti 09/05/2023 RHIC-BES seminar

 \checkmark For a vector meson (v) the total angular momentum (J, J_z) state can be expressed as:

 $|\mathbf{v}: \mathbf{J}, \mathbf{J}_{\mathbf{z}}\rangle = \mathbf{b}_{+1}|1, +1\rangle + \mathbf{b}_{\mathbf{0}}|1, 0\rangle + \mathbf{b}_{-1}|1, -1\rangle$

Polarization \Leftrightarrow decay products angular distribution \bigotimes EPJC 69 (657-673), 2010, Faccioli et al.

 $W(\cos\theta,\phi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta + \lambda_{\phi}\sin^2\theta\cos^2\phi + \lambda_{\theta\phi}\sin^2\theta\cos\phi)$

Spin alignment \Leftrightarrow decay products angular distribution

• $W(\cos\theta) \propto (1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta$

 ρ_{00} = spin density matrix element

 $\rho_{00} = 1/3$ no spin alignment

The connection among ρ_{00} and λ_{θ} depends on the spin state of the daughter particle system

Polarization: reference frames

Luca Micheletti 09/05/2023 RHIC-BES seminar

Crucial to define the polarization axis according the physics goal (production, QGP like effects, ecc...)

Reference frames

- Helicity (HE): direction of vector meson in the collision center of mass frame
- **Collins-Soper** (CS): the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame

EPJC 69 (657-673), 2010, Faccioli et al.

• Event Plane based frame* (EP): axis orthogonal to the event plane in the collision center of mass frame

Polarization: reference frames

Luca Micheletti 09/05/2023 RHIC-BES seminar

Crucial to define the polarization axis according the physics goal (production, QGP like effects, ecc...)

Reference frames

- Helicity (HE): direction of vector meson in the collision center of mass frame
- **Collins-Soper** (CS): the bisector of the angle between the beam and the opposite of the other beam, in the vector meson rest frame

EPJC 69 (657-673), 2010, Faccioli et al.

• Event Plane based frame* (EP): axis orthogonal to the event plane in the collision center of mass frame

* The Normal to the Event Plane is by definition parallel to the to \vec{B} and \vec{L} vectors

Polarization in pp collisions

Luca Micheletti 09/05/2023 RHIC-BES seminar

- Important to constrain quarkonium production mechanisms in hadronic collisions
 - ...Before LHC model provided different predictions for quarkonium polarization according to the **production mechanism**
 - Color Singlet: Longitudinal polarization
 NRQCD: Transverse polarization
 - Some inconsistencies among different experimental results (CDF, D0)
 - LHC measurements expected to help in the discrimination among different models

Luca Micheletti 09/05/2023 RHIC-BES seminar

- Important to constrain quarkonium production mechanisms in hadronic collisions
 -But no strong J/ψ polarization observed by ALICE and LHCb at forward rapidity and up to $p_T = 15$ GeV/c

Luca Micheletti 09/05/2023 RHIC-BES seminar

- Important to constrain quarkonium production mechanisms in hadronic collisions
 - ...But no strong J/ψ polarization observed by ALICE and LHCb at forward rapidity and up to $p_T = 15$ GeV/c
 - PRL 108 (2012) 082001
 EPJC 78 (2018) 562

 EPJC 73 (2013) 11
 JHEP 12 (2017) 110
 - No significant prompt J/ψ and $\psi(2S)$ polarization observed by **CMS** at mid rapidity and up to $p_T = 70$ GeV/c

PLB 727 (2013) 381 PLB 761 (2016) 31

Models not able to describe data

Luca Micheletti 09/05/2023 RHIC-BES seminar

- Important to constrain quarkonium production mechanisms in hadronic collisions
 - Great theoretical effort to understand the difference among data and models
 - Recent improvements in the theoretical description of J/ψ production with ICEM and CGC + NRQCD

Ś

Signal America (2018) 057, Yan-Qing Ma et al.

PRD 104 (2021) 9, Cheung, Vogt

- ✓ General agreement among all results at LHC energies ($\lambda_{\theta} \sim 0$)
 - ✓ Models reproduce a smooth trend vs $p_{\rm T}$ close to zero polarization

Luca Micheletti 09/05/2023 RHIC-BES seminar

- Important to measure the polarization of all states contributing to J/ψ via feed-down
 - $\downarrow J/\psi \leftarrow \chi_c(nP) \sim 30\%$ $\downarrow J/\psi \leftarrow \psi(2S) \sim 10\%$
 - For $\psi(2S)$ all measurements give $\lambda_{\theta} \sim 0$
 - Interestingly CMS observed a sizeable relative polarization between χ_{c1} and χ_{c2} , reproduced by NRQCD

S PRL 124, 162002 (2020), CMS collaboration

• Possibility to estimate contribution from χ_c to J/ ψ polarization and to set better constraints to charmonia production

Polarization in pp: bottomonia

Luca Micheletti 09/05/2023 RHIC-BES seminar

- Bottomonia polarization extensively explored at the LHC by many experiments
 - Measurements at mid (CMS) and forward (ALICE, LHCb) rapidity are all comparible with $\lambda_{\theta} \sim 0$

Http://www.alternative.com/alt

- Also excited states are compatible with $\lambda_{ heta} \sim 0$
 - \succ Y(2S + 3S) found λ_{θ} ~ +1 by E866

PRL 86 2529, E866 collaboration

Polarization in pp: open charm

Luca Micheletti 09/05/2023 RHIC-BES seminar

First measurement of the prompt and non-prompt D*+ spin alignment at the LHC

arxiv:2212.06588, accepted by PLB

- Measurement performed with respect to the helicity axis
- Prompt D^{*+} compatible with no polarization
- Non-prompt $D^{*+} \rho_{00} > 1/3$ due to the helicity conservation $(B(S = 0) \rightarrow D^{*+}(S = 1) + X)$
- Important baseline for studies in Pb-Pb collisions!

Polarization in AA collisions

Luca Micheletti 09/05/2023 RHIC-BES seminar

Polarization gives access to different time scales and various mechanisms

Polarization gives access to different time scales and various mechanisms

💰 Magnetic field

- Huge intensity $(|\vec{B}| \sim 10^{14} \text{ T})$
- Short-living $(\tau \sim 1 \text{ fm}/c)$
- No strong *b* dependence
 - Se NPA 803 (2008), Kharzeev et al.

Luca Micheletti 09/05/2023 RHIC-BES seminar

Polarization gives access to different **time scales** and various **mechanisms**

Magnetic field

- Huge intensity $(|\vec{B}| \sim 10^{14} \text{ T})$
- Short-living $(\tau \sim 1 \text{ fm}/c)$
- No strong *b* dependence
- Se <u>NPA 803 (2008)</u>, Kharzeev et al.

ngular momentum

- Fast rotating (~ 10^{22} s^{-1})
- Affects system evolution
- *b* dependence

PRC 77 (2008) 024906, Becattini et al.

Luca Micheletti 09/05/2023 RHIC-BES seminar

Polarization gives access to different time scales and various mechanisms

Magnetic field

- Huge intensity $(|\vec{B}| \sim 10^{14} \text{ T})$
- Short-living $(\tau \sim 1 \text{ fm}/c)$
- No strong *b* dependence
- Theory predictions:

$$\rho_{00}(B) = \frac{1}{3} - \frac{1}{9}\beta^2 \frac{Q_1 Q_2}{m_1 m_2} B^2$$

$$\circ \ \rho_{00} > \frac{1}{3}$$
 for K^{*0} , ρ^0 ecc.

$$\circ \rho_{00} < \frac{1}{3}$$
 for K^{*+}, ρ^+ ecc..

ngular momentum

- Fast rotating (~ 10^{22} s^{-1})
- Affects system evolution
- *b* dependence
- Theory predictions:

$$\rho_{00}(\omega) = \frac{1}{3} - \frac{1}{9}(\beta\omega)^2$$

 $\circ \rho_{00} < \frac{1}{3}$ for all vectors

PRC 97, 034917 (2018), Yang et al.

Luca Micheletti 09/05/2023 RHIC-BES seminar

Polarization gives access to different **time scales** and various **mechanisms**

K^{*0} & ϕ polarization in Pb-Pb

 $\oint p_{\rm T}$ – dependence

- $\rho_{00} < 1/3$ for K^{*0} and ϕ in Pb–Pb collisions at low $p_{\rm T}$
- $ho_{00} \sim 1/3$ for:
 - $p_{\mathrm{T}}^{K^{*0}} > 2 \ \mathrm{GeV}/c$ and $p_{\mathrm{T}}^{\phi} > 0.8 \ \mathrm{GeV}/c$
 - a randomized event plane (RP)
 - $rac{1}{2} K_{S}^{0}$ (Spin = 0) in Pb–Pb

 \odot K^{*0} and ϕ in proton–proton collisions

K^{*0} & ϕ polarization in Pb-Pb

 $p_{\rm T}$ – dependence

- $ho_{00} < 1/3$ for K^{*0} and ϕ in Pb–Pb collisions at low $p_{\rm T}$
- 🕻 Centrality dependence
 - ρ_{00} deviates w.r.t. 1/3 at low $p_{\rm T}$ in semi-central collisions
 - *K*^{*0}: 3.2σ (PP), 2.6σ (EP)
 - φ: 2.1σ (PP), 1.9σ (EP)
 - \oplus No centrality dependence ($ho_{00} \sim 1/3$) of ho_{00} at high $p_{\rm T}$
 - Results consistent with expectations from quark recombination at the phase boundary

PLB 629 (2005), Liang, Wang

Quarkonium polarization in Pb-Pb

Luca Micheletti 09/05/2023 RHIC-BES seminar

ALICE measured J/ψ polarization in Pb-Pb

PLB 815 (2021) 136146

- λ_{θ} shows a maximum 2σ deviation w.r.t zero in HE and CS for $2 < p_{\rm T} < 4$ GeV/c
 - Compatible within the large uncertainties with ALICE results in pp collisions

EPJC 78 (2018) 562, ALICE collaboration

 \diamond 3 σ difference with LHCb in pp collisions in HE

EPJC 73 (2013) 11, LHCb collaboration

Quarkonium polarization in Pb-Pb

Luca Micheletti 09/05/2023 RHIC-BES seminar

 \checkmark ALICE measured J/ ψ polarization in Pb-Pb

😂 <u>PLB 815 (2021) 136146</u>

- λ_{θ} shows a maximum 2σ deviation w.r.t zero in HE and CS for $2 < p_{\rm T} < 4$ GeV/c
 - Compatible within the large uncertainties with ALICE results in pp collisions

EPJC 78 (2018) 562, ALICE collaboration

 3σ difference with LHCb in pp collisions in HE \cong EPJC 73 (2013) 11, LHCb collaboration

- \checkmark ALICE measured $\Upsilon(1S)$ polarization in Pb-Pb
 - λ_{θ} compatible with zero but the measurement is still strongly limited by the statistics

Quarkonium polarization in Pb-Pb

Luca Micheletti 09/05/2023 RHIC-BES seminar

- Can Cold Nuclear Matter (CNM) effects affect J/ψ polarization in Pb-Pb collisions?
 - Improved Color Evaporation Model (ICEM)
 - > Direct J/ψ polarization (no feed-down)
 - CNM effects only in Pb-Pb
 - No Hot Nuclear Matter effects

PRC 105, 055202, Cheung, Vogt

- ICEM predicts small difference among pp and Pb-Pb results (<u>assuming no QGP formation</u>)
- CNM effects are not expected to modify significantly the polarization
- Impact of feed-down from excited states to be investigated

J/ψ polarization in Pb-Pb collisions

Luca Micheletti 09/05/2023 RHIC-BES seminar

ALI-PUB-521052

In the dilepton channel:

$$\lambda_{\theta} = \frac{1 - 3\rho_{00}}{1 + \rho_{00}} \qquad \begin{cases} \lambda_{\theta} > 0 \to \rho_{00} < 1/3 \\ \lambda_{\theta} < 0 \to \rho_{00} > 1/3 \end{cases}$$

First measurement of quarkonium polarization with respect to the Event Plane

arxiv:2204.10171, accepted by PRL

• Centrality dependence: Small but significant (3.5 σ) polarization observed in 40-60% and 2 < $p_{\rm T}$ < 6 GeV/c

J/ψ polarization in Pb-Pb collisions

Luca Micheletti 09/05/2023 RHIC-BES seminar

ALI-PUB-521057

In the dilepton channel:

$$\lambda_{\theta} = \frac{1 - 3\rho_{00}}{1 + \rho_{00}} \qquad \begin{cases} \lambda_{\theta} > 0 \rightarrow \rho_{00} < 1/3 \\ \lambda_{\theta} < 0 \rightarrow \rho_{00} > 1/3 \end{cases}$$

First measurement of quarkonium polarization with respect to the Event Plane

arxiv:2204.10171, accepted by PRL

- $p_{\rm T}$ dependence: 30-50%: significant deviation (3.9 σ) at low transverse momentum (2 < $p_{\rm T}$ < 4 GeV/c)
- Similarly to light flavors (K^{*0} , ϕ) maximum polarization for semicentral collisions at low $p_{\rm T}$

See <u>PRL 125 (2020) 012301</u>

BUT

- Not clear which contribution (vorticity and / or magnetic field) is the dominant one
- Can similar approach, used for ϕ meson, be extended to J/ψ ?

arXiv:2205.15689, Xin-Li Sheng et al.

Summary and perspectives

	K^{*0}	ϕ	D^{*+}	J/ψ	ψ(2S)	Xc	Υ(nS)
рр	$\rho_{00} \sim 1/3$	$\rho_{00} \sim 1/3$	$ ho_{00} \sim 1/3$	$ ho_{00} \sim 1/3$	$ ho_{00} \sim 1/3$	$\rho_{00} \neq 1/3$	$ ho_{00} \sim 1/3$
Pb-Pb	$\rho_{00} < 1/3$	$\rho_{00} < 1/3$?	$ \rho_{00} < 1/3 $?	?	$ ho_{00}{\sim}1/3$

Luca Micheletti 09/05/2023 RHIC-BES seminar

