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Even simulating a single proton means solving an 
infinite-body problem! Quantum mechanics and 
relativity are in play and interactions are strong!
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Theory developments

Hardware implementation, 
benchmark, and co-development

LATTICE QCD: A MULTI-PRONG PROGRAM THAT SIMULATES QCD NON-PERTURBATIVELY

Algorithmic developments
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Theory developments

How to define QCD/Standard Model 
on a finite grid?

How to preserve/recover symmetries, 
e.g., gauge symmetry, chiral symmetry, 
rotational symmetry?

How to take infinite-volume and continuum 
limits? How to quantify systematics?

How to obtain scattering amplitudes?



Algorithmic 
developments



Algorithmic 
developments

How to importance sample vacuum 
gauge-filed configurations?

How to evaluate quark propagators 
(invert large matrices)?

How to contract quarks and form 
correlation functions efficiently?
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Hardware 
implementation, 
benchmark, and 
co-development



� Fluctuations in the action
� A competitive result in 1983
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Yes!      lattice!44

QCD ON A CHIP!

        times or more slower 
than current supercomputers! 
Only few Kbytes of memory!

1010



Hardware 
implementation, 
benchmark, and 
co-development

Which tasks can be parallelized and 
which tasks are done in series?

What are the memory requirements and 
what kind of node connectivity is required?

Can we take advantage of GPUs? Which 
parts of the computations are more suitable 
for given architecture?

Image credit: https://www.premiumbeat.com/
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Titan supercomputer, Oak Ridge National Laboratory, USA

PUTTING ALL THESE HEROIC THEORY, ALGORITHM, AND CO-DESIGN EFFORTS TO 
WORK AND HAVING ACCESS TO HUNDREDS OF MILLION CPU HOURS ON THE LARGEST 
SUPERCOMPUTERS IN THE U.S. HAS LED TO MANY IMPRESSIVE RESULTS.

Oak Ridge National Laboratory



A SINGLE-WEAK PROCESS
pp ! de+⌫e

Wagman et al (ZD) (NPLQCD), 
Phys.Rev.D96,114510 (2017).
Illa et al (ZD) (NPLQCD), Phys. 
Rev. D103, 5, 054508 (2021).
Amarasinghe et al (ZD) (NPLQCD), 
arXiv:2108.10835 [hep-lat] (2021).
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Rev. D96, 054505 (2017).
Shanahan et al (ZD) (NPLQCD), Phys. 
Rev. Lett. 119, 062003 (2017).
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Savage et al (ZD) [NPLQCD], Phys. 
Rev. Lett. 119,062002 (2017).
[Highlighted by Department of Energy]

Chang et al (ZD) (NPLQCD), Phys. 
Rev. Lett. 120, 5, 152002 (2018).
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For a recent review see: ZD, Detmold, Orginos, Parreño, Savage, Shanahan, Wagman, Phys. Rept. 900, 1-74 (2021).
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LATTICE QCD IS SUPPORTING A MULTI-BILLION DOLLAR 
EXPERIMENTAL PROGRAM!

Does this mean we are all set? 
…Well, unfortunately not!



THREE FEATURES MAKE LATTICE QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with 
the number of quarks.

iii) Excitation energies of nuclei are much smaller than 
the QCD scale.

ii) There is a severe signal-to-noise 
degradation.

Detmold and Orginos (2013)
Detmold and Savage (2010)
Doi and Endres (2013)

Paris (1984) and Lepage (1989)
Wagman and Savage (2017, 2018)

Beane at al (NPLQCD) (2009)
Beane, Detmold, Orginos, Savage (2011)
ZD (2018)
Briceno, Dudek and Young (2018)



i) Studies of nuclear isotopes, dense matter, and phase diagram of QCD…both with 
lattice QCD and with ab initio nuclear many-body methods.

LQCD ! LQCD � iµ
X

f

q̄f�
0qf

Path integral formulation:

e�S[U,q,q̄]

with a complex action:

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

DOI:10.1063/1.3131566

Image credit: NSF/LIGO/Sonoma State 
University/A. Simonnet



ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang…

…and a wealth of dynamical response functions, transport properties, hadron 
distribution functions, and non-equilibrium physics of QCD.

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

Path integral formulation:

U(t) = e�iHt

Hamiltonian evolution:

Image credit: Chaudhuri, Advances in High Energy Physics, vol. 2013,\.

<latexit sha1_base64="+yJNp4LbAXCBOeJIbbU60VGwKAc=">AAAB/HicbVBNS8NAEN3Ur1q/oj16WSyCh1ISEfVY9OKxomkLaSyb7aZdutmkuxshhPhXvHhQxKs/xJv/xm2bg7Y+GHi8N8PMPD9mVCrL+jZKK6tr6xvlzcrW9s7unrl/0JZRIjBxcMQi0fWRJIxy4iiqGOnGgqDQZ6Tjj6+nfueRCEkjfq/SmHghGnIaUIyUlvpmlTxk9M516pN6z0cim+Re3jdrVsOaAS4TuyA1UKDVN796gwgnIeEKMySla1ux8jIkFMWM5JVeIkmM8BgNiaspRyGRXjY7PofHWhnAIBK6uIIz9fdEhkIp09DXnSFSI7noTcX/PDdRwaWXUR4ninA8XxQkDKoITpOAAyoIVizVBGFB9a0Qj5BAWOm8KjoEe/HlZdI+bdjnDfv2rNa8KuIog0NwBE6ADS5AE9yAFnAABil4Bq/gzXgyXox342PeWjKKmSr4A+PzB4r8lLY=</latexit>

eiS[U,q,q̄]



An opportunity to explore 
new paradigms and new 

technologies: 
Turning to quantum 

simulation

https://www.pechakucha.com/

Quantum Information Science and Technology for Nuclear Physics, Beck, Carlson, 
Davoudi, Formaggio, Quaglioni, Savage, et al, arXiv:2303.00113 [nucl-ex].

Quantum Simulation for High Energy Physics, Bauer, ZD et al, arXiv:2204.03381 
[quant-ph], PRX Quantum 4 (2023) 2, 027001.



ADDITIONALLY THE SIGN PROBLEM FORBIDS:A RANGE OF QUANTUM SIMULATORS WITH VARING CAPACITY AND CAPABILITY

UNIVERSITY OF MARYLANDHarvard
Atomic systems (trapped 
ions, cold atoms, Rydbergs) 

Condensed matter systems 
(superconducting circuits, 
dopants in semiconductors 
such as in Silicon, NV 
centers in diamond) 

Laser-cooled polar 
molecules 

Optical quantum 
computing

Innsbruck

IO Palaiseau

USTC

LMU/MPQ

Xanadu

Duke/UMD



Starting from the Standard Model 

Both bosonic and fermionic DOF are 
dynamical and coupled, exhibit both global 
and local (gauge) symmetries, relativistic 
hence particle number not conserved, vacuum 
state nontrivial in strongly interacting theories.

Attempts to cast QFT problems in a language closer to quantum chemistry and NR simulations:
Kreshchuk, Kirby, Goldstein, Beauchemin, Love, arXiv:2002.04016 [quant-ph], Kreshchuk, Jia, 
Kirby, Goldstein, Vary, Love, Entropy 2021, 23, 597, Liu, Xin, arXiv:2004.13234 [hep-th], 
Barata , Mueller, Tarasov, Venugopalan (2020)

HOW SIMILAR TO QUANTUM CHEMISTRY SIMULATIONS?

Image credit: CERN courier
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Theory developments

Algorithmic developments

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: A MULTI-PRONG EFFORT

Implementation, benchmark, 
and co-development

Major focus on my work with my group and collaborators! Apologies for the missing references.



Theory developments

How to formulate QCD in the Hamiltonian language?

What are the efficient formulations? Which bases 
will be most optimal toward the continuum limit?

How to preserve the symmetries? How much 
should we care to retain gauge invariance? 

How to quantify systematics such as finite volume, 
discretization, boson truncation, time digitization, etc?
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U.-J. Wiese: Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.

788 C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org

Re
vi

ew
Ar

tic
le

U.-J. Wiese: Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

charge − 1
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2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
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i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
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fields
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baryon numbers B = ± 1
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baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Fermion hopping term Energy of color 
electric field

Energy of color 
magnetic field

Kogut and Susskind formulation:

Hamiltonian formalism is a more natural than the path integral formalism for quantum 
simulation/computation:

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
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Hermitean generators T a of SU(N) — the group of uni-
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1
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∑
f,i ψ

f,i
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HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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FIG. 3. On a grid (left panel) of irreducible representations organized by their dimensionality and plaquette connectivity (as
shown in Fig. 2), support of the the ground state wavefunction  (R), shown for g = 0.5, is localized to low irrep dimensionalities
(center panel). Conjugate irreps appear on the left half of the grid with real irreps appearing along the center vertical. The
right panel shows log (R) on a scaled quadratic grid for visual clarity of the convergence structure.
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FIG. 4. Mass gap (left panel) and vacuum expectation value of the Hermitian magnetic plaquette operator ⇤̂+ ⇤̂† (right panel)
for one plaquette in SU(3) gauge theory as a function of ⇤p, the irrep tensor index truncation. Convergence is demonstrated
for six di↵erent values of the coupling (g = 0.1 to 1). Inset panels show the percent deviation in observables from their values
without truncation. The inset x-axes are squared for visual clarity of the convergence structure.

structure of the irrep-space wavefunction is visually clear.

The exponential localization of the single plaquette wavefunction extends this profitable convergence also to static

and dynamic observables. Figure 4 shows the convergence of the mass gap and the magnetic plaquette operator

expectation value at a range of couplings. Static observables for the unit coupling are found to converge to 10�8

percent of their asymptotic values at a low irrep truncation of ⇤p = 4 up to and including tensor irreps with four

fundamental and four anti-fundamental indices. As g is lowered and the wavefunction disperses in irrep space,

truncation errors naturally become more dramatic. Interestingly, the mass gap demonstrates low g-dependence at

high truncation, ⇤p, throughout the shown coupling range. The insets of Fig. 4 provide convergence information

with tensor index truncations scaled quadratically, as in the right panel of Fig. 3, such that the linear trajectories

experienced at large tensor index truncations express Gaussian-type convergence structure. From these insets, one

can connect necessary quantum resources to the attainable precision of local observables as the weak-coupling limit is

approached. For example, percent-level precision for these quantities at couplings g � 0.3 is expected to be achievable

with ⇤p  10 or equivalently 3-4 qubits per index register. These features are expected to apply to the link-space

localization and convergence on larger lattices of SU(3) gauge theory. This suggests that SU(3) Yang-Mills simulations

in a cubic spatial lattice of extent 10⇥ 10⇥ 10 could be performed with <
⇠ 104 qubits at this coupling.

It is important to keep in mind that our analysis has been performed in the electric basis, and requires increasing
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FIG. 17. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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FIG. 18. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.

tonian H
0(KS):

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

x=0

⇥
 

†(x)U(x) (x + 1) + h.c.
⇤
+

N2X

x=0

E2(x) + µ

N3X

n=0

(�1)n
 

†(x) (x), (89)

where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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FIG. 17. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.
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where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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FIG. 17. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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FIG. 18. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.

tonian H
0(KS):

H
0(KS)

⌘
2

ag2
H

(KS)

= x

N1X

x=0

⇥
 

†(x)U(x) (x + 1) + h.c.
⇤
+

N2X

x=0

E2(x) + µ

N3X

n=0

(�1)n
 

†(x) (x), (89)

where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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FIG. 17. The quantity �E0

E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function

of ⇤ for various values of x, and for the 1st, 21st, and 283rd
lowest-lying states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The dashed lines denote the first
⇤ values at which the corresponding scaled energies become
equal or less than 10% of their values at ⇤ = 8 (which are
approximated as the ⇤ ! 1 values). When needed for pre-
sentational clarity, the points are artificially displaced along
the horizontal axis by a small amount. The numerical val-
ues associated with these plots are provided in Supplemental
Material.
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E0 ⌘
E0

(⇤)�E0
(⇤=8)

E0(⇤)
as a function of

p
x for given values of ⇤ as denoted in the plots, and for the

1st and 21st states in the spectrum of the KS Hamiltonian
in the physical Hilbert space with N = 6 and ⌫ = 1 with
PBC. E

0(⇤) is the scaled energy corresponding to the scaled
Hamiltonian in Eq. (89). The asymptotic (x ! 1) values of
the quantity, r, are obtained from the fits to data points in
each case with an exponentially varying function of

p
x, and

are denoted in the plots. The colored regions denote the
p

x

values excluded from the fits. The numerical values associated
with these plots are provided in Supplemental Material.
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where x = 1

a2g2 , µ = 2m

g2a
, and N1, N2, and N3 are defined

in Sec. II. The limit x ! 0 corresponds to the strong-
coupling limit of the theory, while the limit x ! 1 at a
fixed m

g
provides a trajectory in parameter space along

which the continuum limit can be taken. The matrix el-
ements of this Hamiltonian can be formed using the KS
angular-momentum or LSH bases, giving rise to identical
results in the physical sector, which serves as a strong
check of the newly-developed LSH formulation for the
1+1 D case. While e�cient classical simulations such as
those based on tensor networks have enabled studies of
SU(2) lattice gauge theories with a large number (hun-
dreds) of sites [16, 90–92], enabling the continuum limit
of the results to be taken systematically, such considera-
tions are not the focus of this work. Instead, the aim is
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4 and � = 2 (except for the V = 124, which has 1000 configurations). Refer
to Fig. 3 for more details.

plots the relative systematic error induced by
the di↵erent digitization schemes for the data
shown in Fig. 6. The Polyakov loop is close to
zero in the confined phase, and so we see pre-
dominantly noise at lower �s. However, in the
deconfined phase, the curves in Fig. 7 appear
to be flat, indicating that the e↵ect of the dig-
itization for each � value is simply an overall
multiplication by a constant smaller than one.
Figure 8 shows the relative error averaged over
the range 2.4  �  2.6 as a function of bits-
per-link, making it clear that this multiplicative
constant approaches zero as the bits-per-link are
reduced, again consistent with our arguments
in Sec. III B. Figure 8 also shows convergence
to the undigitized result explicitly. Projection
with APR produces less error than with the L2
norm and appears to converge to the undigitized
value quicker, but our data are unable to deter-
mine whether any systematic error survives in
the limit of large bits-per-link for either scheme.
We see no error due to digitization and projec-
tion in the critical value of � where the system
deconfines, a positive indication as projection
should not change the phase dynamics.

Finally, we turn to the static potential. Fig. 9

shows the static potential aV (r) as a function of
distance r/a, computed in the usual lattice QCD
ultrafine digitization. Due to the large lattice
spacing of this ensemble (i.e., the strong bare
coupling), the potential is dominantly linear in
all distance scales in our simulation. Above
r/a ⇡ 6, the data become unreliable due to
the exponentially decreasing signal in the Wil-
son loop as shown in Eq. (5). We restrict our
subsequent discussion and figures to the region
r/a . 6.

Fig. 10 shows the digitization error in the
static potential as a function of distance. The
most interesting feature of this figure is the dis-
tance dependence. For any given mesh size,
within our statistical precision, the error induced
by digitizing V (r) decreases with distance until
saturating around r/a ⇡ 3 where our statistical
error becomes appreciable. It is also worth not-
ing that the static potential gets larger as the
bits-per-link gets smaller, a consequence of the
expectation values of Wilson loops approaching
zero for projections to coarser digitizations. The
APR projection outperforms the L2 projection
at short distances. At longer distances r/a & 3
the situation is not as clear: APR appears to

10

Gauge-field truncation
Tong, Albert, McClean, Preskill, and Su (2021).

ZD, Raychowdhury, and Shaw, 
Phys. Rev. D 104, 074505 (2021).

QUANTUM SIMULATION OF GAUGE FIELD THEORIES: THEORY DEVELOPMENTS

Hamiltonian formalism is a more natural than the path integral formalism for quantum 
simulation/computation:
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.

788 C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org

Re
vi

ew
Ar

tic
le

U.-J. Wiese: Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Suppressing the link index xy, the various operators obey
the commutation relations

[La, Lb] = 2i fabc Lc, [Ra, Rb] = 2i fabc Rc,

[La, Rb] = 0, [La, U] = −λaU, [Ra, U] = Uλa. (29)

Operators associated with different links commute
with each other. The Hermitean generators of SU(N)
obey the commutation relation [λa, λb] = 2i fabcλ

c, where
fabc are the structure constants of the SU(N) algebra
and Trλaλb = 2δab. By construction, the Hamiltonian
of Eq. (28) is gauge invariant, i.e. it commutes with
the infinitesimal generators of SU(N) gauge transfor-
mations

Ga
x = ψ i†

x λa
i jψ

j
x +

∑

k

(
La

x,x+k̂ + Ra
x−k̂,x

)
,

[
Ga

x, Gb
y

]
= 2iδxy fabcGc

x. (30)

Again, physical states |$〉 are gauge invariant and must
obey the Gauss law Ga

x|$〉 = 0. A general SU(N) gauge
transformation, %x = exp(iαa

xλ
a), is represented by the

unitary transformation V =
∏

x exp(iαa
x Ga

x), which acts
as

ψ ′
x = V †ψxV = %xψx, ψ†

x
′ = V †ψ†

x V = ψ†
x%

†
x,

U′
xy = V †Uxy V = %xUxy%

†
y. (31)

In Wilson’s lattice gauge theory, the commutation re-
lations of Eq. (29) are realized in an infinite-dimensional
Hilbert space per link. In fact, every link is analogous to
a quantum mechanical “particle” moving in the group
space SU(N), with L2

xy + R2
xy representing the corre-

sponding Laplacian.
In an SU(2) gauge theory the various operators can

be represented by harmonic oscillators [97] (also known
as prepotentials) using bosonic creation and annihila-
tion operators ai†

x,±k and ai
x,±k, which carry a color index

i ∈ {1, 2}. The bosonic operators are associated with the
left and right ends of a link and are labeled by a lattice
point x and a link direction ±k, and one can write

La
xy = ai†

x,+σ a
i ja

j
x,+, Ra

xy = ai†
y,−σ a

i ja
j
y,−,

Uxy = 1
Nxy

(
a2†

x,+ a1
x,+

−a1†
x,+ a2

x,+

) (
a1†

y,− a2†
y,−

a2
y,− −a1

y,−

)

= 1
Nxy

(
a2†

x,+a1†
y,− + a1

x,+a2
y,− a2†

x,+a2†
y,− − a1

x,+a1
y,−

−a1†
x,+a1†

y,− + a2
x,+a2

y,− −a1†
x,+a2†

y,− − a2
x,+a1

y,−

)

.

(32)

Here Nxy = ai†
x,+ai

x,+ = ai†
y,−ai

y,− counts the number of
bosons, which is the same at both ends of the link.
The link operator Uxy changes the number of bosons by
two, by either creating or annihilating a boson on each
end of a link. Since the link Hilbert space is infinite-
dimensional, the total number of bosons can be arbi-
trarily large. In SU(3) gauge theory the construction is
much more involved [98]. Instead of two, it involves four
species of colored bosons per link, which span a Hilbert
space that is larger than the one of the gauge theory. In
order to correct for this, the link operators are no longer
constructed as boson bilinears, but as polynomials of a
higher degree. Even then, the commutation relations of
Eq. (29) are satisfied only in the gauge theory subspace of
the bosonic Hilbert space, and it is not obvious how to re-
strict oneself to that subspace. While there are construc-
tions for quantum simulators using SU(2) prepotentials
[74, 75], it is difficult to imagine that the SU(3) prepoten-
tials of [98] can be implemented in ultracold matter.

Up to now, we have defined the theory on a lattice
with non-zero lattice spacing a, whose inverse 1

a serves as
an ultraviolet momentum cut-off. Ultimately, we want to
take the continuum limit a → 0. This is done by properly
adjusting the bare coupling constant g . We may fix the
overall energy scale by putting t = 1. When we set m = 0,
we are in the chiral limit of massless quarks, which will
lead to a massless Goldstone pion. The bare gauge cou-
pling g is then adjusted in order to take the continuum
limit. This can be done by considering any dimension-
ful physical quantity, for example, the nucleon mass. The
nucleon mass Mn = E1 − E0 is the energy difference be-
tween the ground states of HQCD in the baryon number
1 and 0 sectors. Let us consider the nucleon mass in lat-
tice units, i.e. Mna, as a function of g . Due to the prop-
erty of asymptotic freedom, in the g → 0 limit the nu-
cleon mass behaves as Mna ∼ exp(−β0/g 2), where β0 > 0
is the leading coefficient of the QCD β-function. Keeping
the physical quantity Mn fixed and sending g → 0, one
approaches the continuum limit a → 0. We have thus
traded the dimensionless bare coupling constant g for
a dimensionful physical scale — in this case Mn. In this
process of dimensional transmutation, the scale invari-
ance of the QCD Lagrangian in the massless chiral limit is
explicitly broken by the ultraviolet regulator 1

a . It should
be pointed out that massless QCD does not predict the
value of any dimensionful scale like the nucleon mass.
After all, the nucleon mass, e.g. in units of kilograms, re-
lies on a man-made convention, and essentially reduces
to the question how many protons and neutrons were
deposited near Paris, when the kilogram was defined a
long time ago. However, once an overall energy scale,
e.g. Mn, has been picked, QCD predicts the values of
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Hamiltonian formalism is a more natural than the path integral formalism for quantum 
simulation/computation:



Re
vi

ew
Ar

tic
le

U.-J. Wiese: Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Suppressing the link index xy, the various operators obey
the commutation relations

[La, Lb] = 2i fabc Lc, [Ra, Rb] = 2i fabc Rc,

[La, Rb] = 0, [La, U] = −λaU, [Ra, U] = Uλa. (29)

Operators associated with different links commute
with each other. The Hermitean generators of SU(N)
obey the commutation relation [λa, λb] = 2i fabcλ

c, where
fabc are the structure constants of the SU(N) algebra
and Trλaλb = 2δab. By construction, the Hamiltonian
of Eq. (28) is gauge invariant, i.e. it commutes with
the infinitesimal generators of SU(N) gauge transfor-
mations

Ga
x = ψ i†

x λa
i jψ

j
x +

∑

k

(
La

x,x+k̂ + Ra
x−k̂,x

)
,

[
Ga

x, Gb
y

]
= 2iδxy fabcGc

x. (30)

Again, physical states |$〉 are gauge invariant and must
obey the Gauss law Ga

x|$〉 = 0. A general SU(N) gauge
transformation, %x = exp(iαa

xλ
a), is represented by the

unitary transformation V =
∏

x exp(iαa
x Ga

x), which acts
as

ψ ′
x = V †ψxV = %xψx, ψ†

x
′ = V †ψ†

x V = ψ†
x%

†
x,

U′
xy = V †Uxy V = %xUxy%

†
y. (31)

In Wilson’s lattice gauge theory, the commutation re-
lations of Eq. (29) are realized in an infinite-dimensional
Hilbert space per link. In fact, every link is analogous to
a quantum mechanical “particle” moving in the group
space SU(N), with L2

xy + R2
xy representing the corre-

sponding Laplacian.
In an SU(2) gauge theory the various operators can

be represented by harmonic oscillators [97] (also known
as prepotentials) using bosonic creation and annihila-
tion operators ai†

x,±k and ai
x,±k, which carry a color index

i ∈ {1, 2}. The bosonic operators are associated with the
left and right ends of a link and are labeled by a lattice
point x and a link direction ±k, and one can write

La
xy = ai†

x,+σ a
i ja

j
x,+, Ra

xy = ai†
y,−σ a

i ja
j
y,−,

Uxy = 1
Nxy

(
a2†

x,+ a1
x,+

−a1†
x,+ a2

x,+

) (
a1†

y,− a2†
y,−

a2
y,− −a1

y,−

)

= 1
Nxy

(
a2†

x,+a1†
y,− + a1

x,+a2
y,− a2†

x,+a2†
y,− − a1

x,+a1
y,−

−a1†
x,+a1†

y,− + a2
x,+a2

y,− −a1†
x,+a2†

y,− − a2
x,+a1

y,−

)

.

(32)

Here Nxy = ai†
x,+ai

x,+ = ai†
y,−ai

y,− counts the number of
bosons, which is the same at both ends of the link.
The link operator Uxy changes the number of bosons by
two, by either creating or annihilating a boson on each
end of a link. Since the link Hilbert space is infinite-
dimensional, the total number of bosons can be arbi-
trarily large. In SU(3) gauge theory the construction is
much more involved [98]. Instead of two, it involves four
species of colored bosons per link, which span a Hilbert
space that is larger than the one of the gauge theory. In
order to correct for this, the link operators are no longer
constructed as boson bilinears, but as polynomials of a
higher degree. Even then, the commutation relations of
Eq. (29) are satisfied only in the gauge theory subspace of
the bosonic Hilbert space, and it is not obvious how to re-
strict oneself to that subspace. While there are construc-
tions for quantum simulators using SU(2) prepotentials
[74, 75], it is difficult to imagine that the SU(3) prepoten-
tials of [98] can be implemented in ultracold matter.

Up to now, we have defined the theory on a lattice
with non-zero lattice spacing a, whose inverse 1

a serves as
an ultraviolet momentum cut-off. Ultimately, we want to
take the continuum limit a → 0. This is done by properly
adjusting the bare coupling constant g . We may fix the
overall energy scale by putting t = 1. When we set m = 0,
we are in the chiral limit of massless quarks, which will
lead to a massless Goldstone pion. The bare gauge cou-
pling g is then adjusted in order to take the continuum
limit. This can be done by considering any dimension-
ful physical quantity, for example, the nucleon mass. The
nucleon mass Mn = E1 − E0 is the energy difference be-
tween the ground states of HQCD in the baryon number
1 and 0 sectors. Let us consider the nucleon mass in lat-
tice units, i.e. Mna, as a function of g . Due to the prop-
erty of asymptotic freedom, in the g → 0 limit the nu-
cleon mass behaves as Mna ∼ exp(−β0/g 2), where β0 > 0
is the leading coefficient of the QCD β-function. Keeping
the physical quantity Mn fixed and sending g → 0, one
approaches the continuum limit a → 0. We have thus
traded the dimensionless bare coupling constant g for
a dimensionful physical scale — in this case Mn. In this
process of dimensional transmutation, the scale invari-
ance of the QCD Lagrangian in the massless chiral limit is
explicitly broken by the ultraviolet regulator 1

a . It should
be pointed out that massless QCD does not predict the
value of any dimensionful scale like the nucleon mass.
After all, the nucleon mass, e.g. in units of kilograms, re-
lies on a man-made convention, and essentially reduces
to the question how many protons and neutrons were
deposited near Paris, when the kilogram was defined a
long time ago. However, once an overall energy scale,
e.g. Mn, has been picked, QCD predicts the values of

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 789www.ann-phys.org

Hamiltonian formalism is a more natural than the path integral formalism for quantum 
simulation/computation:
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FIG. 6. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with PBC (a)
and OBC (b) is approximated by epN , and the coe�cient of
the lattice size, N , in the exponent is obtained from fits to the
N dependence of Nstates for several values of ⇤. The expo-
nents approach, with an exponential form, a fixed value, and
the empirical fit to this ⇤ dependence obtains the asymptotic
value of p denoted by the horizontal lines in the plots and
shown in the inset boxes. The uncertainty on these values is
estimated by variations in the fit values when each data point
is removed from the set, one at a time, and the remaining
points are refit. The numerical values associated with these
plots are listed in Appendix B.

the plot. Second, as expected, the number of states
grows exponentially with the system size at a fixed
cuto↵, as plotted in Fig. 5-(a). The growth, up
to constant factors and higher order terms in the
exponent, can be approximated by Nstate ⇠ e

pN .
The coe�cient of N in the exponent approaches a
constant value as a function of cuto↵, as shown in
Fig. 6-(a). This value can be obtained from a fit to
points shown in the plot, as depicted in the figure.
For moderate N values such that the higher-order
terms in the exponent are negligible, this p value
can be used to approximate the number of states
in the physical Hilbert space with PBC as ⇤ ! 1.

. For OBC, the number of states in the physical
Hilbert space grows as a function of ⇤ until it be-
comes a constant for ⇤ � N (⇤ � N +2✏0 for an ar-
bitrary ✏0), as depicted in Fig. 4-(b). The reason for
this behavior is that the J quantum number only
changes (by 1

2
) from the left to the right side of site

x if the site’s total fermionic occupation number is
equal to one. If the JR value at site x = 0 is set
to ✏0, it can become at most JL = ✏0 + N/2 at the
last site. Increasing the cuto↵ beyond this value
will not change the states present in the physical
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FIG. 7. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with OBC is
approximated by eq⇤, and the coe�cient of the cuto↵ on the
electric-field excitations, ⇤(= 2Jmax), in the exponent is ob-
tained from fits to the ⇤ dependence of Nstates for several val-
ues of N . The exponents approach, with a exponential form,
a fixed value, and the empirical fit to this N dependence ob-
tains the asymptotic value of q denoted by the horizontal line
in the plot and shown in the inset box. The uncertainty on
this value is estimated by variations in the fit values when
each data point is removed from the set, one at a time, and
the remaining points are refit. The numerical values associ-
ated with these plots are listed in Appendix B.

Hilbert space. The growth of the number of states
to this saturation value at a fixed N can be approx-
imated by an exponential form, Nstates ⇠ e

q⇤. The
coe�cient of ⇤ in the exponent for various values
of N is plotted in Fig. 7 and is seen to asymptote
to a constant value at large N . The fit to this
asymptotic value is shown in the plot. This value
can be used to approximate the number of states
in the physical Hilbert space for an arbitrary large
N and any ⇤. Similarly, the dependence of the
number of states in the physical Hilbert space on
the lattice size can be approximated by an expo-
nential form, Nstate ⇠ e

pN , for a fixed cuto↵, and
up to constant factors and higher order terms in
the exponent. The coe�cient of N in the exponent
asymptotes to a constant value at large ⇤, as shown
in Fig. 6-(b).

. The size of the full Hilbert space before implement-
ing physical constraints can be approximated by

N
(full)

states
(N, ⇤) =

2

44 ⇥
X

j

(2j + 1)2

3

5
N

, (68)

with PBC, where j = {0,
1

2
, 1, · · · ,

⇤

2
}. To com-

pare this with the number of states in the physical
Hilbert space with PBC, one can again write the
lattice-size dependence of the number of states as
e
pN . The coe�cient of N in this exponent as a

function of ⇤ can be plotted for both the full and
physical Hilbert space, as is shown in Fig. 8. As is
evident, even for small values of the cuto↵, the full
Hilbert space grows much faster with the system’s

Full

Physical



IDEAS TO SUPPRESS LEAKAGE TO UNPHYSICAL SECTOR IN THE SIMULATION

Loop-string-hadron formulation: 
Building blocks (quantum 
numbers) are already local and 
gauge-invariant.

Raychowdhury, Stryker, Phys. 
Rev. D 101, 114502 (2020).

SU(3) extension: Kadam,, Raychowdhury, 
Stryker, arXiv:2212.04490 [hep-lat] (2022).
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The time complexity of classical Hamiltonian-simulation algorithms 
for each formulation.

ZD, Raychowdhury, and Shaw, Phys. 
Rev. D 104, 074505 (2020). Loop-string-hadron formulation: 

Building blocks (quantum 
numbers) are already local and 
gauge-invariant.

Quantum algorithm scalings in: ZD, Shaw (2), 
and Stryker, arXiv:2212.14030 [hep-lat] (2022).



MANY HAMILTONIAN FORMULATIONS OF GAUGE THEORIES EXIST, BUT WHICH ONE TO PICK?

Group-element representation 
Zohar et al; Lamm et al

Manifold lattices  
Buser et al

Spin-dual representation 
Mathur et al

Loop-String-Hadron basis 
Raychowdhury, Stryker, Kadam

Fermionic basis 
Hamer et al; Martinez et al; 
Banuls et al

Bosonic basis 
Cirac and Zohar

Link models, qubitization 
Chandrasekharan, Wiese et al, 
Alexandru, Bedaque, et al, Hersch et al.

Prepotential formulation 
Mathur, Raychowdhury et al

Local irreducible representations 
Byrnes and Yamamoto; 
Ciavarella, Klco, and Savage

Dual plaquette (magnetic) basis 
Bender, Zohar et al; Kaplan and Styker; Unmuth-
Yockey; Hasse et al; Bauer and Grabowska

Gauge-field theories (Abelian and non-Abelian):

Light-front quantization 
Kreshchuk, Love, Goldstien, 
Vary et al.; Ortega Rico at al

Scalar field theory

Field basis 
Jordan, Lee, and Preskill

Harmonic-oscillator basis 
Klco and Savage

Single-particle basis 
Barata , Mueller, Tarasov, and Venugopalan.

Continuous-variable basis 
Pooser, Siopsis et al



How do we do state preparation 
and compute observables like 
scattering amplitudes?

Algorithmic developments 
[Digital]

Near- and far-term algorithms with 
bounded errors and resource 
requirement for gauge theories?

Can given formulation/encoding 
reduce qubit and gate resources?

Should we develop gauge-invariant 
simulation algorithms? 



How do we do state preparation 
and compute observables like 
scattering amplitudes?

Algorithmic developments 
[Digital]

Near- and far-term algorithms with 
bounded errors and resource 
requirement for gauge theories?

Can given formulation/encoding 
reduce qubit and gate resources?

Can we develop gauge-invariant 
simulation algorithms? 



H = H1 +H2 + · · ·

t = NT � t

e�iH1�t

e�iH2�t

Single-qubit gates Two-qubit entangling gate

Digital

How many qubits and gates are required to achieve accuracy     in 
a given observables? Are there algorithms that scale optimally?

ϵ

Important algorithmic progress for U(1), SU(2), and SU(3) theories can be found in:
Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020).
Ciavarella, Klco, and Savage, Phys. Rev. D 103, 094501 (2021). 
Kan and Nam, arXiv:2107.12769 [quant-ph].
ZD, Shaw (2), and Stryker, arXiv:2212.14030 [hep-lat] (2022).
Gustafson, Lamm, Lovelace, and Musk, arXiv:2208.12309 [quant-ph] (2022).



Example: SU(2) gauge theory coupled to 
matter in 1+1 D with loops, strings, hadrons
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FIG. 9: Circuitization of an LSH hopping subterm. (a) A high-level representation of the

(far-term) circuitization of HLSH(j)

I
(r). (b) The diagonalization circuit U LSH

SVD
for an LSH hopping

subterm. This diagram applies to both the near-term and far-term algorithms. (c) The cuto↵
logical control circuit. (d) The phase kickback circuit. All circuits (a-d) call for ancillas that are

not explicitly drawn but are discussed in the text and counted in the cost tables.
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Make sure the boson cutoff is not exceeded. Decompose the terms 
and diagonalize them wisely to not break the Abelian constraint.
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Each Trotter step amounts to: 

1) First diagonalizing each term. 
2) Second evaluating the diagonal operators .

How do we exponentiate each term of 
the Hamiltonian in a digitized approach?

ZD, Shaw, and Stryker, General Quantum 
Algorithms for Hamiltonian Simulation with 
Applications to a Non-Abelian Lattice Gauge 
Theory, arXiv:2212.14030 [hep-lat] (2022).

Diagonal (phase) 
operation



Conclusions: 

• Taking the continuum limit takes tens 
to hundreds of thousands of qubits 
and  gates. Improvements 
possible. 

• In the near term, SU(2) in 1D (LSH) is 
about  times more expensive than 
U(1). 

• In the far term, SU(2) in 1D (LSH) is 
about  times more expensive than 
U(1).  

• More intelligent decomposition of 
QCD Hamiltonian according to our 
procedure will save many orders of 
magnitude in resources compared to 
current estimates (Kan and Nam), but 
this is still costly!
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Example: SU(2) gauge theory coupled to 
matter in 1+1 D with loops, strings, hadrons

ZD, Shaw, and Stryker, General Quantum 
Algorithms for Hamiltonian Simulation with 
Applications to a Non-Abelian Lattice Gauge 
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FIG. 13: T-gate costs at fixed m/g = 1. Other simulation parameters not explicitly shown are
⌘ = 8, t/as = 1, ↵Trot. = 90%, ↵Newt. = 9%, and ↵synth. = 1%.

2s ⌫LSH = 4s. The total error is, therefore,
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Given a fixed error budget in Newton’s method truncation, Eq. (111) sets minimal sizes on n
and m necessary to meet the error budget. As in the Schwinger-boson case, we adopt a scheme
that chooses n and m so as to minimize the T-gate count of the diagonal-function evaluations,
subject to the inequality set by the error budget. The T-gate count of U LSH

eD
as a function of ⌘, n,

and m is as stated in Lemma A.8. Again, a closed-form expressions for n(x, ⌘, L, T, �Newt.) and
m(x, ⌘, L, T, �Newt.) cannot be o↵ered given the interdependence of n and m and the scheme used
to choose them.

Synthesis error.—The total error due to synthesis of RZ gates, �synth., is the sum of individual
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FIG. 12: CNOT-gate costs at fixed m/g = 1. Other simulation parameters not explicitly shown
are x = 1 and L = 10.

for ✏:

✏(⌘, L, s, m, �synth) =
s

�synth.

(�48⌘ + 48⌘L + 2Lm + 54L � 2m � 50). (104)

Error-bounded simulation costs.—We are now ready to provide the full costs of the algorithms for
simulating the SU(2) LGT in the Schwinger-boson formulation as a function of model parameters
and target accuracy. Here, x, ⇤ = 2⌘

� 1, µ, L, and T are taken as given parameters. �
in then introduced to represent the complete error budget of the time-evolution operator, while
0 < ↵Trot. < 1 represents the fraction allocated to Trotterization error and 0 < ↵Newt. < 1
represents the fraction allocated to Newton-truncation errors. The fraction of � allocated for RZ

synthesis error is then ↵synth. = 1�↵Trot. �↵Newt. and must be positive. The truncation to ⇤ < 1

is an additional known source of error that we do not quantify in this work.
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can be studied in models considered below. Nonetheless,
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As a result, the individual-addressing scheme proposed
here enables analog quantum simulations of a rather
generic Heisenberg spin model. The spin-spin coupling
matrices in Eq. (12) are derived from discussions above
(see also Appendix C), and read
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Here, RL = (�kL)2

2M
is the recoil frequency of the ion given

the lasers L = I, II, III.
It is worth noting that despite the case of a usual

Molmer-Sorenson transition where the starting Hamil-
tonian is proportional to �x, the Magnus expansion
in the scheme described above is not cut o↵ at any
order in the Lamb-Dicke parameter, due to the non-
zero commutation of Pauli operators in Eqs. (3-6).
It is therefore important to ensure that not only����
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antees that contributions from the p
th-sideband transi-

tions are suppressed compared to the first-sideband tran-
sitions. These conditions are easier to satisfy for trans-
verse modes than the axial modes. This is because the
axial modes have lower frequencies, and their correspond-
ing Lamb-Dicke parameters are larger. Finally, one notes
that coherent operations on a single spin correspond to
the zeroth-order terms in Eq. (1) in the Lamb-Dicke limit,

and with �!
(i)
L

= !0. Hence, the laser frequencies ap-
plied must be far detuned from such “carrier transitions”
of the ions.

III. OPTIMIZED SPIN-SPIN HAMILTONIANS
IN AN ION TRAP: 1+1D SCHWINGER MODEL

A unique testbed for exploring theoretical and experi-
mental proposals for quantum simulations of gauge theo-
ries is the 1+1D QED, i.e., the Schwinger model. It is an
Abelian gauge theory, hence avoiding complexities of its
non-Abelian counterparts. It is also a low-dimensional
theory, allowing numerical and experimental studies of
its approximate dynamics with finite resources. Despite
these simplifications in the formulation, the theory ex-
hibits rich properties, similar to those seen in more com-
plex theories such as QCD. In particular, phenomena
such as confinement and spontaneous symmetry breaking
arise in the model. The spontaneous creation of electron-
positron pairs in the time evolution of the “vacuum”
exhibits a clear signature of such non-trivial dynamics.
Since the time evolution of quantum states is, in gen-
eral, a computationally intractable problem with classical
Monte Carlo methods, addressing such a problem using
a quantum simulation platform is of significant value, see
Refs. [8, 9] for digital implementations.

The strong-coupling dynamics of the Schwinger model
can be studied through non-perturbative LGT methods.
In the staggered formulation of Kogut and Susskind [89,
90], the (scaled) lattice Hamiltonian takes the form
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where �n (�†
n
) is a one-component fermion field that

creates (annihilates) an electron on the odd site while
annihilates (creates) a positron on an even site. Due to
this distinction, there is a staggered mass term in the
Hamiltonian, with the fermion (scaled) mass µ. ✓n is
the U(1) gauge potential with the corresponding gauge
link e

i✓n originating at site n. The latter is introduced in
the Hamiltonian to render the fermion hopping (kinetic)
term gauge invariant. The pair creation and annihilation
in the theory originates from this term. The correspond-
ing electric field at site n is denoted as Ln (with the
operator relation [✓n, Lm] = i�n,m), which adds a contri-
bution to the Hamiltonian due to the energy stored in the

Wineland et al, J.Res.Natl.Inst.Stand.Tech. 103 (1998) 
259, Schneider et al, Rep. Prog. Phys. 75 024401 (2012).
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As a result, the individual-addressing scheme proposed
here enables analog quantum simulations of a rather
generic Heisenberg spin model. The spin-spin coupling
matrices in Eq. (12) are derived from discussions above
(see also Appendix C), and read

J
(xx)
i,j

= ⌦(i)
I

⌦(j)
I

RI

NX

m=1

b
(i)
m b

(j)
m

µ
2
I

� !T
m

2 , (13)

J
(yy)
i,j

= ⌦(i)
II

⌦(j)
II

RII

NX

m=1

b
(i)
m b

(j)
m

µ
2
II

� !A
m

2 , (14)

J
(zz)
i,j

= ⌦(i)
III

⌦(j)
III

RIII

NX

m=1

b
(i)
m b

(j)
m

µ
2
III

� !T
m

2 . (15)

Here, RL = (�kL)2

2M
is the recoil frequency of the ion given

the lasers L = I, II, III.
It is worth noting that despite the case of a usual

Molmer-Sorenson transition where the starting Hamil-
tonian is proportional to �x, the Magnus expansion
in the scheme described above is not cut o↵ at any
order in the Lamb-Dicke parameter, due to the non-
zero commutation of Pauli operators in Eqs. (3-6).
It is therefore important to ensure that not only����
⌘
(i)
I,m⌦(i)

I

µI�!T
m

���� ,

����
⌘
(i)
II,m⌦(i)

II

µII�!A
n

���� ,

����
⌘
(i)
III,m⌦(i)

III

µIII�!T
m

���� ⌧ 1 as stated before,

but also

����
(⌘(i)

I,m)(2p�2)(µI�!
T
m)

µI�p!T
m

���� ,

����
(⌘(i)

II,m)(2p�2)(µII�!
A
m)

µII�p!A
m

���� ,

����
(⌘(i)

III,m)(2p�2)(µIII�!
T
m)

µIII�p!T
m

���� ⌧ 1 for integer p � 2. This guar-

antees that contributions from the p
th-sideband transi-

tions are suppressed compared to the first-sideband tran-
sitions. These conditions are easier to satisfy for trans-
verse modes than the axial modes. This is because the
axial modes have lower frequencies, and their correspond-
ing Lamb-Dicke parameters are larger. Finally, one notes
that coherent operations on a single spin correspond to
the zeroth-order terms in Eq. (1) in the Lamb-Dicke limit,

and with �!
(i)
L

= !0. Hence, the laser frequencies ap-
plied must be far detuned from such “carrier transitions”
of the ions.

III. OPTIMIZED SPIN-SPIN HAMILTONIANS
IN AN ION TRAP: 1+1D SCHWINGER MODEL

A unique testbed for exploring theoretical and experi-
mental proposals for quantum simulations of gauge theo-
ries is the 1+1D QED, i.e., the Schwinger model. It is an
Abelian gauge theory, hence avoiding complexities of its
non-Abelian counterparts. It is also a low-dimensional
theory, allowing numerical and experimental studies of
its approximate dynamics with finite resources. Despite
these simplifications in the formulation, the theory ex-
hibits rich properties, similar to those seen in more com-
plex theories such as QCD. In particular, phenomena
such as confinement and spontaneous symmetry breaking
arise in the model. The spontaneous creation of electron-
positron pairs in the time evolution of the “vacuum”
exhibits a clear signature of such non-trivial dynamics.
Since the time evolution of quantum states is, in gen-
eral, a computationally intractable problem with classical
Monte Carlo methods, addressing such a problem using
a quantum simulation platform is of significant value, see
Refs. [8, 9] for digital implementations.

The strong-coupling dynamics of the Schwinger model
can be studied through non-perturbative LGT methods.
In the staggered formulation of Kogut and Susskind [89,
90], the (scaled) lattice Hamiltonian takes the form

H = �ix

N�1X

n=1

h
�†

n
e
i✓n�n+1 � �†

n+1e
�i✓n�n

i
+

N�1X

n=1

L
2
n

+ µ

NX

n=1

(�1)n�†
n
�n, (16)

where �n (�†
n
) is a one-component fermion field that

creates (annihilates) an electron on the odd site while
annihilates (creates) a positron on an even site. Due to
this distinction, there is a staggered mass term in the
Hamiltonian, with the fermion (scaled) mass µ. ✓n is
the U(1) gauge potential with the corresponding gauge
link e

i✓n originating at site n. The latter is introduced in
the Hamiltonian to render the fermion hopping (kinetic)
term gauge invariant. The pair creation and annihilation
in the theory originates from this term. The correspond-
ing electric field at site n is denoted as Ln (with the
operator relation [✓n, Lm] = i�n,m), which adds a contri-
bution to the Hamiltonian due to the energy stored in the

6

early times. This is achieved with |⌘
(i)
I,m

⌦(i)
I

| ⌧ |µI �!
T

m
|,

|⌘
(i)
II,m

⌦(i)
II

| ⌧ |µII �!
A

m
|, and |⌘

(i)
III,m

⌦(i)
III

| ⌧ |µIII �!
T

m
|.

When B
(i)
z 6= 0, ↵

(x)
i,m

(t), and ↵
(y)
i,m

(t) in Eqs. (8) and (9)
develop an oscillatory time dependence but with a lin-
ear growth in the magnitude of its amplitude. These

terms are proportional to B
(i)
z �

(i)
y and B

(i)
z �

(i)
x . Assum-

ing that the magnetic field is comparable in size to the
e↵ective spin-spin couplings, such contaminating terms
do not severely impact the desired evolution as long as

|B
(i)
z | ⌧ |⌘

(i)
I,m

⌦(i)
I

|, |⌘
(i)
II,m

⌦(i)
II

|. Unfortunately, this con-
dition limits the size of (e↵ective) magnetic fields that
can be studied in models considered below. Nonetheless,
a range of interesting possibilities can still be explored.

Under the conditions described above, the time-
evolution operator in Eq. (7) can be approximated as

U(t) ⇡ e
�iHefft, (11)

where

He↵ =
X

i,j
j<i

h
J

(xx)
i,j

�
(i)
x

⌦ �
(j)
x

+ J
(yy)
i,j

�
(i)
y

⌦ �
(j)
y

+

J
(zz)
i,j

�
(i)
z

⌦ �
(j)
z

i
�

1

2

NX

i=1

B
(i)
z

�
(i)
z

. (12)

As a result, the individual-addressing scheme proposed
here enables analog quantum simulations of a rather
generic Heisenberg spin model. The spin-spin coupling
matrices in Eq. (12) are derived from discussions above
(see also Appendix C), and read

J
(xx)
i,j

= ⌦(i)
I

⌦(j)
I

RI

NX

m=1

b
(i)
m b

(j)
m

µ
2
I

� !T
m

2 , (13)

J
(yy)
i,j

= ⌦(i)
II

⌦(j)
II

RII

NX

m=1

b
(i)
m b

(j)
m

µ
2
II

� !A
m

2 , (14)

J
(zz)
i,j

= ⌦(i)
III

⌦(j)
III

RIII

NX

m=1

b
(i)
m b

(j)
m

µ
2
III

� !T
m

2 . (15)

Here, RL = (�kL)2

2M
is the recoil frequency of the ion given

the lasers L = I, II, III.
It is worth noting that despite the case of a usual

Molmer-Sorenson transition where the starting Hamil-
tonian is proportional to �x, the Magnus expansion
in the scheme described above is not cut o↵ at any
order in the Lamb-Dicke parameter, due to the non-
zero commutation of Pauli operators in Eqs. (3-6).
It is therefore important to ensure that not only����
⌘
(i)
I,m⌦(i)

I

µI�!T
m

���� ,

����
⌘
(i)
II,m⌦(i)

II

µII�!A
n

���� ,

����
⌘
(i)
III,m⌦(i)

III

µIII�!T
m

���� ⌧ 1 as stated before,

but also

����
(⌘(i)

I,m)(2p�2)(µI�!
T
m)

µI�p!T
m

���� ,

����
(⌘(i)

II,m)(2p�2)(µII�!
A
m)

µII�p!A
m

���� ,

����
(⌘(i)

III,m)(2p�2)(µIII�!
T
m)

µIII�p!T
m

���� ⌧ 1 for integer p � 2. This guar-

antees that contributions from the p
th-sideband transi-

tions are suppressed compared to the first-sideband tran-
sitions. These conditions are easier to satisfy for trans-
verse modes than the axial modes. This is because the
axial modes have lower frequencies, and their correspond-
ing Lamb-Dicke parameters are larger. Finally, one notes
that coherent operations on a single spin correspond to
the zeroth-order terms in Eq. (1) in the Lamb-Dicke limit,

and with �!
(i)
L

= !0. Hence, the laser frequencies ap-
plied must be far detuned from such “carrier transitions”
of the ions.

III. OPTIMIZED SPIN-SPIN HAMILTONIANS
IN AN ION TRAP: 1+1D SCHWINGER MODEL

A unique testbed for exploring theoretical and experi-
mental proposals for quantum simulations of gauge theo-
ries is the 1+1D QED, i.e., the Schwinger model. It is an
Abelian gauge theory, hence avoiding complexities of its
non-Abelian counterparts. It is also a low-dimensional
theory, allowing numerical and experimental studies of
its approximate dynamics with finite resources. Despite
these simplifications in the formulation, the theory ex-
hibits rich properties, similar to those seen in more com-
plex theories such as QCD. In particular, phenomena
such as confinement and spontaneous symmetry breaking
arise in the model. The spontaneous creation of electron-
positron pairs in the time evolution of the “vacuum”
exhibits a clear signature of such non-trivial dynamics.
Since the time evolution of quantum states is, in gen-
eral, a computationally intractable problem with classical
Monte Carlo methods, addressing such a problem using
a quantum simulation platform is of significant value, see
Refs. [8, 9] for digital implementations.

The strong-coupling dynamics of the Schwinger model
can be studied through non-perturbative LGT methods.
In the staggered formulation of Kogut and Susskind [89,
90], the (scaled) lattice Hamiltonian takes the form

H = �ix

N�1X

n=1

h
�†

n
e
i✓n�n+1 � �†

n+1e
�i✓n�n

i
+

N�1X

n=1

L
2
n

+ µ

NX

n=1

(�1)n�†
n
�n, (16)

where �n (�†
n
) is a one-component fermion field that

creates (annihilates) an electron on the odd site while
annihilates (creates) a positron on an even site. Due to
this distinction, there is a staggered mass term in the
Hamiltonian, with the fermion (scaled) mass µ. ✓n is
the U(1) gauge potential with the corresponding gauge
link e

i✓n originating at site n. The latter is introduced in
the Hamiltonian to render the fermion hopping (kinetic)
term gauge invariant. The pair creation and annihilation
in the theory originates from this term. The correspond-
ing electric field at site n is denoted as Ln (with the
operator relation [✓n, Lm] = i�n,m), which adds a contri-
bution to the Hamiltonian due to the energy stored in the

ZD, Hafezi, Monroe, Pagano, Seif, Shaw, Phys. Rev. 
Research, 2, 023015 (2020), arXiv: 1908.03210 [quant-ph].

See for other ideas: Ciavarella, 
Caspar, Singh, Savage, Lougovski, 
arXiv:2207.09438 [quant-ph].



No gates

e�iHt

Analog

He↵ =
X

i

J
(�)
i �

(i)
z +

X

i,j

J
(��)
i,j �

(i)
+ ⌦ �

(j)
+ +

X

i,j,k

J
(���)
i,j,k �

(i)
+ ⌦ �

(j)
+ ⌦ �

(k)
+ + h.c.

Andrade, ZD, Grass, Hafezi, Pagano, Seif, arXiv:2108.01022 [quant-ph], 
See also: Bermudez et al, Pays.Rev.A79, 060303 R (2009).

Recent development: N-body interactions: Katz, 
Centina, Monroe, Phys. Rev. Lett. 129, 063603 (2022).



. . .. . .

. . . . . .

Collective normal modes 
used to perform two-ion 
entangling gates.

Lattice Schwinger model

Ions in a linear Paul trap

am
�j �j+1

 j+1 j

{Ej+1, Uj+1}{Ej , Uj}

Internal states of the ion are used to 
encode the dynamic of fermions.

Gauge DOF are eliminated 
in 1D by Gauss’s law and 
gauge transformation

Analog (No gauge DOF)

See also Yang et al, Physical Review A 94, 052321 (2016) for a 
phonon-ion based analog proposal of lattice Schwinger Model.

ZD, Hafezi, Monroe, Pagano, Seif and Shaw, Phys. Rev. R 2, 023015 (2020).

7

units of ag
2
/2, where a denote the lattice spacing and g

is the original fermion-gauge field coupling. The dimen-
sionless parameters x and µ are related to dimensionful
parameter g (with mass dimension one) and the original
mass m via: x = 1/(ag)2 and µ = 2m/(ag

2).8

The familiar Jordan-Wigner transformations �n =Q
l<n

(i�(l)
z )�(n)

� and �†
n

=
Q

l<n
(�i�

(l)
z )�(n)

+ can be ap-
plied to Eq. (16) in order to map the fermionic degrees
of freedom to those of a qubit. A unique feature of
the lattice Schwinger model with open boundary con-
dition is that the remaining degrees of freedom that
are bosonic, namely gauge links and electric field, can
be entirely eliminated in favor of new spin-spin inter-
actions. Explicitly, by performing gauge transformations

�
(n)
± !

Q
l<n

e
±i✓l�

(n)
± , and further imposing the Gauss’s

law Ln � Ln�1 = 1
2

h
�

(n)
z + (�1)n

i
, the Hamiltonian be-

comes [56, 87, 88]

H = x

N�1X

n=1

h
�

(n)
+ �

(n+1)
� + �

(n+1)
+ �

(n)
�

i
+

N�1X

n=1

"
✏0 +

1

2

nX

m=1

⇣
�

(m)
z

+ (�1)m

⌘#2

+
µ

2

NX

n=1

(�1)n
�

(n)
Z

.

(17)

Here, ✏0 is the electric field flux into the first lattice site
which can be set to zero without loss of generality. To
make explicit the mapping of this Hamiltonians to that
of the Hamiltonian of the ion-laser system in our pro-
posed scheme, Eq. (12), one can note that Eq. (17) can
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(yy) represent nearest-neighbor spin-spin in-
teractions and share the same coupling strength. H

(zz)

8 x and µ here should not to be confused by the spin x axis and the
lasers’ detunings, respectively. Their meaning should be clear in
the context they appear.

is a long-range spin-spin interaction, representing the 1D
Coulomb interaction among the charged fermions.

Given the experimental setup presented in the previ-
ous section, engineering the Schwinger Hamiltonian for
given values of N (which maps directly to the number of
ions), x and µ amounts to finding values of lasers’ Rabi

frequencies, ⌦(i)
I

, ⌦(i)
II

, and ⌦(i)
III

, and their detunings µI ,

µII , and µIII , as well as B
(i)
z values induced by a Stark

shift, such that the ion-laser Hamiltonian in Eq. (12) is
equal to the Schwinger Hamiltonian in Eq. (18). This
is a well-constrained optimization problem provided that
multiple laser frequencies are used with each set of beams
each with a corresponding Rabi frequency such that the
total number of free parameters, NenµL , is no less than
the number of independent nonzero elements in each Ji,j

coupling matrix, that is N(N � 1)/2. Here, enµL is the
number of beatnote frequencies on each pair of lasers L.
Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
an ion trap consisting of 171Yb+ ions will be considered.
The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
nian to x = 6 and µ = 1. The Hamiltonian H

(xx) can be
achieved by first noting that a certain detuning from the
CM transverse mode with the same amplitude on each
ion produces the coupling matrix shown in the left panel
of Fig. 2. This matrix can be systematically turned into
a nearest-neighbor form: the slope of the decline in the
strength of nearest-neighbor couplings from the center of
the chain can be determined, and be used to systemati-
cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
demonstrated in the right panel of Fig. 2. The most ac-
curate nearest-neighbor Hamiltonian achieved with this
procedure presents a ⇠ 3% contamination on the non-
nearest-neighbor elements, and no contamination on the
nearest-neighbor elements.

As mentioned in Sec. II, the H
(yy) e↵ective Hamilto-

nian is chosen to arise from the Raman beams that ad-
dress the axial modes of the ions. If the transverse modes
were to be addressed, the Raman beams would have to
be detuned from the modes by the same amount as those
for the H

(xx) Hamiltonian, as these appear with the same
coupling in the Schwinger Hamiltonian. This however
would cause the dynamics to deviate from the e↵ective
Heisenberg model in Eq. (12), given the non-zero commu-
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Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme
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man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
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Here, ✏0 is the electric field flux into the first lattice site
which can be set to zero without loss of generality. To
make explicit the mapping of this Hamiltonians to that
of the Hamiltonian of the ion-laser system in our pro-
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is a long-range spin-spin interaction, representing the 1D
Coulomb interaction among the charged fermions.

Given the experimental setup presented in the previ-
ous section, engineering the Schwinger Hamiltonian for
given values of N (which maps directly to the number of
ions), x and µ amounts to finding values of lasers’ Rabi
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shift, such that the ion-laser Hamiltonian in Eq. (12) is
equal to the Schwinger Hamiltonian in Eq. (18). This
is a well-constrained optimization problem provided that
multiple laser frequencies are used with each set of beams
each with a corresponding Rabi frequency such that the
total number of free parameters, NenµL , is no less than
the number of independent nonzero elements in each Ji,j

coupling matrix, that is N(N � 1)/2. Here, enµL is the
number of beatnote frequencies on each pair of lasers L.
Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
an ion trap consisting of 171Yb+ ions will be considered.
The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
nian to x = 6 and µ = 1. The Hamiltonian H

(xx) can be
achieved by first noting that a certain detuning from the
CM transverse mode with the same amplitude on each
ion produces the coupling matrix shown in the left panel
of Fig. 2. This matrix can be systematically turned into
a nearest-neighbor form: the slope of the decline in the
strength of nearest-neighbor couplings from the center of
the chain can be determined, and be used to systemati-
cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
demonstrated in the right panel of Fig. 2. The most ac-
curate nearest-neighbor Hamiltonian achieved with this
procedure presents a ⇠ 3% contamination on the non-
nearest-neighbor elements, and no contamination on the
nearest-neighbor elements.

As mentioned in Sec. II, the H
(yy) e↵ective Hamilto-

nian is chosen to arise from the Raman beams that ad-
dress the axial modes of the ions. If the transverse modes
were to be addressed, the Raman beams would have to
be detuned from the modes by the same amount as those
for the H

(xx) Hamiltonian, as these appear with the same
coupling in the Schwinger Hamiltonian. This however
would cause the dynamics to deviate from the e↵ective
Heisenberg model in Eq. (12), given the non-zero commu-
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Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.
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can be realized with good accuracy. For this example,
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cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
demonstrated in the right panel of Fig. 2. The most ac-
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procedure presents a ⇠ 3% contamination on the non-
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Here, ✏0 is the electric field flux into the first lattice site
which can be set to zero without loss of generality. To
make explicit the mapping of this Hamiltonians to that
of the Hamiltonian of the ion-laser system in our pro-
posed scheme, Eq. (12), one can note that Eq. (17) can
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H
(xx) and H

(yy) represent nearest-neighbor spin-spin in-
teractions and share the same coupling strength. H

(zz)

8 x and µ here should not to be confused by the spin x axis and the
lasers’ detunings, respectively. Their meaning should be clear in
the context they appear.

is a long-range spin-spin interaction, representing the 1D
Coulomb interaction among the charged fermions.

Given the experimental setup presented in the previ-
ous section, engineering the Schwinger Hamiltonian for
given values of N (which maps directly to the number of
ions), x and µ amounts to finding values of lasers’ Rabi

frequencies, ⌦(i)
I

, ⌦(i)
II

, and ⌦(i)
III

, and their detunings µI ,

µII , and µIII , as well as B
(i)
z values induced by a Stark

shift, such that the ion-laser Hamiltonian in Eq. (12) is
equal to the Schwinger Hamiltonian in Eq. (18). This
is a well-constrained optimization problem provided that
multiple laser frequencies are used with each set of beams
each with a corresponding Rabi frequency such that the
total number of free parameters, NenµL , is no less than
the number of independent nonzero elements in each Ji,j

coupling matrix, that is N(N � 1)/2. Here, enµL is the
number of beatnote frequencies on each pair of lasers L.
Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
an ion trap consisting of 171Yb+ ions will be considered.
The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
nian to x = 6 and µ = 1. The Hamiltonian H

(xx) can be
achieved by first noting that a certain detuning from the
CM transverse mode with the same amplitude on each
ion produces the coupling matrix shown in the left panel
of Fig. 2. This matrix can be systematically turned into
a nearest-neighbor form: the slope of the decline in the
strength of nearest-neighbor couplings from the center of
the chain can be determined, and be used to systemati-
cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
demonstrated in the right panel of Fig. 2. The most ac-
curate nearest-neighbor Hamiltonian achieved with this
procedure presents a ⇠ 3% contamination on the non-
nearest-neighbor elements, and no contamination on the
nearest-neighbor elements.

As mentioned in Sec. II, the H
(yy) e↵ective Hamilto-

nian is chosen to arise from the Raman beams that ad-
dress the axial modes of the ions. If the transverse modes
were to be addressed, the Raman beams would have to
be detuned from the modes by the same amount as those
for the H

(xx) Hamiltonian, as these appear with the same
coupling in the Schwinger Hamiltonian. This however
would cause the dynamics to deviate from the e↵ective
Heisenberg model in Eq. (12), given the non-zero commu-
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each with a corresponding Rabi frequency such that the
total number of free parameters, NenµL , is no less than
the number of independent nonzero elements in each Ji,j

coupling matrix, that is N(N � 1)/2. Here, enµL is the
number of beatnote frequencies on each pair of lasers L.
Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
an ion trap consisting of 171Yb+ ions will be considered.
The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
nian to x = 6 and µ = 1. The Hamiltonian H

(xx) can be
achieved by first noting that a certain detuning from the
CM transverse mode with the same amplitude on each
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of Fig. 2. This matrix can be systematically turned into
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equal strength is achieved on all Ji,j with |i � j| = 1, as
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Here, ✏0 is the electric field flux into the first lattice site
which can be set to zero without loss of generality. To
make explicit the mapping of this Hamiltonians to that
of the Hamiltonian of the ion-laser system in our pro-
posed scheme, Eq. (12), one can note that Eq. (17) can
be rewritten as
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lasers’ detunings, respectively. Their meaning should be clear in
the context they appear.

is a long-range spin-spin interaction, representing the 1D
Coulomb interaction among the charged fermions.

Given the experimental setup presented in the previ-
ous section, engineering the Schwinger Hamiltonian for
given values of N (which maps directly to the number of
ions), x and µ amounts to finding values of lasers’ Rabi

frequencies, ⌦(i)
I

, ⌦(i)
II

, and ⌦(i)
III

, and their detunings µI ,

µII , and µIII , as well as B
(i)
z values induced by a Stark

shift, such that the ion-laser Hamiltonian in Eq. (12) is
equal to the Schwinger Hamiltonian in Eq. (18). This
is a well-constrained optimization problem provided that
multiple laser frequencies are used with each set of beams
each with a corresponding Rabi frequency such that the
total number of free parameters, NenµL , is no less than
the number of independent nonzero elements in each Ji,j

coupling matrix, that is N(N � 1)/2. Here, enµL is the
number of beatnote frequencies on each pair of lasers L.
Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
an ion trap consisting of 171Yb+ ions will be considered.
The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
nian to x = 6 and µ = 1. The Hamiltonian H

(xx) can be
achieved by first noting that a certain detuning from the
CM transverse mode with the same amplitude on each
ion produces the coupling matrix shown in the left panel
of Fig. 2. This matrix can be systematically turned into
a nearest-neighbor form: the slope of the decline in the
strength of nearest-neighbor couplings from the center of
the chain can be determined, and be used to systemati-
cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
demonstrated in the right panel of Fig. 2. The most ac-
curate nearest-neighbor Hamiltonian achieved with this
procedure presents a ⇠ 3% contamination on the non-
nearest-neighbor elements, and no contamination on the
nearest-neighbor elements.

As mentioned in Sec. II, the H
(yy) e↵ective Hamilto-

nian is chosen to arise from the Raman beams that ad-
dress the axial modes of the ions. If the transverse modes
were to be addressed, the Raman beams would have to
be detuned from the modes by the same amount as those
for the H

(xx) Hamiltonian, as these appear with the same
coupling in the Schwinger Hamiltonian. This however
would cause the dynamics to deviate from the e↵ective
Heisenberg model in Eq. (12), given the non-zero commu-
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periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
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With a single beatnote frequency on each pair of Ra-
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The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
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(xx) can be
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of Fig. 2. This matrix can be systematically turned into
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cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
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nearest-neighbor elements, and no contamination on the
nearest-neighbor elements.

As mentioned in Sec. II, the H
(yy) e↵ective Hamilto-

nian is chosen to arise from the Raman beams that ad-
dress the axial modes of the ions. If the transverse modes
were to be addressed, the Raman beams would have to
be detuned from the modes by the same amount as those
for the H

(xx) Hamiltonian, as these appear with the same
coupling in the Schwinger Hamiltonian. This however
would cause the dynamics to deviate from the e↵ective
Heisenberg model in Eq. (12), given the non-zero commu-

�(n)
z



Fermion-gauge interactions
Fermion mass term

Gauge-field 
interactions

· · ·

Associated quantum circuit for Trotterized evolution:

Four-fermion site theory, one Trotter step

7

units of ag
2
/2, where a denote the lattice spacing and g

is the original fermion-gauge field coupling. The dimen-
sionless parameters x and µ are related to dimensionful
parameter g (with mass dimension one) and the original
mass m via: x = 1/(ag)2 and µ = 2m/(ag

2).8

The familiar Jordan-Wigner transformations �n =Q
l<n

(i�(l)
z )�(n)

� and �†
n

=
Q

l<n
(�i�

(l)
z )�(n)

+ can be ap-
plied to Eq. (16) in order to map the fermionic degrees
of freedom to those of a qubit. A unique feature of
the lattice Schwinger model with open boundary con-
dition is that the remaining degrees of freedom that
are bosonic, namely gauge links and electric field, can
be entirely eliminated in favor of new spin-spin inter-
actions. Explicitly, by performing gauge transformations

�
(n)
± !

Q
l<n

e
±i✓l�

(n)
± , and further imposing the Gauss’s

law Ln � Ln�1 = 1
2

h
�

(n)
z + (�1)n

i
, the Hamiltonian be-

comes [56, 87, 88]

H = x

N�1X

n=1

h
�

(n)
+ �

(n+1)
� + �

(n+1)
+ �

(n)
�

i
+

N�1X

n=1

"
✏0 +

1

2

nX

m=1

⇣
�

(m)
z

+ (�1)m

⌘#2

+
µ

2

NX

n=1

(�1)n
�

(n)
Z

.

(17)

Here, ✏0 is the electric field flux into the first lattice site
which can be set to zero without loss of generality. To
make explicit the mapping of this Hamiltonians to that
of the Hamiltonian of the ion-laser system in our pro-
posed scheme, Eq. (12), one can note that Eq. (17) can
be rewritten as

H = H
(xx) + H

(yy) + H
(zz) + H

(z)
, (18)

where

H
(xx) =

x

2

N�1X

n=1

�
(n)
x

�
(n+1)
x

, (19)

H
(yy) =

x

2

N�1X

n=1

�
(n)
y

�
(n+1)
y

, (20)

H
(zz) =

1

2

N�2X

m=1

N�1X

n=m+1

(N � n)�(m)
z

�
(n)
z

, (21)

H
(z) =

µ

2

NX

n=1

(�1)n
�

(n)
z

�
1

2

N�1X

n=1

(n mod 2)
nX

l=1

�
(l)
z

.

(22)

H
(xx) and H

(yy) represent nearest-neighbor spin-spin in-
teractions and share the same coupling strength. H

(zz)

8 x and µ here should not to be confused by the spin x axis and the
lasers’ detunings, respectively. Their meaning should be clear in
the context they appear.

is a long-range spin-spin interaction, representing the 1D
Coulomb interaction among the charged fermions.

Given the experimental setup presented in the previ-
ous section, engineering the Schwinger Hamiltonian for
given values of N (which maps directly to the number of
ions), x and µ amounts to finding values of lasers’ Rabi

frequencies, ⌦(i)
I

, ⌦(i)
II

, and ⌦(i)
III

, and their detunings µI ,

µII , and µIII , as well as B
(i)
z values induced by a Stark

shift, such that the ion-laser Hamiltonian in Eq. (12) is
equal to the Schwinger Hamiltonian in Eq. (18). This
is a well-constrained optimization problem provided that
multiple laser frequencies are used with each set of beams
each with a corresponding Rabi frequency such that the
total number of free parameters, NenµL , is no less than
the number of independent nonzero elements in each Ji,j

coupling matrix, that is N(N � 1)/2. Here, enµL is the
number of beatnote frequencies on each pair of lasers L.
Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
an ion trap consisting of 171Yb+ ions will be considered.
The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
nian to x = 6 and µ = 1. The Hamiltonian H

(xx) can be
achieved by first noting that a certain detuning from the
CM transverse mode with the same amplitude on each
ion produces the coupling matrix shown in the left panel
of Fig. 2. This matrix can be systematically turned into
a nearest-neighbor form: the slope of the decline in the
strength of nearest-neighbor couplings from the center of
the chain can be determined, and be used to systemati-
cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
demonstrated in the right panel of Fig. 2. The most ac-
curate nearest-neighbor Hamiltonian achieved with this
procedure presents a ⇠ 3% contamination on the non-
nearest-neighbor elements, and no contamination on the
nearest-neighbor elements.

As mentioned in Sec. II, the H
(yy) e↵ective Hamilto-

nian is chosen to arise from the Raman beams that ad-
dress the axial modes of the ions. If the transverse modes
were to be addressed, the Raman beams would have to
be detuned from the modes by the same amount as those
for the H

(xx) Hamiltonian, as these appear with the same
coupling in the Schwinger Hamiltonian. This however
would cause the dynamics to deviate from the e↵ective
Heisenberg model in Eq. (12), given the non-zero commu-
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units of ag
2
/2, where a denote the lattice spacing and g

is the original fermion-gauge field coupling. The dimen-
sionless parameters x and µ are related to dimensionful
parameter g (with mass dimension one) and the original
mass m via: x = 1/(ag)2 and µ = 2m/(ag
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Here, ✏0 is the electric field flux into the first lattice site
which can be set to zero without loss of generality. To
make explicit the mapping of this Hamiltonians to that
of the Hamiltonian of the ion-laser system in our pro-
posed scheme, Eq. (12), one can note that Eq. (17) can
be rewritten as
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(xx) + H

(yy) + H
(zz) + H

(z)
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teractions and share the same coupling strength. H

(zz)
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lasers’ detunings, respectively. Their meaning should be clear in
the context they appear.

is a long-range spin-spin interaction, representing the 1D
Coulomb interaction among the charged fermions.

Given the experimental setup presented in the previ-
ous section, engineering the Schwinger Hamiltonian for
given values of N (which maps directly to the number of
ions), x and µ amounts to finding values of lasers’ Rabi

frequencies, ⌦(i)
I

, ⌦(i)
II

, and ⌦(i)
III

, and their detunings µI ,

µII , and µIII , as well as B
(i)
z values induced by a Stark

shift, such that the ion-laser Hamiltonian in Eq. (12) is
equal to the Schwinger Hamiltonian in Eq. (18). This
is a well-constrained optimization problem provided that
multiple laser frequencies are used with each set of beams
each with a corresponding Rabi frequency such that the
total number of free parameters, NenµL , is no less than
the number of independent nonzero elements in each Ji,j

coupling matrix, that is N(N � 1)/2. Here, enµL is the
number of beatnote frequencies on each pair of lasers L.
Note that this can be achieved with enµL  N . It is,
however, conceivable that in the first generation of ex-
periments planned, only the amplitude control of Raman
beams will be a reality. As a result, we first focus on
experimental proposals that do not require a frequency
control.

A single-detuning and multi-amplitude scheme

With a single beatnote frequency on each pair of Ra-
man beams, the Schwinger Hamiltonian on small lattices
can be realized with good accuracy. For this example,
an ion trap consisting of 171Yb+ ions will be considered.
The specifications of this system are presented in Ap-
pendix A. Consider the case of N = 4, and further set
the values of the parameters of the Schwinger Hamilto-
nian to x = 6 and µ = 1. The Hamiltonian H

(xx) can be
achieved by first noting that a certain detuning from the
CM transverse mode with the same amplitude on each
ion produces the coupling matrix shown in the left panel
of Fig. 2. This matrix can be systematically turned into
a nearest-neighbor form: the slope of the decline in the
strength of nearest-neighbor couplings from the center of
the chain can be determined, and be used to systemati-
cally adjust the Rabi frequencies in such a way that an
equal strength is achieved on all Ji,j with |i � j| = 1, as
demonstrated in the right panel of Fig. 2. The most ac-
curate nearest-neighbor Hamiltonian achieved with this
procedure presents a ⇠ 3% contamination on the non-
nearest-neighbor elements, and no contamination on the
nearest-neighbor elements.

As mentioned in Sec. II, the H
(yy) e↵ective Hamilto-

nian is chosen to arise from the Raman beams that ad-
dress the axial modes of the ions. If the transverse modes
were to be addressed, the Raman beams would have to
be detuned from the modes by the same amount as those
for the H

(xx) Hamiltonian, as these appear with the same
coupling in the Schwinger Hamiltonian. This however
would cause the dynamics to deviate from the e↵ective
Heisenberg model in Eq. (12), given the non-zero commu-
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4-qubit simulation.
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N = 4, �t = 1

(a)

(b)

Figure 7. Experimental results for N = 4 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The upper plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
our implementation. E↵orts to overcome such a technical
limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ

x

,
consisting of only nearest-neighbor interactions, can be

N = 6, �t = 1

(a)

(b)

Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
i �̂

X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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as measured in the experiment after post-selection, while the
lower plot shows its deviation from theory.

delity, rather than qubit number, is the main limitation of
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limitation are well underway [86]. To mitigate the time-
correlated errors, we have applied a symmetry-protection
scheme [29] but found negligible e↵ects in suppressing
the errors, pointing to dominant incoherent and uncorre-
lated noise in the experiment. Incoherent errors can be
mitigated by post-selection of the experimental measure-
ments using symmetry considerations. Better-motivated
and further-tailored schemes for incoherent error mitiga-
tion are desired in future simulations.

An avenue for improving the quality of the simulation
is reducing the gate depth, e.g., by performing gates in
parallel instead of sequentially. In our model, e�i�tĤ
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Figure 8. Experimental results for N = 6 and �t = 1. (a) The
upper plot shows fluctuation in the bare-vacuum population,
Pvac(t), while the lower plot shows particle-number density,
⌫(t). (b) The left plot shows the local charge density Qn(t)
as measured in the experiment after post-selection, while the
right plot shows its deviation from theory. At t = 4, we reach
the gate-depth limit of the hardware.

applied in a fixed circuit depth of 4 instead of 2N by per-
forming all the X2iX2i+1 terms, then all the X2i+1X2i+2

terms, in parallel. The all-to-all interactions in e
�i�tĤ

ZZ

can be reduced to depth of N instead of N
2 if gates

XiXi+n, for all i and fixed n, are performed in paral-
lel. With trapped ions, parallel operations can be done
either in multi-zone architectures [87, 88], or in linear
chains with advanced control schemes [89].

Alternatively, the gate depth can be reduced by
using M -body Mølmer-Sørensen gates MS(�,M) ⌘

e
�i�

PM
i=1

PM
j=i+1 �̂

X
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X
j [82–84]. This approach was im-

plemented in Ref. [71] to reduce the number of MS op-
erations in the simulation of the Schwinger model from
O(N2) to O(N). In general, a non-trivial optimization of
both frequency and amplitude modulation of the beams
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ZD, Linke, PRX Quantum 3 (2022) 2, 020324.
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N = 2, �t = 0.5

(a)

(b)

Figure 5. Experimental results for N = 2 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac, while the lower plot shows particle-number den-
sity, ⌫, as a function of time, indicating the creation and an-
nihilation of the particle-antiparticle pairs. The dashed lines
are a guide to the eye. (b) The upper plot shows the local
charge density Qn as measured in the experiment after post-
selection, while the lower plot shows its deviation from theory
as a function of time.

try protection can improve our experimental implemen-
tation.

Figure 9 plots the result of an experiment using the
odd-even term ordering. As before, the initial state is the
bare vacuum. The unitaries e�i↵kŜz , with random angles
↵k given in Appendix A, are inserted between Trotter
steps k and k+1. While the population in states forbid-
den by the symmetry, denoted as Psym in the upper panel,
decreases with symmetry protection, this reduction is not
significant. Furthermore, while the deviation of the bare-
vacuum population from the Trotterized theory generally
decreases, post-selecting symmetry-preserving measure-
ments appears more e↵ective in mitigating the error in
this quantity than the symmetry protection as shown
in the lower panel of the figure. This indicates that

N = 4, �t = 0.5

(a)

(b)

Figure 6. Experimental results for N = 4 and �t = 0.5.
(a) The upper plot shows fluctuation in the bare-vacuum pop-
ulation, Pvac(t), while the lower plot shows particle-number
density, ⌫(t). (b) The upper plot shows the local charge den-
sity Qn(t) as measured in the experiment after post-selection,
while the lower plot shows its deviation from theory.

the experiment is dominated by noise that is not corre-
lated in time. Note that by construction, the symmetry-
protection scheme only mitigates time-correlated errors.

IV. DISCUSSION

We have digitally simulated the time evolution of the
lattice Schwinger model with up to six qubits. For a
four-qubit simulation, we observe four oscillations of the
particle density, and the simulated time is almost four
times longer than previously demonstrated using a Trot-
terized scheme [64, 71]. Given the long circuit depths
required for dynamical gauge-theory simulations, gate fi-

4

FIG. 2. The H
⇤̃=3
k=0,+ ground state energy and chiral conden-

sate (purple, blue extrapolated to -1.000(65) and -0.296(13),
respectively) expectation values as a function of r, the noise
parameter. r � 1 is the number of additional CNOT gates
inserted at each location of a CNOT gate in the original VQE
circuit. (1200 IBM allocation units and ⇠ 6.4 QPU·s)

k = 0 and ⇤̃ = 1, 2, 3 spaces as hHi = �0.91(1) MeV,
�1.01(4) MeV, and �1.01(2) MeV respectively (see Ap-
pendix E, H, and I)1. To manage inherent noise on the
chip, we have performed computations with a large num-
ber of measurement shots (8192 shots for ibmqx2 [52]
and ibmqx5 [53]). For these variational calculations, the
systematic measurement errors have been corrected via
the readout-error mitigation strategy [33, 54]. Further,
a zero-noise extrapolation error mitigation technique in-
spired by Refs. [55, 56] has been implemented. Examples
of this zero-noise extrapolation technique are shown in
Fig. 2, where the noise parameter r controls the accrual
of systematic errors by inserting r� 1 additional 2-qubit
gates (CNOT2) at every instance of a CNOT gate. In
the limit of zero noise, this modifies CNOT simply by an
identity.

For the results obtained on IBM quantum hardware,
an estimate of the length of time the quantum processing
unit (QPU) spent executing instructions based upon IBM
benchmarking is provided [52, 53, 57]. This VQE calcu-
lation required 6.4 QPU-seconds and 2.4 CPU-seconds
with a total run time of 4 hours. Clearly, a majority of
the time was spent in communications.

IV. DYNAMICAL PROPERTIES

Time evolving quantum systems is a key capabil-
ity of quantum computers. Working with the k = 0
P = +1 sector, we evolve the unoccupied state |�1ik=0,+

1 Example code snippets for calculation on IBM hardware and ta-
bles of data appearing in figures can be found in the supplemental
material [51]

FIG. 3. The probability of finding an e
+
e
� pair (blue,

lower line) and the expectation value of the energy of the elec-
tric field (purple, upper line) in the two-spatial-site Schwinger
model following time evolution with U(✓i(t)) from the initial
empty state. The solid curves are exact results while the the
data points are quadratic extrapolations obtained with the
ibmqx2 quantum computer using a circuit involving 3 CNOT
gates [60]. (1000 IBM allocation units and ⇠ 12.3 QPU·s)

(see Fig. 1 and Appendix A) forward in time with two
techniques. The first is through SU(4) parameteriza-
tion of the evolution operator and the second is us-
ing a Trotter discretization of time. The former uses
a classical computer to determine the 9 angles describ-
ing the time evolution over an arbitrary time inter-
val, which is induced by the symmetric SU(4) matrix
U(✓i(t)) = e�iHt, leading to the state |�ik=0,+(t) =
U(✓i; t)|�1ik=0,+ (see Appendix C). The most gen-
eral form of the symmetric SU(4) matrix through its
Cartan decomposition is U = KTCK where C =
e�i�x⌦�x✓7/2e�i�y⌦�y✓8/2e�i�z⌦�z✓9/2 is generated by the
Cartan subalgebra and K is a SU(2) ⌦ SU(2) transfor-
mation defined by the 6 angles, ✓1,..6 [58, 59]. Fig. 3
shows the “zero-noise” extrapolated pair probability and
expectation value of the energy in the electric field as a
function of time calculated on ibmqx2 with the Cartan
subalgebra circuit of Ref. [60].
The time evolution of this system has also been stud-

ied using a Trotterized operator (see Appendix D).
It is discretized such that e�iHt

! UT (t, �t) =

lim
N!1

 
Q
j

e�iHj�t

!N

, where �t = t

N
and the Hamilto-

nian decomposition H =
P
j

Hj (for the k = 0 P = +1

⇤̃ = 3 sector) is given by,

H =
x
p
2
�x ⌦ �x +

x
p
2
�y ⌦ �y � µ �z ⌦ �z

+ x

✓
1 +

1
p
2

◆
I ⌦ �x �

1

2
I ⌦ �z

� (1 + µ) �z ⌦ I + x

✓
1�

1
p
2

◆
�z ⌦ �x .(5)

IMPLEMENTATIONS ON THE ACTUAL QUANTUM HARDWARE



3

The last term in the Hamiltonian corresponds to the
invariant Casimir operator of the theory and represents
color electric field energy stored in the gauge links. Here,
L̂

2

n “ ∞
a L̂

a
nL̂

a
n “ ∞

a R̂
a
nR̂

a
n where L̂a

n and R̂a
n (with

a “ x, y, z) are respectively the left and right color elec-
tric field components on the link n. For a non-Abelian
gauge group, the right and left color electric field are
different and are related via the adjoint representation
R̂a

n “ ∞
bpÛadj

n qabL̂b
n, where pÛadj

n qab “ 2Tr

”
ÛnT̂ aÛ :

nT̂
b
ı
,

T̂ a “ �̂a{2 are the three generators of the SU(2) algebra
and �̂a are the Pauli matrices [38].

Symmetries and non-Abelian physics By virtue
of its gauge invariance, the Hamiltonian in equation (1)
commutes with the local gauge transformation genera-
tors, also called the Gauss’s law operators, and are given
by Ĝa

n ” L̂a
n´R̂a

n´1´Q̂a
n, where the non-Abelian charges

Q̂a
n acting on the site n are defined as

Q̂a
n “

ÿ

ij

�̂i:
n pT̂ aqij �̂j

n, a “ x, y, z. (2)

More precisely, the so-called physical Hilbert space of the
theory is spanned by the eigenstates of the Gauss’s law
operators Ĝa

n. In the following, we choose to work in
the sector with no external charges which is specified by
Ĝn | y “ 0, @n, and in the neutral total charge sector
Q̂a

tot | y “ ∞N
n“1 Q̂

a
n | y “ 0, @a.

Remarkably, the non-Abelian nature of the model al-
lows the existence of gauge invariant singlet states which
are forbidden in the Abelian case due to symmetry con-
straints. To see this, we note that the total color
charges Q̂a

tot “ ∞N
n“1 Q̂

a
n are conserved quantities and

commute with the Hamiltonian. Besides the three non-
Abelian charges, the Hamiltonian also commutes with
the redness and greenness operators defined as R̂ “∞N

n“1 �̂
1:
n �̂1

n ´ N{2 and Ĝ “ ∞N
n“1 �̂

2:
n �̂2

n ´ N{2, which
respectively measure the red and green color charges. Be-
cause redness and greenness do not have convenient sym-
metry properties, it is more natural to use their difference
(which is purely within the SU(2) gauge symmetry, since
R̂´Ĝ

2 “ Q̂z
tot) and their sum (which is a global U(1) sym-

metry). We therefore define the baryon quantum number
of the model as B̂ “ R̂`Ĝ

2 “ 1
2

∞N
n“1 �̂

:
n�̂n ´ N{2 which

measures the matter-antimatter imbalance.
The existence of multiple conserved charges in the non-

Abelian theory has to be contrasted with the Abelian
Up1q case of quantum electrodynamics (QED), where the
electric charge is the only conserved quantity. In QED,
the total electric charge coincides with the baryon num-
ber B of the system [39], and the neutral charge con-
straint thus imposes the value of the matter-antimatter
imbalance to be zero. In other words, neutral gauge in-
variant states of QED must contain as many electrons as
positrons leading to meson-type singlet states only. On
the other hand, the constraint of neutral charge for the
SU(2) theory Q̂i

tot | y “ 0, @i does not enforce the value
of the baryon quantum number B, since these are differ-

VQE preparation of the baryon massb
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a VQE circuit to prepare baryon and vacuum states

Exact baryon mass

Baryon mass (VQE)

FIG. 2. VQE calculation of a baryon. We variationally
simulate an effective eight sites chain with the experimental
circuit shown in a. The boxes represent single qubit gates.
Grey boxes are fixed gates while the color coding indicates
dependence from three variational parameters. Their exact
implementation changes depending on the combination of the
parameter values, which is automatically compiled from the
original circuit shown in Fig. 3. This takes into account the
coupling topology of the IBMQ Casablanca processor, which,
together with the qubit identification for the B “ 0 sector are
shown on the left. The circuit yields the mass of the baryon
(errorbars are smaller than markers), an SU(2)-“proton” (see
inset), for a range of x and m̃ “ 1 as explained in the main
text.

ent quantum numbers. Therefore, it is possible to con-
struct color neutral gauge invariant singlets with B ‰ 0,
which are forbidden in QED. While the states in the
B “ 0 sector are similar to the neutral states of QED,
the states in the sector with B ‰ 0 have no equivalent
in Abelian theories. In particular, we will refer to the
ground state in the sector with B “ 1 as a baryon state,
the ground state in B “ 0 will be the vacuum and the
first excited state will be called a meson state. A pictorial
comparison of a meson and a baryon is given in Fig. 1b.

Elimination of the gauge fields and qubit for-
mulation To study energy spectrum of the SU(2) the-
ory on a quantum computer, we map the lattice Hamil-
tonian in equation (1) to a qubit system. In one spatial
dimension and with open boundary conditions, the gauge
degrees of freedom can be integrated out [40–44] (see
Supplementary Information for details). This approach
eliminates redundant degrees of freedom and allows us
to simulate our target model with a minimal number of
qubits. As a second step, a Jordan-Wigner transforma-
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FIG. 10. Two plaquettes with periodic boundary conditions and an arrow convention amenable to infinite extension in the
two-dimensional plane. Indices local to each end of each link characterize states in SU(3) e.g., the color isospin and hypercharge
indices.

previous algorithms, for example, Ref. [13].

Similar to the methods employed for the one-plaquette system, Gauss’s law can be explicitly satisfied in the global

wavefunctions by construction of the basis states. Using the dimensionality of the color irrep of each link, as shown in

Fig. 10, the basis states for the two-plaquette system are written as |�(R1,Q1,R2,R3,Q2,R4)i. The gauge invariant

lattice wavefunction for this two-plaquette system, as discussed in greater generality in Appendix A, is

|�(R1,Q1,R2,R3,Q2,R4)i =
1

dim(Q1) dim(Q2)

X

all

|R1, a, bi|Q1, c, di|R2, e, fi|R3, g, hi|Q2, i, ji|R4, k, `i

hR3, h, R̄1, a|Q̄2, ji�312 hR1, b, R̄3, g|Q̄1, di�131

hR4, `, R̄2, e|Q2, ii�422 hR2, f, R̄4, k|Q1, ci�241 , (34)

where |R, a, bi is a link-state in the electric basis and hRi, f,Rj , k|Qk, ci�ijk are SU(3) CG coe�cients.

The global wavefunctions of the two-plaquette system are formed from combinations of these basis states, consistent

with the global symmetries of the system such as: color-parity symmetry resulting from the sum of ⇤ + ⇤† in the

Hamiltonian, e.g., {Ri,Qi} $ {Ri,Qi}, translation invariance, and reflection symmetry. These symmetries lead to a

natural block-diagonalization of the Hamiltonian in these projected bases. Quantum numbers may be assigned to the

states in each block, ±1 for each of the symmetries in the case of two-plaquettes. In this section, we consider a global

basis in which dynamical quantum states are mapped to symmetry-projected configurations of the full two-plaquette

lattice. Two related local truncations in color space are used to explore the convergence of both local and global

truncations.

A. Two-Plaquette: {1,3,3} Local Truncation

In limiting the local link basis to color irreps {1,3,3} for the two-plaquette system without constraints and symmetries,

there are 36 independent basis states. Imposing Gauss’s law at each vertex reduces this number down to 27. Further

restricting to global singlet states, as is the strong coupling vacuum and preserved by the Hamiltonian, the dynamical

Hilbert space becomes 9 dimensional, which decomposes into sectors of dimensions (4, 2, 2, 1) under the discrete

symmetries of color parity and spatial translation. Focusing on the sector that contains the trivial vacuum, the basis

states in the ++ sector are,

| (133;++)
1 i = |�(1,1,1,1,1,1)i

| (133;++)
2 i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤

| (133;++)
3 i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
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circuit in Eq. (19), and the third can be implemented with the following circuit relation

ei(↵Ẑ⌦X̂+�X̂⌦Ẑ) =
H • H ei↵Ẑ H • H

ei�Ẑ
. (43)

The results of performing first order Trotter time steps with g = 1 beginning in the electric vacuum are shown in

Fig. 12. Two middle qubits were used to store the state of the system and, when the measurement error mitigation

is implemented through voting, the remaining three qubits were used to inform the post-selection described in Sec-

tion III B 1. As the results show, three Trotter steps are capable of reproducing the first maximum and minimum

in the evolution of the electric energy and calculations on the Athens quantum processor are in agreement with the

exact calculation.
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FIG. 12. The (trivial-) vacuum-to-vacuum persistence probability |h00| Û(t) |00i|2 (left panel) and the energy in the electric
field (right panel) of the two plaquette system in the color parity basis truncated locally at 3 and 3. Evolution is a 1st-order
Trotterization of the Hamiltonian in Eq. (39). Points correspond to quadratic extrapolations of results obtained from IBM’s
Athens quantum processor, with systematic and statistical uncertainties combined in quadrature.

B. Two-Plaquette: {1,3,3,8} Local Truncation

To further explore global wavefunctions and also to demonstrate a further complexity in such calculations, the dis-

cussion in Subsection IVA is here extended to include the 8 in the local link basis. The construction involves

an expanded basis that requires considering non-trivial multiplicities in the products of irreps, in particular in

8 ⌦ 8 = 27 � 10 � 10 � 8 � 8 � 1. Of the 46 states in this local basis, 109 of them satisfy Gauss’s law. Pro-

jecting further to the global color singlet states—the global color charge being a quantum number conserved by the

Hamiltonian—there are 41 distinct physical configurations potentially connected to the strong coupling vacuum.

These physical and global color singlet states combine into states with definite transformation properties under the

discrete symmetries of color parity, translation, and reflection, which is no longer redundant in this larger basis as

3 ⌦ 3 = 8 � 1 leads to configurations that can be odd under reflection. Focusing only on the + + + sector, the 15

independent states are,

| (1338;+++)
1 i = |�(1,1,1,1,1,1)i ,

| (1338;+++)
2a i =

1

2

⇥
|�(3,3,3,1,3,1)i+ |�(3,3,3,1,3,1)i+ |�(1,3,1,3,3,3)i+ |�(1,3,1,3,3,3)i

⇤
,

| (1338;+++)
2b i =

1
p
2

⇥
|�(3,1,3,3,1,3)i+ |�(3,1,3,3,1,3)i

⇤
,

| (1338;+++)
3 i =

1
p
2
[ |�(8,1,1,8,1,1)i+ |�(1,1,8,1,1,8)i ] ,

2

mentum vanish. In weak coupling, the magnetic con-
tributions dominate and a theory of dynamical loops
emerges. The angular momentum basis describes the
quantum state of a generic link by its irreducible repre-
sentation, j, and associated third-component projections
at the left and right end of the link in the 2 and 2̄ rep-
resentations, |j,m,m

0
i ⌘ |j,mi⌦ |j,m

0
i, respectively. In

one dimension, SU(2) lattice gauge theory can be spa-
tially discretized onto a string of plaquettes (see Fig. 1).
With periodic boundary conditions (PBCs), only three-
point vertices contribute to such a plaquette chain. To
form gauge singlets, components of the three links at each
vertex are contracted with an SU(2) Clebsch-Gordan co-
e�cient. The wavefunction at each vertex has the form

V ⇠

X

b,c,e

hj1, b, j2, e|q, ci |j1, a, bi ⌦ |q, c, di ⌦ |j2, e, fi , (3)

where indices b, c, and e are located at the vertex. By
focusing on a system with an even number of plaquettes,
matrix elements of the arbitrary plaquette operator may
be determined. The state of an even-length lattice in
one dimension with PBCs and with definite link angular
momenta is

|�i = N

X

{m}

LY

i=1

hj
t
i ,m

t
i,R, j

t
i+1,m

t
i+1,L|qi,m

t
qii (4)

hj
b
i ,m

b
i,R, j

b
i+1,m

b
i+1,L|qi,m

b
qii

|j
t
i ,m

t
i,L,m

t
i,Ri ⌦ |j

b
i ,m

b
i,L,m

b
i,Ri ⌦ |qi,m

t
qi ,m

b
qii

with jL+1 = j1, mL+1 = m1, and normalization N =Q
i(dim(qi))�1 with dim(q) = 2q + 1. Referring to the

plaquette string’s ladder structure, on links located as
rungs of the ladder, angular momentum values are la-
beled by q. Thus, a plaquette string is created by two
strings of j-type registers connected periodically by rungs
of q-type registers. The contraction with Clebsch-Gordan
coe�cients at each vertex ensures the local gauge singlet
structure required by Gauss’s law. The link operator acts
on the degrees of freedom at each end of a link and is a
source of j = 1/2 angular momentum,

Û↵� |j, a, bi =
X

�J

s
dim(j)

dim(J)
|J, a+ ↵, b+ �i

⇥ hj, a,
1

2
,↵|J, a+ ↵ihj, b,

1

2
,�|J, b+ �i , (5)

which contains non-vanishing contributions only for J =
j±

1
2 [59]. It follows that matrix elements of the plaquette

FIG. 1. (top) Diagram of the lattice distribution of
dlog2(2⇤j + 1)e-qubit registers and the action of ⇤̂ on SU(2)
plaquettes in one dimension. ⇤̂ operates on the four qubit
registers in the plaquette and is controlled by the four neigh-
boring qubit registers to enforce the Gauss’s law constraint.
(bottom) The plaquette operator with labeled angular mo-
mentum registers.

operator in one dimension are

h�··· ,jt,b` ,q`f ,j
t,b
af ,qrf ,j

t,b
r ,···|⇤̂|�··· ,jt,b` ,q`i,j

t,b
ai ,qri,j

t,b
r ,···i =

q
dim(jtai) dim(jtaf ) dim(jbai) dim(jbaf )

⇥

q
dim(q`i) dim(q`f ) dim(qri) dim(qrf ) (6)

⇥ (�1)j
t
`+jb`+jtr+jbr+2(jtaf+jbaf�q`i�qri)

⇥

⇢
j
t
` j

t
ai q`i

1
2 q`f j

t
af

�⇢
j
b
` j

b
ai q`i

1
2 q`f j

b
af

�⇢
j
t
r j

t
ai qri

1
2 qrf j

t
af

�⇢
j
b
r j

b
ai qri

1
2 qrf j

b
af

�

where the indices j
t,b
` , q`i, q`f , j

t,b
a , qri, qrf , and j

t,b
r are

used to indicate the j-values relevant for the single pla-
quette operator (as depicted in Fig. 1) and the brack-
ets indicate Wigner’s 6-j symbols. The four registers
j
t,b
`,r outside the plaquette are not modified by the ac-
tion of the plaquette operator. However, their inclusion
as control registers is necessary to maintain Gauss’s law.
The sums over alignment in each gauge-invariant space
yield a dramatically reduced Hilbert space to be mapped
onto a quantum device, characterized entirely by the |ji’s
(rather than the |j,m,m

0
i’s) incrementing naturally by

half-integers. The qubit representation of the periodic
plaquette string is shown on the top panel of Fig. 1, where
each link contains a dlog2(2⇤j + 1)e-qubit register with
⇤j the angular momentum truncation per link.
In the following, circuits are devised for the plaquette

operator with angular momentum truncation ⇤j = 1/2.
For time evolution beginning in the strong-coupling vac-
uum, the top and bottom j values are equivalent with this
cuto↵ due to SU(2) flux conservation. As a result, the
bottom j registers need not be mapped onto the quan-
tum device [94] and the plaquette operator reduces to a
five-qubit operator.
While matrix elements of the plaquette operator in the

physical space are critical, those in the unphysical space
are not. As long as the matrix elements mixing the two
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FIG. 4. (top) Expectation value of the electric energy contri-
bution of the first plaquette in the two-plaquette lattice with
PBCs and coupling g

2 = 0.2 computed on IBM’s Tokyo. The
dashed, dot-dashed, and thin gray lines are the NTrot = 1, 2, 3
Trotterized expectation values, while the thick gray line is the
exact time evolution. (bottom) Measured survival probability
to remain in the physical subspace. Uncertainties represent
statistical variation, as well as a systematic uncertainty esti-
mated from reproducibility measurements. The icons appear-
ing are defined in Ref. [41].

Real-time evolution of two plaquettes with PBCs (see
the right panel of Fig. 3) and truncation ⇤j = 1/2 has
been implemented on IBM’s quantum device Tokyo, se-
lected for its available connectivity of a four-qubit loop.
The top panel of Fig. 4 shows time-evolved expectation
values of the energy contributions from the first electric
plaquette calculated with one and two Trotter steps [95].
The electric contributions, being localized in their mea-
surement to the four-dimensional physical subspace, are
well determined after a small number of samples. In
contrast, measuring the energy contributions from the
magnetic Hamiltonian requires increased sampling due
to the operator’s natural representation in the Pauli-X
basis of the q`, ja, and qr qubit registers—distributing the
wavefunction’s amplitude throughout the Hilbert space.
Results have been corrected for measurement error by
the constrained inversion of a 16-dimensional calibration
matrix informed by preparation of each of the 16 com-
putational basis states prior to calculation. The result-
ing probabilities are linearly extrapolated in the presence
of CNOT gates, post-selected within the gauge-invariant
space, and renormalized. The linear extrapolation is in-
formed by r = 1, 2, where r = 1 is the circuit in Fig. 3
and r = 2 stochastically inserts a pair of CNOTs ac-
companying each of the three CNOTs either in the first
or second half of the plaquette operator. The combined

noise and gate fidelity of the device were found to limit
the ability to extrapolate further in CNOT noise, even
with a single Trotter step. It can be seen that these er-
ror mitigation techniques have allowed calculation of the
electric energy associated with the SU(2) gauge field to
the precision obtained after a single Trotter step.
It is important to determine the feasibility of retaining

gauge-invariant Hilbert spaces with near-term quantum
hardware. For our calculations on IBM’s Tokyo quan-
tum device, before CNOT extrapolation, the (NTrot, r) =
(1, 1) measurements were found to remain in the gauge
invariant space with a survival population of ⇠ 45%, as
shown in the bottom panel of Fig. 4. After linear extrap-
olation in the probabilities, this was increased to ⇠ 65%,
with survival population decreasing as evolution time in-
creases. The survival population for NTrot = 2 was found
to be ⇠ 25%, consistent with loss of quantum coherence
of a four-dimensional physical space embedded onto four
qubits, precluding CNOT extrapolation. This observable
is a diagnostic of the calculation. As it approaches the
decorrelated limit (25%), CNOT extrapolations become
less reliable leading to the underestimate of systematic
uncertainties in Fig. 4. Because neither the proposed
qubit representation, nor the subsequent Trotterization,
produce gauge-variant error contributions, the observed
decay of population in the physical subspace is a mea-
sure of the device’s ability to robustly isolate Hilbert
subspaces. This is likely to be an essential capability for
evolving lattice gauge theories and other systems with
conserved quantities, as well as for quantum error cor-
rection.
When increasing ⇤j , the plaquette operator must be

calculated and designed over 8 qubit registers, each con-
taining dlog2 (2⇤j + 1)e qubits. The classical compu-
tational resources required to define this operator with
Eq. (6) scales with the number of unique non-zero ma-
trix elements, which is polynomial in ⇤j . When con-
structing the time evolution operator for ⇤j > 1/2, the
combination of Trotterization and Pauli decomposition of
the 4-register operators in j`,r-controlled sectors gener-
ically generates interactions breaking gauge invariance
[56, 69, 96]. The breaking of gauge invariance will be im-
portant to control if this decomposition is used in future
calculations.
Developing quantum computation capabilities for non-

Abelian gauge field theories is a major objective of nu-
clear physics and high-energy physics research. One of
the challenges facing such calculations is that the map-
ping of the gauge theory onto a discretized lattice involves
a digitization of the gauge fields. We have presented cal-
culations of the dynamics of a one-dimensional SU(2) pla-
quette string with implementation on IBM’s Q Experi-
ence superconducting hardware. This was made feasible
by an improved mapping of the angular momentum ba-
sis states describing link variables. Our design of the pla-
quette operator for digital quantum devices requires local
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NON-ABELIAN GAUGE THEORIES: HARDWARE IMPLEMENATTION



Implementation, benchmark, 
and co-development

Can we co-develop dedicated systems 
for gauge-theory simulations?

Can digital and analog ideas be combined 
to facilitate simulations of field theories?

What is the capability limit of 
the hardware for gauge-theory 
simulations so far?

What is the nature of noise in hardware 
and how can it best be mitigated?



Analog-Digital

How many qubits and gates are required to achieve accuracy     in 
a given observables? Are there algorithms that scale optimally?

ϵ

Single-spin gates
Two-spin gate (MS)Spin-(normal) 

phonon gate
Spin-(local) 
phonon gate

Standing-wave gate

H = H1 +H2 + · · ·

t = NT � t

e�iH1�t

e�iH2�t

ZD, Linke, Pagano, Phys. Rev. 
Research 3, 043072 (2021).
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Collective normal modes 
used to perform two-ion 
entangling gates.

Lattice Schwinger model

Ions in a linear Paul trap
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Circuit and recourse analysis

Near term cost

|j⌘�1i
+1 �1...

|j0i H • • H H • • H S
† H • • H S S

† H • • H S

|ri • H • Rz(xt/4) • • Rz(xt/4) • H S
† H • Rz(�xt/4) • • Rz(�xt/4) • H • S

|r + 1i Rz(�xt/4) Rz(�xt/4) Rz(xt/4) Rz(xt/4)

Figure 3: A circuit to simulate the Schwinger model hopping terms,
r1

j=4 e≠iT (j)t/2
, in the order corresponding to

(50). The locality of the presented operator will be expanded to include ÷-distance CNOTs between qubits representing

fermionic degrees of freedom in quantum registers with one-dimensional connectivity. The gates labeled +1 and ≠1 are

the incrementer and decrementer circuits.

with S the “phase gate,” |0Í È0| + i |1Í È1|. To reduce clutter, these composite operators are denoted by

Gr := XrXr+1 + YrYr+1 and G̃r := XrYr+1 ≠ YrXr+1. (49)

To simulate a hopping term in the Trotter step V (t), we will employ the approximation

e≠i
xt

8 ((A+Ã)¢G+(B+B̃)¢G̃) ¥ e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2, (50)

where

T (1) := x(A ¢ G)/4, (51)
T (2) := x(Ã ¢ G)/4, (52)
T (3) := x(B̃ ¢ G̃)/4, (53)
T (4) := x(B ¢ G̃)/4. (54)

A circuit representation of the right-hand side of (50) is given in Figure 3. This routine can be understood
in a simple way by first noting the similarity of the four T (i) operators:

T (2)
r

= S†
E,r

T (1)
r

SE,r (55)

T (3)
r

= S†
E,r

(Sb

0,r
Sf

r
)
1

≠T (1)
r

2
(Sb

0,r
Sf

r
)†SE,r (56)

T (4)
r

= (Sb

0,r
Sf

r
)
1

≠T (1)
2

(Sb

0,r
Sf

r
)† (57)

Consequently, the whole circuit is essentially just four applications of e≠itT
(1)

/2 along with appropriately inserted
basis transformations and rotation angle negations. The specific ordering of the T (i) chosen yields cancellations
that reduce the number of internal basis transformations that must be individually executed. A few single-
and two-qubit gates are also spared by additional cancellations. The remainder of this section addresses the
implementation of eûitT

(1)
/2.

To e�ect an application of e≠itT
(1)

/2, one can first transform to a basis in which X ¢ G is diagonal. (Recall
A is just X0 – a bit flip on the last bit of the bosonic register.) G is diagonalized by the so-called Bell states,

|—abÍ = |0 bÍ + (≠1)a |1 b̄ÍÔ
2

(58)

G |—abÍ = 2b(≠1)a |—abÍ (59)

with b̄ indicating the binary negation of b, while X is diagonalized by |±Í = (|0Í ± |1Í)/
Ô

2. From this, we have
that

e≠ ixt

8 X¢G |±Í |—00Í = |±Í |—00Í (60)

e≠ ixt

8 X¢G |±Í |—01Í = eû ixt

4 |±Í |—01Í (61)

e≠ ixt

8 X¢G |±Í |—10Í = |±Í |—10Í (62)

e≠ ixt

8 X¢G |±Í |—11Í = e± ixt

4 |±Í |—11Í . (63)

Thus, in the Bell basis, we implement rotations conditioned on a and b.
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Part of electric field 
interactions acting on 
gauge DOF registers

Sample gauge-fermion 
interaction block

|j0i Rz(20t) • • • • •

|j1i Rz(21t) Rz(21t) • • • •

|j2i Rz(22t) Rz(22t) Rz(23t) •
...

...
. . . . . .

|j⌘�2i Rz(2⌘�2t) Rz(2⌘�2t) Rz(2⌘�1t) • •

|j⌘�1i Rz(2⌘�1t) Rz(2⌘�1t) Rz(2⌘t) Rz(22⌘�3t)
(68)

Figure 4: Simplified circuit for simulating e≠iE2
r

t
in qubit limited setting. The circuit is shown acting on the product

state ¢÷≠1
k=0 |jkÍ to clearly mark which qubit each gate is intended to act upon although the circuit is valid for arbitrary

inputs.

The first two time slices of the circuit serve to change to the X ¢ G eigenbasis. The subsequent parallel Rz

rotations flanked by CNOTs implement the controlled rotations in the computational basis, taking

|zÍ |00Í æ |zÍ |00Í , (64)

|zÍ |01Í æ e(≠1)z̄ ixt

4 |zÍ |01Í , (65)
|zÍ |10Í æ |zÍ |10Í , (66)

|zÍ |11Í æ e(≠1)z ixt

4 |zÍ |11Í ; (67)

this is equivalent to acting with e≠ ixt

4 Z¢Z . After undoing the basis transformation, we will have e�ected
e≠ ixt

8 A¢G. Three similar operations are executed in the remainder of the circuit; an incrementer SE (denoted
by “+1”), the phase gates, and the overall minus sign on the rotations in the latter half of the circuit all stem
directly from the relations given in (55,56,57).

The above discussion is summarized below as a lemma for convenience.

Lemma 1. For any (evolution time) t œ R the operation

e≠itT
(4)

/2e≠itT
(3)

/2e≠itT
(2)

/2e≠itT
(1)

/2

can be performed using at most 8 + 2÷ single-qubit rotations, 4 ÷-qubit quantum Fourier transform circuits, 18
CNOT gates and no ancillary qubits.

3.2 Implementing (Diagonalized) Mass and Electric Energy Terms (D)
Lemma 2. The circuit provided in Figure 4 implements e≠iE

2
t on ÷ qubits exactly, up to an (e�ciently com-

putable) global phase, using (÷+2)(÷≠1)
2 CNOT operations and ÷(÷+1)

2 single-qubit rotations.

Proof. The time evolution associated with the electric energy can be exactly implemented utilizing the structure
of the operator. As defined in (14), E2 = diag[�2, (� ≠ 1)2, · · · , 1, 0, 1, · · · , (� ≠ 1)2], where � is the electric
field cuto�. Note that the diagonal elements are not distributed symmetrically—the first diagonal entry is �2

while the last entry is (� ≠ 1)2. This lack of symmetry is required to incorporate the gauge configuration with
zero electric field. However, symmetry can be leveraged by using the following operator identity:

E2 =
3

E + 1
2I

42
≠

3
E + I

2

4
+ I

4 (69)

The operator E+ 1
2 I = 1

2 diag[≠2�+1, · · · , ≠1, 1, · · · , 2�≠1] is skew persymmetric—containing positive-negative
pairs along the diagonal. We then have from (69) and since [Er, E2

r
] = 0 that

e≠iE
2
t = e≠i(E+ 1

2 I)2
tei(E+ 1

2 I)te≠it/4. (70)

Since unitaries are equivalent in quantum mechanics up to a global phase, we can ignore the last phase in the
computation (even if we didn’t want to ignore it, it can be e�ciently computed as t is a known quantity).
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Collective normal modes 
used to perform two-ion 
entangling gates. Local transverse modes used to encode 

the dynamic of the gauge fields.

Lattice Schwinger model

Ions in a linear Paul trap

axj axj+1

am
�j �j+1

 j+1 j

{Ej+1, Uj+1}{Ej , Uj}

Analog-Digital

See also Casanova et al, Phys. Rev. Lett. 108, 190502 (2012), 
Lamata et al, EPJ Quant. Technol. 1, 9 (2014), and Mezzacapo 
et al, Phys. Rev. lett. 109, 200501 (2012) for analog-digital 
approaches to other interacting fermion-boson theories.

See Yang et al, Physical Review A 94, 052321 (2016) for the 
highly-occupied bosonic model of the Schwinger model.

H = �ix

N�1X

n=1

⇥
 
†
nUn n+1 � h.c.

⇤
+

N�1X

n=1

E
2
n +

NX

n=1

(�1)n †
n nµH = �ix

N�1X

n=1

⇥
 
†
nUn n+1 � h.c.

⇤
+

N�1X

n=1

E
2
n +

NX

n=1

(�1)n †
n n

ZD, Linke, Pagano, Phys. Rev. Research 3, 043072 (2021).



. . . . . .

Local transverse modes used to encode 
the dynamic of the gauge fields.

axj axj+1
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�j �j+1Fermion-gauge interactions

Fermion mass term

Gauge-field 
interactions

· · ·

· · ·

Analog-Digital

ZD, Linke, Pagano, Phys. Rev. Research 3, 
043072 (2021).

H = �ix

N�1X

n=1

⇥
 
†
nUn n+1 � h.c.

⇤
+

N�1X

n=1

E
2
n +

NX

n=1

(�1)n †
n nµH = �ix

N�1X

n=1

⇥
 
†
nUn n+1 � h.c.

⇤
+

N�1X

n=1

E
2
n +

NX

n=1

(�1)n †
n n



15

Yukawa theory

Fermion hopping Fermion mass Free scalar fields Fermion scalar-field interaction

Analog-digital O (N) O (1) O (1) O
�
N2

�

Digital O (N) O (1) O (1) O
�
N2 (log⇤)2

�

Schwinger model

Fermion-gauge interaction Fermion mass Electric-field term

Analog-digital O (N) O (1) O(N)

Digital O
�
N2 (log⇤)2

�
O (1) O

�
N (log⇤)2

�

TABLE III. The scaling of the entangling-gate count per Trotter step as a function of the lattice size N and the cuto↵ on the
boson (phonon) excitations ⇤ for the Yukawa theory and the Schwinger model (within HOBM) assuming analog-digital and
fully digital implementations.

Hamiltonian H
(III)
Yukawa in Eq. (24) is implemented with a

single ancilla qubit and with O(N(N + 1)) spin-phonon
gates, which are considered to be free compared with
entangling spin-spin gates. In a fully digital implementa-

tion, e
�iH

(III)
Yukawa�t can be implemented by writing H

(III)
Yukawa

as

H
(III)
Yukawa =

g

N

X

j

X

k

r
2

"k

cos
�2⇡kj

N

�
 

†
j
 j(dk + d

†
k
)+

g

N

X

j

X

k

r
2

"k

sin(2⇡kj/N) †
j
 ji(dk � d

†
k
).

(48)

The implementation of these terms follows the procedure
explained in Ref. [39] in the case of realizing the dynam-
ics of fermion-gauge interaction term in the Schwinger
model. First, Eq. (48) indicates that the operations pro-
portional to A ⌘ (dk + d

†
k
) and B ⌘ i(dk � d

†
k
) opera-

tors are only performed if the fermion occupies a given
site, necessitating a controlled operation on the qubit reg-
ister of the fermion. The A and B operators are two
near-diagonal matrices whose exponential can be imple-
mented using the shift operators, that are realized using
quantum Fourier transform circuits and single-qubit ro-
tations in the Fourier space. As a reminder, for a bi-
nary number with log ⇤ digits, each quantum Fourier
transform requires O((log ⇤)2+log ⇤) CNOT operations.
Relating A and B operators to the shift operators re-
quires a periodic wrapping of the matrices, i.e., identi-
fying the least and most values of harmonic-oscillator
occupation. This unphysical modification can subse-
quently be removed by application of appropriate log ⇤-
controlled operations, amounting to O(log ⇤) additional
CNOT gates [39]. Putting everything together, including
the controlled operations required on the fermionic reg-
ister, and taking into account all the terms in the lattice

sums in Eq. (48), the time evolution operator e
�iH

(III)
Yukawa�t

can be implemented using O(N2(log ⇤)2) CNOT opera-
tions. Therefore, assuming that spin-phonon gates of the
hybrid scheme are free compared with spin-spin entan-

gling gates, the digital approach is inferior to the hy-
brid approach. Even if the spin-phonon gate performs
comparably to the spin-spin (CNOT) gate, the digital
scheme require O((log ⇤)2) more entangling operations
which can be significant when ⇤ � 1.

Such an advantage is at the core of the power of the hy-
brid approach: phonons are represented naturally and as
many phonon excitations as permitted in the dynamics
can be generated without the need to cut their spectrum
o↵. Of course, an excessive number of phonons in the
system can lead to Kerr cross-coupling and loss of co-
herence in the simulator, and therefore a balance should
be established between accuracy of the simulated theory
given a truncated boson spectrum and the experimen-
tal error in the simulator. It is for this reason that ex-
perimental benchmarks are necessary in confirming these
qualitative theoretical expectations. A summary of the
entangling-gate count of both schemes for evolving each
term in the Hamiltonian of the Yukawa theory is provided
in Table III.

B. The Schwinger model

Except for the time evolution of the fermion mass term,
both the fermion-gauge field interaction and the electric-
field term (the boson self interactions in the HOBM) are
implemented di↵erently in the hybrid and fully digital
schemes.

The circuit in Fig. 6 reveals that the time evolution of
the interacting fermion-boson field in the HOBM requires
O(N) spin-spin gates and O(N) spin-phonon gates, with
the latter expected to be not too costly. In the fully dig-

ital scheme, e
�iH

(I)0

U(1)
�t with the Hamiltonian in Eq. (41)

can be implemented following the circuit construction
described earlier in the case of fermion scalar-field in-
teractions of the Yukawa theory. The only di↵erences
are that now the bosons are defined locally, and associ-
ated with each site (link) there is one such boson (as op-
posed to N bosons associate with all momentum modes
in the Yukawa theory), and that the fermions correspond

Let us compare the circuit structure of digital and 
analog-digital cases when gauge DOF are present:

2
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Figure 1. Experimental system for observing hopping of
a single phonon excitation between local transverse motional
modes along the X-direction. (a) The local phonon frequen-
cies are represented by Êi in a frame rotating at the transverse
common mode frequency Êx, and Ÿjk is the phonon hopping
strength between modes j and k. Phonon blockades on indi-
vidual sites (here ion 3) is implemented by driving resonant
red sideband transitions with strength �r

j that gives rise to
an energy splitting between the ground state |g, 0Í and the
first excited polaritonic states |±, 1Í. (b) An experimental
sequence where each ion is prepared in the ground state of
spin and motion |g, 0Í using Raman sideband cooling (SBC).
A single phonon is excited on ion 2 using fi-pulses at the blue
sideband (fib) and carrier (fi) transitions. Local phonon block-
ades are applied using resonant red sideband pulses (shown
in red). The hopping duration · is varied to observe the dy-
namics of local phonon occupancy (0 or 1 phonon) measured
by first projecting it to the internal spin states (|gÍ or |eÍ)
of each ion using red sideband fi-pulses (fir) followed by the
detection of state-dependent fluorescence from each ion using
a photomultiplier tube array.

sented by the blockade Hamiltonian as

Hb =
ÿ

j

�j |eÍjÈe|j +
ÿ

j

�r

j

2 (‡+
j aj + ‡

≠
j a

†
j
). (2)

Here, the spin-1/2 ‘ground’ and ‘excited’ states of the
j≠th ion are represented by |gÍj and |eÍj , respectively,
with energy splitting ÊHF , and spin raising and lowering
operators ‡

+
j and ‡

≠
j . A local motional red sideband is

driven at a Rabi frequency �r

j and detuned from reso-
nance by �j .

Phonon blockades are applied on individual sites that
have ions prepared in the ground state of spin and mo-
tion |g, 0Í, where the second index denotes the local mode
phonon number. Upon applying the Jaynes-Cummings
interaction at resonance (�j = 0), a maximal energy
splitting of |Êj ± �r

j/2| occurs between |g, 0Í and the
next excited polaritonic states |±, 1Í. This energy cost
suppresses phonons from entering the targeted sites and
thereby creates a blockade (see Fig. 1a). This scheme
is analogous to implementing photon blockades using
single-atom cavity QED systems [18].

The experiment consists of a linear chain of three
171Yb+ions, each with an internal spin defined by a pair
of hyperfine ‘clock’ states as |gÍ = |F = 0, mF = 0Í
and |eÍ = |F = 1, mF = 0Í of the 2S1/2 electronic
ground level with a hyperfine energy splitting of ÊHF =
2fi ◊ 12.642812 GHz [19]. Here, F and mF denote the
quantum numbers associated with the total atomic an-
gular momentum and its projection along the quantiza-
tion axis defined by an applied magnetic field of 5.2 G.
The external motion of the trapped ions is defined by
a linear rf-Paul trap with transverse (X,Y) and axial
(Z) harmonic confinement at frequencies {Êx, Êy, Êz} =
2fi ◊ {3.10, 2.85, 0.15} MHz such that the ion chain is
aligned along Z with a distance of dj,j+1 = 10.1(2) µm
between adjacent ions. During an experiment, we excite
local phonons in the transverse modes along X, which
can then hop between the ion sites. The inherent hop-
ping rates are approximately Ÿj,j+1 ¥ 2fi ◊ 3 kHz and
Ÿj,j+2 ¥ Ÿj,j+1/8, respectively. The combined e�ect of
the transverse (X) harmonic confinement and repulsion
between ions (determined by djk) define the position-
dependent local mode frequency shifts {Êj}. Fig. 1a
represents the local modes with frequencies {Êj} in a
frame rotating at the common mode frequency Êx.

Coherent control of the spin and motion of each ion
is implemented with stimulated Raman transitions using
a 355 nm mode-locked laser [20], where pairs of Raman
beams couple the spin of an ion to its transverse motion
[3]. A global beam illuminates the entire chain, and a
counterpropagating array of individual addressing beams
is focused to a waist of ¥ 1µm at each ion. The beat note
between the Raman beams can then be tuned to ÊHF to
implement a “carrier” transition for coherent spin flips, or
tuned to ÊHF ±(Êx +Êj) to drive a blue- or red-sideband
transition involving local phonon modes. The individual
addressing beams are modulated independently using a
multi-channel acousto-optic modulator [21], each chan-
nel of which is driven by a separate arbitrary waveform
generator [22]. The wave vector di�erence �k̄ between
Raman beams has a projection along both the X and Y
directions of motion. Each transverse mode can then be
addressed by tuning near their sideband transitions. In
order to spectrally resolve each local mode, we choose

3

Ion 1

Ion 2

Ion 3

Single phonon

No phonon

Blockade

Ions 1 2 3 Ions 1 2 3 Ions 1 2 3a)

d) e) f) g)

b) c)

Figure 2. The evolution of local phonon occupancies with initial single-phonon excitations on ions 1, 2, and 3 as shown by
the shaded orange, green, and blue circles, respectively. In the absence of a blockade (a-c), the dynamics are governed by
the hopping strengths {Ÿjk} and the local mode frequencies {Êj}. The corresponding dynamics in the presence of a blockade
(d-g) indicate hopping suppression, which is determined by the blockade strength {�r

j }. The theoretical plots are obtained by
fitting a Jaynes-Cummings Hubbard model (Hamiltonian in Eq. 1 and 2) with free parameters {�r

j }, {Êj} and {Ÿjk} using all
evolution data sets collectively. Error bars represent statistical uncertainties of 2‡.

sideband Rabi frequencies �r

j , �b

j < |Êx ≠ Êy|, while also
satisfying |Êj | π |Êx ≠ Êy| to prevent crosstalk between
the modes.

A typical experimental sequence, as shown in Fig. 1b,
starts with the preparation of each ion in state |g, 0Í by
Doppler cooling and subsequent Raman sideband cooling
of each of the transverse modes. A single phonon excita-
tion is introduced at a single site by resonantly driving
a blue-sideband and carrier fi≠pulse to prepare the state
|g, 1Í. In order to minimize the e�ect of hopping during
this process, the sideband and carrier fi≠pulses are kept
short (¥ 10 µs and ¥ 1 µs, respectively). Phonon block-
ades are applied to particular ions, initially prepared in
the |g, 0Í state, by resonantly driving the red-sidebands of
their respective local modes. Finally, the single phonon
occupancy denoted by states |g, 0Í and |g, 1Í is measured
at each site using a red-sideband fi≠pulse on each ion,
which coherently projects it to spin states |gÍ and |eÍ,
respectively. The spin-dependent fluorescence can then
be detected using a multi-channel photomultiplier tube,
thereby measuring a binary phonon occupancy of 0 or 1
for each site [3, 19].

Figure 2 shows the hopping dynamics. During free
hopping, a single excitation is observed to hop predomi-
nantly to the neighboring site. The extent of hopping is
indicated by the amplitude of the oscillations in phonon
occupancy. This is determined by the strength of hopping
Ÿjk relative to the energy splitting between local modes

Parameter Fitted value Measured value

Ê12 11.58 —
Ê23 7.36 —
Ÿ12 2.90 3.27(19)
Ÿ23 2.96 3.36(20)
�r

1 39.7 43.1(16)
�r

2 45.9 47.6(14)
�r

3 46.3 46.0(19)

Table I. Observed experimental parameters relevant to hop-
ping and the blockade in units of 2fi◊kHz. The values ob-
tained from fits to the hopping data (Fig.2) are compared
with those obtained from direct measurement. The mea-
sured hopping rate Ÿij is obtained from inter-ion distances
{d12, d23} = {10.1(2), 10.0(2)}µm, where the systematic error
is due to uncertainty in dij . The measured red-sideband Rabi
frequency is directly obtained from sideband spectroscopy
(see Fig.S1). The local mode frequencies measured from side-
band spectroscopy are not given due to large Stark shifts that
vary between experimental runs with beam alignment [23].

Êjk = Êj ≠ Êk. We observe di�erent hopping rates be-
tween ions 1 and 2 compared to that between 2 and 3,
which indicates an asymmetry in the local mode energy
di�erences, |Ê12| ”= |Ê23|. This is likely due to a sta-
ble non-linearity in the transverse confinement of the ion

Debnath et al, Phys. Rev. Lett. 120, 073001 (2018).

Monroe-Linke 
Experiment

Is phonon control experimentally feasible? Yes…at 
least for small systems so far!

ZD, Linke, Pagano, Phys. Rev. Research 3, 
043072 (2021).



Finally a few more examples showcasing progress in hardware 
implementation of a range of QCD-inspired problems…



 moving in mediumqq̄

Nachman, Provasoli, and Bauer‡, Phys. 
Rev. Lett. 126 (2021) 6, 062001.

A polynomial time quantum final state shower 
algorithm that accurately models the effects of 
intermediate spin states similar to those 
present in electroweak showers.

de Jong, Metcal, Mulligan, Ploskon, Ringer, 
and, Yao, Phys.Rev.D 104 (2021) 5, 051501.
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notoriously di�cult sign problem in classical lattice QCD
calculations of real time observables [14, 85–87] (the same
problem can also appear in open QCD systems).

In this letter, we outline a formulation of the evolu-
tion of hard probes in the QGP as a Lindblad equation
and explore how simulations on Noisy Intermediate Scale
Quantum (NISQ [13]) devices can be used to advance the-
oretical studies of hard probes in the QGP. Using a quan-
tum algorithm for simulating the Lindblad equation, we
study a toy model on IBM Q simulators and quantum de-
vices, and implement error mitigation for measurement
and two-qubit gate noise. We demonstrate that quan-
tum algorithms simulating simple Lindblad evolution are
tractable on current and near-term devices, in terms of
available number of qubits, gate depth, and error rates.
Open quantum system formulation of hard probes in

heavy-ion collisions. The Hamiltonian of the full system
consisting of the hard probe (subsystem) and the QGP
(environment) can be written as

H = HS + HE + HI (1)

HS = HS0 + HS1 . (2)

Here HS , HE and HI are the Hamiltonians of the subsys-
tem, the environment and their interaction, respectively.
A schematic diagram of the setup is shown in Fig. 1. We
further split HS into the free HS0 and the interacting part
of the subsystem HS1. In quantum field theories, Hamil-
tonians are functionals of fields, which require discretiza-
tion in position space [16]. Here, instead of simulating the
dynamics of fields, we focus on simulating the dynamics
of particle states, which is valid for hard probes. If we use
multi-particle states |p1, A1i ⌦ · · · ⌦ |pn, Ani as the basis
where pi is the four-momentum, Ai represents all dis-
crete quantum numbers, and i = 1, 2, . . . , n, then both
HS0 and HS1 are matrices and HS0 is diagonal. Note
that HS1 is di↵erent from HI : The former is the interac-
tion within the subsystem itself and independent of the
environment, while the latter represents the interaction
between the subsystem and the environment. For exam-
ple, for jets in HICs, HS1 can be collinear radiation of
collinear particles while HI can describe the Glauber ex-
change between collinear particles (subsystem) and soft
fields from the QGP environment [81].

The total density matrix of the subsystem and the en-
vironment evolves under the von Neumann equation. In
the interaction picture, this is given by

d

dt
⇢(int)(t) = �i[H(int)

I
(t), ⇢(int)(t)] . (3)

The operators are defined by

⇢(int)(t) ⌘ ei(HS0+HE)t⇢(t)e�i(HS0+HE)t (4)

H(int)
S1 (t) ⌘ eiHS0tHS1e

�iHS0t (5)

H(int)
I

(t) ⌘ ei(HS0+HE)tHIe
�i(HS0+HE)t . (6)
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FIG. 1. A schematic illustration of a multi-level open quan-
tum system S interacting with a thermal environment E.
The levels in S can represent for example: (1) heavy quark-
antiquark (QQ̄) bound states |p, Aii with center-of-mass mo-
mentum p and quantum numbers Ai, and (2) unbound QQ̄
pairs |p1,p2i with momenta p1,p2. For jets the levels of
S can represent multi-parton states labeled by momenta
|p1, · · · , pni.

The interaction picture used here is special: it is the
standard interaction picture for the subsystem but it is
the Heisenberg picture for the environment. We will drop
the superscript (int) from now on for simplicity but the
reader should be reminded that we use the interaction
picture throughout. We assume that the initial density
matrix factorizes and the environment density matrix is
a thermal state1

⇢(0) = ⇢S(0) ⌦ ⇢E (7)

⇢E =
e��HE

Tr(e��HE )
, (8)

where � = 1/T is the inverse of the QGP temperature.
After the environment is traced out, the reduced evo-

lution of the subsystem density matrix is generally time-
irreversible and non-unitary. If the coupling between the
subsystem and the environment is weak, the reduced evo-
lution equation can be cast as a Markovian Lindblad
equation [38–40]:

d

dt
⇢S(t) = � i

⇥
HS1(t) + HL, ⇢S(t)

⇤

+
mX

j=1

⇣
Lj⇢S(t)L†

j
� 1

2

�
L†
j
Lj , ⇢S(t)

 ⌘
, (9)

where HL denotes a thermal correction to HS generated
by loop e↵ects of HI , and the Lj are called Lindblad op-
erators, whose explicit expressions will be given for a toy

1 The backreaction of the QGP medium to jet energy loss [88–97],
which may further modify jet observables is beyond the scope of
our considerations here. For a recent review, see Ref. [98].

PARTON SHOWER ALGORITHMS AND HEAVY QUARKONIA MOTION IN QGP

See also Bepari, Malik, Spannowsky, Williams, 
Phys. Rev. D 103, 076020 (2021), Williams, 
Malik, Spannowsky, Bepari, Phys. Rev. D 106 
(2022) 056002, Gustafson, Prestel, Spannowsky, 
Williams, J. High Energ. Phys. 2022, 35 (2022).



PARTON DISTRIBUTION FUNCTIONS, DECAY AMPLITUDES

Perez-Salinas, Cruz-
Martinez, Alhajri, and 
Carrazza , PRD 103, 
034027 (2021), Qian, 
Basili, Pal, Luecke, and 
Vary, arXiv:2112.01927 
(2021).

Either calculate PDFs directly since non-equal time amplitudes 
are possible on quantum computers…

…or expedite global fitting 
of PDFs with variational 
quantum eigensolvers…

updated and new measurements are performed. Although
the general scheme for variational circuits is pretty simple,
lots of details can be deployed regarding the three pieces of
this algorithm.
We propose a model based on the general framework of

VQC to tackle the problem of fitting one or several PDFs
flavors using quantum computers. In this case, the problem
to be solved is mathematically reduced to approximate
arbitrary one-dimensional functions within a certain target
accuracy. That is, we define the PDF model to be para-
metrized by a VQC as

qPDFiðx;Q0; θÞ; ð2Þ

where x is the momentum fraction of the incoming hadron
carried by the given parton with flavor i (quarks and gluon),
so 0 ≤ x ≤ 1, at a fixed initial energy scale Q0. Following
this definition, we propose some superficial modifications
to adjust the VQC to this particular problem.
First, we need to introduce the value of x into the circuit.

Thus, we modify the definition of the Ansatz to depend on
θ and x, that is UðθÞ → Uðθ; xÞ. This x value is introduced
as inner circuit parameters following the reuploading
procedure in Ref. [28]. The effect of the quantum circuit
is then defined as

Uðθ; xÞj0i⊗n ¼ jψðθ; xÞi; ð3Þ

which produces a significant change in the output state,
since it depends now on x and not only on θ. The key
ingredient in this approach is that, as the variable x serves as
input several times in every circuit, it is possible to obtain
nonlinear mathematical structures that allow arbitrary
fittings. The exact design of some Uðθ; xÞ Ansätze are
further explained in Sec. III B.
The second ingredient in our model is the way PDF

information is extracted from the quantum circuit. We use
the Z Pauli gates to define a series of Hamiltonians to
perform measurements with. Let us consider a n-qubit
circuit to run our variational algorithm on. The set of
Hamiltonians to build is

Zi ¼ ⊗
n

j¼0
Zδij ; ð4Þ

where δij is the Kronecker delta function.
The choice of this Hamiltonian is heuristic. This model

creates as many Hamiltonians as qubits are available in the
circuit, and those Hamiltonians are created by measuring a
certain qubit with the Z Pauli matrix, while all other qubits
remain unmeasured. These observables measures the pop-
ulation of the states j0i and j1i of a particular qubit. The
Hamiltonian is proposed in order to encode the PDF
functions within the probability of measuring a certain
qubit in its excited state. Following the Hamiltonians
previously stated, we can define the function

ziðθ; xÞ ¼ hψðθ; xÞjZijψðθ; xÞi: ð5Þ

The next step is to relate these zi functions to the PDF
values. We associate each function ziðθ; xÞ to only one
parton i. That is, if the model aims to fit n partons, the
circuit width must be n qubits. We define the qPDF model
for flavor i at a given ðx;Q0Þ as

qPDFiðx;Q0; θÞ ¼
1 − ziðθ; xÞ
1þ ziðθ; xÞ

: ð6Þ

With this choice only positive values are available,
although there is no upper bound. The reason to choose
this particular definition is heuristic and is supported by
empirical results detailed in a later section. It is, however,
not a hard constraint, as it is possible to drop this positivity
constraint with a simple rescaling. A theoretical motivation
can be drawn from the fact that PDF functions can be made
non-negative [47] but their values may in principle grow to
any real value, see for instance the gluon PDF in Fig. 4.

III. IMPLEMENTATION

A. Workflow design

In order to achieve our goal to determine a set of PDFs
based on quantum circuits, we have defined a workflow
based on a step-by-step procedure composed by three
stages: (1) the identification of the most adapted quantum
circuit Ansatz for qPDF parametrization, (2) the feasibility
study to deploy the qPDF model into real quantum devices,
and finally, (3) the integration of the quantum circuit model
in a global PDF fitting framework.
In Fig. 2 we show schematically the three stages we

followed. First, we perform simulations to identify the best
model architecture and capacity to represent PDF-like func-
tions. This stage is similar to the usual hyperoptimization

FIG. 2. Schematic workflow for the implementation of qPDF.
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FIG. 2. The L = 1 lattice qubit layout of one generation of the SM that is used in this paper for quantum simulation. Fermion
(anti-fermion) sites are occupied when spin up (down), and the lepton sites represent occupation in the tilde basis. Specifically,
the example of |dbdgdri (upper lattice) decaying to |dbdgdri |e⌫i (lower lattice) through one application of H̃� in Eq. (9) is
shown.

it is convenient to work with field operators that create and annihilate eigenstates of the free lepton Hamiltonian,
Hleptons. These are denoted by “tilde operators” [158], which create the open-boundary-condition (OBC) analogs of
plane waves. In the tilde basis with the JW mapping, the lepton Hamiltonian becomes

H̃leptons = �⌫(�̃
(⌫)†
0 �̃

(⌫)
0 � �̃

(⌫)†
1 �̃

(⌫)
1 ) + �e(�̃

(e)†
0 �̃

(e)
0 � �̃

(e)†
1 �̃

(e)
1 ) ! �⌫

2
(Z⌫ � Z⌫) +

�e

2
(Ze � Ze) , (7)

where �⌫,e = 1
2

q
1 + 4m2

⌫,e. In our simulations, the initial state of the quark-lepton system is prepared in a strong

eigenstate with baryon number B = +1 in the quark sector and the vacuum, |⌦ilepton, in the lepton sector. The

benefit of working in the tilde basis is that the vacuum satisfies �̃
(e,v)
0 |⌦ilepton = �̃

(e,v)†
1 |⌦ilepton = 0, and therefore

the only terms in the H� of Eq. (4) that contribute to �-decay are

H̃� =
Gp
2


ce + c⌫p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
(u)†
0 �

(d)
0 + �

(u)†
1 �

(d)
1

⌘

� 1 + 4cec⌫

2
p
(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
(u)†
0 �

(d)
1 + �

(u)†
1 �

(d)
0

⌘�
�̃
(e)†
0 �̃

(⌫)
1 + h.c. , (8)

where ce = �e�me and c⌫ = m⌫ +�⌫ . The insertion of the charge-conjugation matrix, C, in the continuum operator,
Eq. (2), is necessary for a non-zero �-decay rate on a single lattice site. To minimize the length of the string of Zs
in the JW mapping, the lattice layout in Fig. 2 is used. In this layout, the hopping piece of Hquarks has only 5 Zs
between the quark and antiquark raising and lowering operators and the �-decay operator becomes

H̃� ! Gp
2

⇢
�
�
⌫ �

+
e

X

c=r,g,b


ce + c⌫p

(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
�
d,cZ

2
�
+
u,c + �

�
d,c

Z
2
�
+
u,c

⌘

� 1 + 4cec⌫

2
p
(1� 4mece)(1 + 4m⌫c⌫)

⇣
�
�
d,c

Z
8
�
+
u,c + �

+
u,cZ

2
�
�
d,c

⌘�
+ h.c.

�
. (9)

In total, the L = 1 system requires 16 (12 quark and 4 lepton) qubits.2 See App. A for the complete L = 1 Hamiltonian
in terms of qubits.

B. A Majorana Mass for the Neutrino

Although not relevant to the simulation performed in Sec. III, it is of current interest to consider the inclusion of a
Majorana mass term for the neutrinos. A Majorana mass requires and induces the violation of lepton number by

2 The e+ and ⌫ qubits do not participate in this process, which could be simulated with only 14 (12 quark and 2 lepton) qubits.

10

FIG. 6. The probability of �-decay, �� ! �0 + e+ ⌫, with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2 and G = 0.5, using one (left
panel) and two (right panel) Trotter steps (requiring 59 and 212 ZZ gates, respectively), as given in Table II. The dashed-black
curve shows the expected result found from the exact diagonalization of the Hamiltonian. The blue circles correspond to the
data obtained on the H1-1 machine, and the orange (green) triangles to the H1-1E emulator, each obtained from 200 shots (400
shots). The points have been shifted slightly along the t-axis for clarity. Error mitigation beyond physical-state post-selection
has not been performed. The weak Hamiltonian in the time-evolution responsible for the decay is given in Eq. (14).

Single-Baryon Decay Probabilities using Quantinuum’s H1-1 and H1-1E

1 Trotter step 2 Trotter steps

t H1-1 H1-1E
H1-1E

(⇥2 stats)
Theory H1-1 H1-1E

H1-1E

(⇥2 stats)
Theory

0.5 0.175(29) 0.162(28) 0.144(19) 0.089 0.100(29) 0.182(37) 0.173(25) 0.088

1.0 0.333(35) 0.303(34) 0.302(25) 0.315 0.269(43) 0.248(41) 0.272(29) 0.270

1.5 0.594(37) 0.547(38) 0.559(27) 0.582 0.404(48) 0.416(49) 0.429(33) 0.391

2.0 0.798(30) 0.792(30) 0.794(22) 0.801 0.530(47) 0.563(51) 0.593(35) 0.547

2.5 0.884(24) 0.896(23) 0.879(17) 0.931 0.667(41) 0.779(43) 0.771(30) 0.792

TABLE II. The probability of �-decay, �� ! �0 + e+ ⌫, on L = 1 spatial lattice with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2
and G = 0.5. These simulations were performed using Quantinuum’s H1-1 and H1-1E and included the initial state preparation
and subsequent time evolution under 1 and 2 Trotter steps. The results are displayed in Fig. 6. The columns labeled (⇥2
stats) were obtained using 400 shots, compared to the rest, that used 200 shots, and uncertainties were computed assuming
the results follow a binomial distribution.

grows linearly with its distance from the boundary, leading to a force on colored objects. This will cause colored
errors in the bulk to migrate to the edge of the lattice where they could be detected and possibly removed. This is one
benefit of using axial gauge, where Gauss’s law is automatically enforced, and a colored “error” in the bulk generates
a color flux tube that extends to the boundary.

Localized two-bit-flip errors can create color-singlet excitations that do not experience a force towards the boundary,
but which are vulnerable to weak decay. For su�ciently large lattices, color singlet excitations will decay weakly down
to stable states enabled by the near continuum of lepton states. In many ways, this resembles the quantum imaginary-
time evolution (QITE) [184–186] algorithm, which is a special case of coupling to open systems, where quantum
systems are driven into their ground state by embedding them in a larger system that acts as a heat reservoir. One
can speculate that, in the future, quantum simulations of QCD will benefit from also including electroweak interactions
as a mechanism to cool the strongly-interacting sector from particular classes of errors.

This particular line of investigation is currently at a “schematic” level, and significantly more work is required to
quantify it’s utility. Given the quantum resource requirements, it is likely that the Schwinger model will provide a
suitable system to explore such scenarios.
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Figure 1. Sketch of a scattering event: The collision of two incoming mesons with
internal quantum numbers `1, `2 generates a superposition of several possible outcomes,
labelled by the quantum numbers of outgoing mesons.

numerical simulations. Finally, in Sec. 4, we propose concrete protocols to prepare,
simulate and observe meson scattering with present-day quantum simulators (e.g.,
Rydberg-atom arrays). The appendices contain various additional details on the
discussion and computations in the main text. In Appendix A we report additional
details on gauge invariance and confinement in the model under consideration in the
main text. In Appendix B we prove the exact mapping of its dynamics in the gauge-
neutral sector onto those of the quantum Ising chain in a tilted magnetic field. In
Appendix C and Appendix D we provide more details on the exact solution of the two-
and four-fermion problem, i.e., on the spectra of mesons and their scattering amplitudes,
in the limit of large fermion mass. In Appendix E we derive the analytic expression of the
meson current, we discuss its physical meaning and we prove the associated continuity
equation. Finally, in Appendix F we summarize and discuss the effects of having a finite
fermion mass.

2. Confinement and mesons

Particle confinement is a non-perturbative phenomenon arising in certain gauge theories,
which consists in the absence of charged asymptotic states: all stable excitations of the
theory above the ground state are neutral bound states of fermionic charges [24]. In
the context of QCD, confinement underlies the fact that quarks can only be observed in
composite structures such as mesons and baryons. Despite the fundamental difference
between particle confinement in QCD in (3 + 1) dimensions and in lower-dimensional
models [19, 20], the emergent composite particles share some basic properties, making
the latter convenient settings to gain insights into difficult aspects of the theory. In this
work we will be concerned with (1 + 1)-dimensional LGTs of this kind.

For the sake of definiteness, we will focus on the Z2-LGT defined by the following
Hamiltonian [25, 26]:

H = m

X

j

c
†
jcj +

⌧

2

X

j

�
z
j+1/2 + w

X

j

(c†j � cj) �
x
j+1/2 (cj+1 + c

†
j+1). (1)

Scattering of mesons in quantum simulators 7

Figure 2. Probabilities of the various scattering channels (1, 3) ! (`01, `
0
2) as a function

of the incoming momenta, for w/⌧ = 0.6. The blue lines delimit the regions where
the inelastic channels (2, 2), (1, 2), (2, 1) are open. The probabilities of the channels
plotted in the five panels sum up to one with good precision [small deviations from
this value are shown in Fig. E1-(b)].

Figure 3. Mesonic wavepackets collision. (a) Spectra E`(k) of the lightest mesons
for the Z2-LGT in Eq. (1) with ⌧ = 1, w = 0.6 and m � ⌧ . The crosses indicate the
momenta and energies of the two mesons in the incoming (red) and outgoing (purple,
blue, green) states. (b-e) Probability density of the meson momenta p(k1, k2) (b,c) and
of the relative momentum p(k1 � k2) (d,e) at time t = 0 (b,d) and t = tf = 50 (c,e).
The dashed contours in panel (c) mark the regions p > 0.25.

the Fourier transform of  (s1, s2, r1, r2; t) with respect to the center-of-mass positions
s1,2. While the initial state shows a single density peak at (k0

1, k
0
2), the final state

gives three different density peaks, all lying on the line k1 + k2 = k
0
1 + k

0
2 mod ⇡,

Ashley Milsted, Liu, John Preskill, and Vidal, 
PRX Quantum 3 (2022) 2, 020316. 

Surace, Lerose, New J. Phys. 23 (2021) 062001.
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Figure 4. E↵ective loss of initial-state information. (A) State preparation. Evolution of the matter density from the
“fully matter-filled” state (hn̂matteri = 1, blue box left) to almost “matter-empty” state (hn̂matteri ⇡ 0.21, yellow box right) for
the adiabatic ramp with preparation time ⌧ and corresponding mass parameter mPre/ as shown in the inset. (B) Schematic
of the evolution towards thermal equilibrium. For each of two sets of quench parameters (m = 0 and m = �0.8) we choose
two initial states with equal energy density. The resulting steady states in the wake of the quenches starting in these two
initial states are then compared to a canonical thermal ensemble whose temperature is determined from the energy density [22].
Here, all energy densities are plotted with respect to the ground state of the evolution Hamiltonian. (C, D) Relaxation. We
show the thermalization dynamics for the chosen quench parameters and initial states (shown in (B)). Experimental data are
compared to predictions from corresponding gauge theory thermal ensembles (dashed lines) at temperatures kBT = 1 (top)
and kBT = 4.6 (bottom). The insets show the energy density evolution during state preparation, the circles mark the chosen
initial states.

dations for the exploration of more complex higher-
dimensional gauge theories using state-of-the-art quan-
tum technology [38]. An important next step towards
applications for gauge theories such as quantum electro-
dynamics, or maybe even quantum chromodynamics, is
a faithful extension of the discrete quantum-link repre-
sentation towards continuous variables [9, 39, 40]. To
this end, current implementation schemes should be ex-
tended to higher spin representations and scalable higher-
dimensional set-ups [41].
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Figure 1. Quantum simulation of gauge-theory quench

dynamics. (A) Schematic nonequilibrium evolution to the
steady state. Under the constrained (gauge) condition, we
find that di↵erent initial states with the same energy density
evolve towards a common thermal state of the gauge the-
ory. (B) Quantum simulator for the gauge theory. Matter
and gauge fields are represented by occupations of bosonic
atoms in an optical superlattice. Charges are illustrated as
red (positive) and blue (negative) circles and electric flux is
shown as yellow arrows. On matter sites, the presence of
an atom signals a corresponding charge in the gauge theory.
To illustrate Gauss’s law, we indicate locally gauge-invariant
configurations around even (green boxes) and odd matter sites
(blue boxes), see also Fig. S1. (C) Evolution of the matter
density measured by in-situ imaging. Top: Starting from the
initial state with unity-filled matter sites hn̂matteri = 1 (see
inset), we observe a fast decay of the matter density hn̂matteri
for “violent” quenches (m/ = 0) in our 71-site quantum sim-
ulator. Bottom: Evolution of matter density (averaged over
36 matter sites of the superlattice). Error bars denote the
standard deviations.

sites l and l + 1. The interaction ⇠  represents the an-
nihilation (or creation) of a pair of fermionic charges on
neighboring sites with a concomitant change of electric
flux Êl,l+1 = (�1)l+1Ŝz

l,l+1 on the gauge link in-between,
such that gauge invariance is retained. The model is real-

ized within a subspace of our quantum simulator, which is
described by a tilted Bose–Hubbard Hamiltonian with a
staggered potential; see Eq. S5 for details. It is character-
ized by direct tunneling strength J , staggering potential
parameter �, linear potential �, and on-site interaction
U , as indicated in Fig. 1B. We employ a Jordan–Wigner
transformation to replace the fermionic fields in Eq. 1
with bosonic atoms (see [22] for derivational details).
We keep matter and gauge fields as dynamical degrees

of freedom each represented by appropriate site occupa-
tions of atoms in an optical superlattice. Gauge symme-
try is enforced by suitable energy penalties constraining
the system to a gauge-invariant subspace of the quan-
tum simulator [24–26]. For J ⌧ �, U , and a linear po-
tential � = 57Hz we suppress both direct and long-range
tunneling and realize the gauge theory at second-order in
perturbation theory [22]. We identify the gauge-invariant
interaction with a correlated annihilation of two atoms on
neighboring matter sites to form a doublon on the gauge
link in between (and reverse), see Fig. 1B. The mass of
the fermion pair is set by the energy balance of this pro-
cess as 2m = 2��U and the interaction strength is given
by  ⇡ 8

p
2J2/U close to resonance (m ⇠ 0).

To describe the nonequilibrium evolution of a gauge
theory, it is essential to also respect the gauge symmetry
in the initial state. In Fig. 1, we show examples of such
initial states, which can be prepared in the present ap-
paratus [8]. We start the experiment with an array of 36
near unity-filling chains of 87Rb atoms in the hyperfine
state |F = 1,mF = �1i. The individual chains extend
over 71 sites of an optical superlattice, which is formed
by the superposition of a short lattice (spacing as = 383.5
nm) and a long lattice (spacing al = 767 nm). Employ-
ing the full tunability of superlattice configurations and
the recently developed spin-dependent addressing tech-
nique [27], we remove all atoms on odd (gauge) sites,
rendering only the even (matter) sites singly occupied in
the initial state. The resulting state corresponds to the
ground state of Eq. 1 for  = 0 and m < 0, and is charac-
terized by empty gauge sites and unity filling on the mat-
ter sites hn̂matteri = 1, where hn̂matteri =

P
j2m

hn̂ji/Lm

is the average number of bosonic atoms over the Lm even
sites.
After the initial-state preparation, the atoms are iso-

lated in deep lattice wells (J, ⇡ 0). To initiate the dy-
namics, we first tune the superlattice configuration such
that potential minima of the two lattices are aligned, cre-
ating the staggered potential. The quench is then ini-
tiated by tuning the laser intensities to realize the de-
sired values of  and m, which can be chosen from a
broad range. Subsequently, the system undergoes co-
herent many-body oscillations. After a certain evolu-
tion time, we rapidly ramp up the lattice depth along
the x-axis to 60Er within 0.1 ms to freeze the dynam-
ics, where Er = h2/(8mRba2s) is the recoil energy with
mRb the atom mass and h Planck’s constant. We then
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FIG. 6. Left: Un-rescaled Schmidt spectrum P (n, t) =
exp{�⇠n} for the quench ✏ = 1 ! 1 at di↵erent times.
Right: Rescaled Spectrum. The approach to thermaliza-
tion is characterized by a self-similar universal form P (n, t) =
⌧
�↵

P (⌧�
n), ⌧ ⌘ ✏(t � t0) for times 2 / ✏ · t / 60 � 100. A

black dotted line indicates power law behavior (⌧�
n)�2. The

spectrum outside the scaling window is shaded out. (Shown
for (NA

x + N
B
x ) ⇥ (3 + 5) ⇥ 3 lattice sites.)

ize ground states, quantum phase transitions and ther-
malization, using dual theories of Z2+1

2
embedded into a

larger gauge-variant HS only along entanglement bound-
aries [28–31, 33, 34]. Our fairly simple approach, see Sup-
plemental Material for details, can be generalized to Zn

and U(1) LGTs; non-Abelian theories [81–85] are more
challenging. Ising-like dualities [81, 86, 87], prepotential-
[88–91] and ‘Loop-String-Hadron’ [92] formulations are
promising approaches, and will be explored in future
work.

We demonstrated Li and Haldane’s entanglement-
boundary conjecture [18] for Z2+1

2
gauge theory, both

analytically (in perturbation theory) and numerically us-
ing exact diagonalization. Moreover, we reconstructed
the Entanglement Hamiltonians of ground states, find-
ing consistency with expectations from the Bisognano-

Wichmann theorem [38–40] at arbitrary coupling. Using
the closing of the Entanglement Gap of the ES, we de-
termine the confinement/deconfinement phase transition
at ✏c = 0.38 ± 0.09. We find agreement within error bars
with the infinite volume results, demonstrating the po-
tential usefulness of Entanglement Structure, compared
to computing volume versus boundary law scaling of Wil-
son loop operators.

Our most important result is that Z2+1

2
thermalization

occurs in clearly separated stages: Starting from an ini-
tial (unentangled) product state, the system maximizes
its Schmidt rank quickly, followed by rapid spreading of
level repulsion throughout the ES at early times. An in-
termediate regime is characterized by self-similar scaling
of the Schmidt spectrum, reminiscent of wave turbulence
and universality in (semi-)classical systems, with scaling
coe�cients ↵ = 0.8 ± 0.2, � = 0.0 ± 0.1.

This observation strongly hints at a reconciliation of
the (naively di↵erent) quantum versus classical thermal-
ization paradigms, i.e. in terms of matrix elements of
observables [15, 16] versus ergodicity, chaos and univer-
sality [48]. Because time evolution in quantum mechan-
ics is linear, quantum chaos is hidden in the complexities
of energy eigenfunctions [16], however, (and perhaps not
so surprisingly [77]) it becomes evident in the Entan-
glement Spectrum. Our analysis provides a systematic
path for the quantification and classification of this be-
havior, which is likely generic for gauge and non-gauge
systems and in line with the ETH. Our numerical inves-
tigations are not exhaustive, and could be extended to,
e.g., studying the build-up of volume law entanglement,
spectral form factors [42, 79], or higher order level spac-
ing ratios [93] of the ES. It would also be interesting to
apply our techniques to systems with many-body local-
ization [94].

Apart from the importance of (2+1)d LGTs for, e.g.,
topological quantum computation [95, 96], and con-
densed matter physics [97, 98], the Entanglement struc-
ture of Abelian and non-Abelian gauge theories, such as
QCD, may be crucial for thermalization in high energy
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and universality in (semi-)classical systems, with scaling
coe�cients ↵ = 0.8 ± 0.2, � = 0.0 ± 0.1.
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the (naively di↵erent) quantum versus classical thermal-
ization paradigms, i.e. in terms of matrix elements of
observables [15, 16] versus ergodicity, chaos and univer-
sality [48]. Because time evolution in quantum mechan-
ics is linear, quantum chaos is hidden in the complexities
of energy eigenfunctions [16], however, (and perhaps not
so surprisingly [77]) it becomes evident in the Entan-
glement Spectrum. Our analysis provides a systematic
path for the quantification and classification of this be-
havior, which is likely generic for gauge and non-gauge
systems and in line with the ETH. Our numerical inves-
tigations are not exhaustive, and could be extended to,
e.g., studying the build-up of volume law entanglement,
spectral form factors [42, 79], or higher order level spac-
ing ratios [93] of the ES. It would also be interesting to
apply our techniques to systems with many-body local-
ization [94].

Apart from the importance of (2+1)d LGTs for, e.g.,
topological quantum computation [95, 96], and con-
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QCD, may be crucial for thermalization in high energy

Quantum thermalization of gauge theories:
chaos, turbulence and universality Niklas Mueller
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Figure 1: Overview of the stages of quantum thermalization of Z
2+1
2 , including (exponential) growth of

Schmidt values and build-up of level repulsion at earliest time, and saturation of the von-Neumann entropy
at a parametrically later stage. An intermediate regime is characterized by self-similar evolution, typical for
(classical) wave turbulence.

1. Introduction

Recent advances in simulating quantum many-body systems with digital quantum computers
and analog devices, based on atomic, molecular and optical (AMO) systems, have opened new
avenues to address old problems [2–9]. One such question is the thermalization of gauge theories,
relevant e.g. for Quantum Chromodynamics (QCD) in ultra-relativistic heavy ion collisions [10],
and in many other fields ranging from atomic gases [11], to condensed matter physics [12], and
cosmology [13].

Much understanding has been derived from the Eigenstate Thermalization Hypothesis [14, 15]
and it has become clear that entanglement is an important ingredient in thermalization, yet the
latter is barely explored for gauge theories because of its ambiguous definition [17–20]. In this
work, we overcome this issue for Z2 LGT in (2+1) spacetime dimensions (Z2+1

2 ), by developing
dual formulations ‘with entanglement cuts’, allowing us to compute the Entanglement Structure of
non-equilibrium states. Focusing on quench dynamics of an initial unentangled state, we investi-
gate the ‘Entanglement Spectrum’ (ES), a representation of a state in terms of an ‘Entanglement
Hamiltonian’ (EH), analogous to energy levels, first suggested by Li and Haldane as an indicator of
topological order in non-Abelian fractional Quantum Hall e�ect systems [21].

We find that thermalization proceeds in clearly separated stages, c.f. Fig. 1: Exponentially-fast
growth of Schmidt values and maximization of the rank of the reduced density matrix at earliest
times, followed by spreading of ES level repulsion, and saturation of entanglement entropy at
parametrically later times. An intermediate regime is characterized by self-similar evolution of the
Schmidt spectrum, with scaling coe�cients U = 0.8 ± 0.1 and V = 0.05 ± 0.03, reminiscent of
classical wave turbulence and universality.

2. Hamiltonian Formulation of Z
2+1
2 Lattice Gauge Theory

The Hamiltonian of Z
2+1
2 LGT is [1, 22]

� = �
’

n

fI

n,G
fI

n+Ĝ,Hf
I

n+Ĥ,Gf
I

n,H
� n

’
n,8=G,H

fG

n,8
, (1)

where fG/I
n,8

are Pauli operators positioned along the links of a two-dimensional spatial lattice
n ⌘ (=G , =H) with =8 2 [0, #8 � 1]. Gauss law ⌧n ⌘ Œ

8
fG

n
fG

n�8̂ specifies the physical sector
⌧n |kphysi = |kphysi. Z

2+1
2 LGT was first proposed by Wegner [22] as a model containing a phase

transition without a local order parameter, a deconfinement (n < n2) versus confinement (n > n2)

2

Stages of thermalization dynamics of Z2 LGT in 2+1 D 
from entanglement spectrum

Mueller, Zache, Ott, Phys. Rev. 
Lett. 129, 011601 (2022).
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Eq. (46) gives T̂µµ up to O(a). To improve the T̂µµ

operators up to O(a2), we use Eq. (12) and Eq. (13) and
take the average around the site n0:

Tr
Ë
F̂0i(n0)2

È
=

ÿ

x=0,1

g2

s

2a4
Tr

Ë
fî2

n0≠xî,i

È
(48)

Tr
Ë
F̂ij(n0)2

È
=

ÿ

x=0,1

ÿ

y=0,1

1
2g2

s
a4

ReTr
Ë
1 ≠ P̂ij(n0 ≠ xî ≠ yĵ)

È
. (49)

These operators enable us to construct T̂µµ up to dis-
cretization errors that are O(a2, a0).

III.4. Tij in the Hamiltonian formulation

Let us now move to deriving the operators T̂ij , that is,
the o�-diagonal spatial parts of the EMT:

Tij = Tr [≠Fi0Fj0 + FikFjk] . (50)

This definition holds both on the spacetime lattice and
as an operator equation on the Hamiltonian lattice. We
first work with the naive discretization, and then with
the clover discretization. Without loss of generality, let
us take T12 as an example and perturb the Wilson action
with terms in Eq. (50). We find that T̂‘ is given by Eq. (36)
with:

K‘ = K + ‘a0a3Tr
#
F N

10
F N

20

$
(51)

V‘ = V + ‘a0a3Tr
#
F N

13
F N

23

$
. (52)

As before, the spatial plaquettes in Eq. (52) can be di-
rectly converted to operators. The time-like plaquettes in
Eq. (51) will ultimately appear as various fî. Using R̂(g)
operators, T̂‘ can be written

T̂‘ =
⁄

Dg e
iK(g)≠i‘

a
4g2

s a0
Tr[(g

†
n0,1≠gn0,1)(g

†
n0,2≠gn0,2)]+iV̂‘ .

(53)
Evaluating the integral via the saddle point x = 0 (exact
in the limit a0 æ 0) gives:

T̂‘ ≥

⁄
dx eixflfîfl≠xflMfl‡x‡+iV̂‘ = Ae≠

1
4 fîflM

≠1
fl‡ fî‡+iV̂‘

Mfl‡ = ≠ia

2g2
s
a0

”fl‡ + ‘
ia

g4
s
a0

”nn0”mn0”i1”j2”ab (54)

which at O(‘) yields Ĥ‘:

Ĥ‘ = ĤKS ≠ ‘
g2

s

a
Tr[fîn0,1fîn0,2] ≠ ‘a3Tr

Ë
F̂ N

ik
(n0)F̂ N

jk
(n0)

È

(55)
where the second term in RHS correspond to a0a3F10F20.
More generally, operators for Fi0Fj0 are

Tr
Ë
F̂ N

i0
F̂ N

j0
(n0)

È
= g2

s

a4
Tr[fîn0,ifîn0,j ] (56)

Thus the naive T̂ij(n0) in the Hamiltonian formulation is

T̂ N

ij
(n0) = ≠

g2

s

a4
Tr [fîn0,ifîn0,j ] + Tr

Ë
F̂ N

ik
(n0)F̂ N

jk
(n0)

È
.

(57)

The clover approximations are obtained from F C

ij
in

Eq. (16) and F B

i0
in Eq. (18). As before, the transition

from the action formalism to the Hamiltonian is straight-
forward for Fij , so we focus only on the F10F20 term. For
these,

K‘(U Õ, U) = K + ‘a0a3Tr
#
F B

10
(n0)F B

20
(n0)

$
. (58)

We use the definitions of Fig. 2 for the links around n0. For
the example of Un0,1, we denote operators and functions
on them as U1, Û1, fî1, and g1 = eix

a
1 ⁄

2 . Then T̂‘ is

FIG. 2. Half-clovers B10(n0) and B20(n0) at site n0.

T̂‘ =
⁄

Dg e
iK(g)≠i

‘a
16g2

s a0
Tr[(g

†
1≠g1+Û

†
0 (g

†
0≠g0)Û0)(g

†
3≠g3+Û

†
2 (g

†
2≠g2)Û2)]+iV̂ (59)

After the saddle-point approximation around x = 0, T̂‘ simplifies and becomes

T̂‘ ≥

⁄
dx eixflfîfl≠xflMfl‡x‡+iV̂ = Ae≠

1
4 fîflM

≠1
fl‡ fî‡+iV̂

with Mfl‡ = ≠
ia

2g2
s
a0

”fl‡ ≠
i‘a

4g2
s
a0

(M1)fl‡ (60)
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E
New
I = EIIIÈHsysÍ = EIII < EI

FIG. 4. An active cooling cycle.

Suppose at step I the full density matrix, fl̂I is given by

fl̂I =
ÿ

a,aÕ,b,bÕ

|aÕ
Í
sys

|bÕ
Í
pump fl̂a,b;aÕbÕ

pump
Èb|

sys
Èa| (83)

where the states |aÍ
sys and |bÍ

pump are states in an or-
thonormal basis for the system space and complementary
space respectively. Thus matrix elements of the reduced
matrix elements are given by

fl̂I sys

a,aÕ =
ÿ

b,bÕ,bÕÕ

pump
ÈbÕÕ

||bÍ
pumpfl̂a,b;aÕbÕ

pump
ÈbÕÕ

||bÍ
pump

(84)
Thus the full density matrix at step II is given by

fl̂II =
ÿ

a,aÕ

|aÕ
Í
sys

|gÍ
pump

Q

a
ÿ

b,bÕ,bÕÕ

pump
ÈbÕÕ

||bÍ
pumpfl̂I

a,b;aÕbÕ
pump

ÈbÕÕ
||bÍ

pump

R

b pump
Èg|

sys
Èa| (85)

where |gÍ
pump is the ground state of the pump. In the

remainder of the cycle fl̂ evolves to fl̂III = U†

III
flIIUIII

with UIII = exp
!
≠i(Hsys + Hpump + Hcouple)·3

"
where

·3 is the time the system evolves for in step III.
In the active cycle, energy is pumped out of the com-

bined system (system plus pump) and into the environ-
ment by the act of initializing the pump. In the process
the entropy of the pump drops and thus the entropy of
the environment increases. For that reason we label this
approach an active cooling cycle. One might quibble that
this is a bit of a misnomer since the system is not ther-
mally equilibrated and thus, it is not clear that the energy
pumped out can be accurately described as heat. But the
essence of this active cycle is very much the same as the
cooling in a quantum refrigerator. Moreover as described
below one can use a variation on this approach to achieve
a good approximation to a true thermal equilibrium.

Clearly, this active cycle approach is rather general and
variations on this theme can be developed. As formulated,
the approach requires explicit choices for the size of the
pump as well as for the form and strength of Hcouple, and
Hpump, and ·3. It is clear that to get high performance
with this method one must choose these well. It is an
open question as to what optimal choices are for these.

One obvious approach is to tailor the overall strength
of Hcouple to the iteration. There is a trade o�: strong
coupling leads to rapid transmission of energy from the
system to the pump and reduce the overall time for re-
ducing the energy. However, this comes at cost; large
coupling limits the lowest energy density of the system
one can achieve. The cycle can only be shown to remove
energy from the system when the energy in Hcouple is
negligible. Thus a sensible approach would be to make
Hcouple large during early cycles in order to facilitate
rapid energy transfer and in later cycles reduce it to allow

reduction to lower energy densities.
A similar approach might be taken with regard to the

pump. There is a freedom to set the overall energy scale
of Hpump. It is straightforward to see that N cycles, the
number of cycles needed to go from ÈHsys

Í = Ei (presum-
ably with energy density at the lattice scale) to a final
configuration with ÈHsys

Í = Ef scales logarithmically
with the ratio of Ei to Ef :

N cycles = A log
3

Ei

Ef

4
(86)

where A is a numerical coe�cient of order unity, provided
that one tailors the value of the overall strength of the
cycle to the cycle in an appropriate way.

To see how this comes about, consider the trade o�s
involved in setting the scale of Hpump. If it is set too
large then it is di�cult to induce transition in the pump
and this energy flow will be very slow. On the other hand
if it is too small the maximum amount of energy that can
be absorbed in a cycle is limited. This is clearly true since
the system is finite. Moreover, at some point the energy
flow from the system of interest to the pump becomes
negligibly small (either because the system and pump
are equilibrating towards zero net flow). The amount
of energy transferred before the energy flow becomes
negligible will clearly depends sensitively on Hpump.

A simple compromise would be to choose the overall
strength of Hcomp to be large enough so that some modest
fixed fraction, f of the system energy at the beginning of
the cycle is transferred before the energy flow becomes
negligible. However, the exact value depends on the initial
configuration of system with the strength increasing with
ÈHsys

Í. Thus one might change the strength of each cycle
to keep f approximately the same in each cycle. It would
be natural to end each cycle well before the fraction of the
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FIG. 1. The entanglement power, E(Ŝ), of the S-matrix as a
function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.

| outih out| with | outi = Ŝ| ini. By describing the av-
erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as

Ŝ =
1

4

�
3ei2�1 + ei2�0

�
1̂ +

1

4

�
ei2�1 � ei2�0

�
�̂ · �̂, (2)

where 1̂ = Î2 ⌦ Î2 and �̂ · �̂ =
3P

↵=1

�̂↵ ⌦ �̂↵. It follows

that the entanglement power of Ŝ is

E(Ŝ) = 1

6
sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 =

0. The S-matrices at these fixed points with vanishing
entanglement power are Ŝ = ±1̂ and ±(1̂+ �̂ · �̂)/2 2.

The entanglement power in nature is plotted in Fig. 1
as a function of the center-of-mass nucleon momentum,
p, up to pion production threshold, making use of the
1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
I shows that entanglement power approaches zero in the
limit p ! 0, as will be the case for any finite range inter-
action not at unitarity. At momenta around the scale
of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
interactions. The leading interaction in the e↵ective La-
grangian is

Lnf=2

LO
= �1

2
CS(N

†N)2� 1

2
CT

�
N†�N

�
·
�
N†�N

�
, (4)

where N represents both spin states of the proton and
neutron fields. These interactions can be re-expressed as
contact interactions in the 1S0 and 3S1 channels with cou-
plings C0 = (CS�3CT ) and C1 = (CS+CT ) respectively,
where the two couplings are fit to reproduce the 1S0 and
3S1 scattering lengths. The C coe�cients both run with
the renormalization group as described in Ref. [58, 59]
with a stable IR fixed point at C = 0, corresponding to
free particles, and a nontrivial, unstable IR fixed point
at C = C? corresponding to a divergent scattering length
and constant phase shift of � = ⇡/2 (the “unitary” fixed
point). At the four fixed points (described above), where
{C0, C1} take the values 0 or C?, the theory has a con-
formal (“Schrödinger”) symmetry; there is also a fixed
line of enhanced symmetry at CT = 0, or equivalently
C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
QCD has approximate SU(4) symmetry and sits close
to the {C?, C?} conformal fixed point [60]. The emer-

2

FIG. 1. The entanglement power, E(Ŝ), of the S-matrix as a
function of p, the center-of-mass nucleon momentum. The 1S0

and 3S1 phase shifts used to calculate E(Ŝ) were taken from
four di↵erent models [53–57] to provide a näıve estimate of
systematic uncertainties. Data for this figure may be found
in Table II in the supplemental material.
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erage action of Ŝ to transition a tensor-product state to
an entangled state, the entanglement power expresses a
state-independent entanglement measure that vanishes
when | outi remains a tensor product state for any | ini.

Following the analysis of Ref. [20], we consider the
spin-space entanglement of two distinguishable particles,
the proton and neutron for nf = 2 QCD. Neglecting the
small tensor-force-induced mixing of the 3S1 channel with
the 3D1 channel, the S-matrix for low-energy scattering
below inelastic threshold in these sectors can be decom-
posed as
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E(Ŝ) = 1

6
sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 =

0. The S-matrices at these fixed points with vanishing
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1S0 and 3S1 phase shifts derived from the analyses of

2 The S-matrices at the four fixed points realize a representation
of the Klein four-group, Z2 ⌦ Z2.

Refs. [53–56]. The four regions indicated are distin-
guished by the role of non-perturbative physics. Region
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of the inverse scattering lengths, region II, poles and
resonances of Ŝ produce highly-entangling interactions.
This non-perturbative structure could be considered a
source of ultra-low-momentum entanglement power; ex-
perimental evidence for this is expected to be found in
the vanishing modification of np-scattering quantum cor-
relations at 19.465(42) MeV where the phase shifts dif-
fer by ⇡/2 and |p ", n #i scatters into |p #, n "i. In re-
gion IV, where energies are of order the chiral symme-
try breaking scale, the entangling interactions of quark
and gluon degrees of freedom become prominent. It is
region III that is the main focus of this paper—away
from the far-infrared structure but with nucleons as fun-
damental degrees of freedom, the entanglement power
is suppressed. Once relativistic corrections and 3S1-3D1

mixing—parametrically suppressed at low-energy—are
included in Eq. (19), E(Ŝ) is expected to remain sup-
pressed but non-zero, indicating that the entanglement
suppression in nature is only partial.
Much progress has been made in nuclear physics in re-

cent years by considering low-energy e↵ective field theo-
ries (EFTs), constrained by data from nucleon scattering.
The �0,1 phase shifts can be computed for energies below
the pion mass, from the pionless EFT for nucleon-nucleon
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neutron fields. These interactions can be re-expressed as
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C0 = C1, where the theory possesses the Wigner SU(4)
symmetry, as apparent from the form of Eq. (4) with
CT = 0. When fitting to the scattering lengths one
finds CT ⌧ CS ' C?, since scattering lengths are un-
naturally large in both channels. Therefore, low-energy
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E(Ŝ) = 1

6
sin2 (2(�1 � �0)) , (3)

which vanishes when �1 � �0 = m⇡
2
for any integer m.

This includes the SU(4) symmetric case �1 = �0 where
the coe�cient of �̂·�̂ vanishes. Special fixed points where
the entanglement power vanishes occur when the phase
shifts both vanish, �1 = �0 = 0, or are both at unitarity,
�1 = �0 = ⇡

2
, or when �1 = 0, �0 = ⇡

2
or �1 = ⇡

2
, �0 =

0. The S-matrices at these fixed points with vanishing
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Deep inelastic scattering as a probe of entanglement?
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Deep inelastic scattering (DIS) samples a part of the wave function of a hadron in the vicinity of
the light cone. Lipatov constructed a spin chain which describes the amplitude of DIS in leading
logarithmic approximation. Kharzeev and Levin proposed the entanglement entropy as an observ-
able in DIS [Phys. Rev. D 95, 114008 (2017)], and suggested a relation between the entanglement
entropy and parton distributions. Here we represent the DIS process as a local quench in the Li-
patov’s spin chain, and study the time evolution of the produced entanglement entropy. We show
that the resulting entanglement entropy depends on time logarithmically, S(t) = 1/3 ln (t/τ ) with
τ = 1/m for 1/m ≤ t ≤ (mx)−1, where m is the proton mass and x is the Bjorken x. The central
charge c of Lipatov’s spin chain is determined here to be c = 1; using the proposed relation between
the entanglement entropy and parton distributions, this corresponds to the gluon structure function
growing at small x as xG(x) ∼ 1/x1/3.

I. INTRODUCTION

Fifty years ago, Balitsky, Fadin, Kuraev and Lipa-
tov (BFKL) set out a study of the high-energy behavior
of the hadron scattering amplitude within perturbative
QCD. They identified the terms (αs ln s)n (where s is
the squared centre-of-mass energy and αs is the strong
coupling) resulting from the gluon ladders exchanged be-
tween the colliding hadrons. Since at high energies ln s
is large, even at weak coupling it was necessary to resum
the entire series of these leading logarithmic terms. The
result was that the total cross section grows as sαBFKL−1,
where αBFKL > 1 is the intercept of the resulting “BFKL
pomeron” [1–4].
The growth of the cross section, and the corresponding

increase of the gluon structure function at low Bjorken
x, has been observed in deep inelastic scattering (DIS)
at HERA [5–8], which excited interest in the studies of
BFKL dynamics. In a ground-breaking paper [9], Lipa-
tov discovered that in the leading logarithmic approxi-
mation (LLA), DIS can be effectively described by the
XXX spin chain with zero spin.
At high energy, the scattering amplitudes in QCD are

described by the exchange of gluons between the virtual
quark-antiquark pair (resulting from the splitting of the
virtual photon) and the hadron. The gluons are dressed
by virtual gluon loops, which leads to their ”Reggeiza-
tion”. See Fig. 1. In the limit of large number of col-
ors Nc (with fixed g2Nc, where g is the QCD coupling),
the Hamiltonian describing the interactions of Reggeized

∗ haoke72@163.com
† dmitri.kharzeev@stonybrook.edu
‡ vladimir.korepin@stonybrook.edu

gluons reduces to the sum of terms describing the near-
neighbor interactions, as a Hamiltonian of a spin chain.

γ∗ γ∗

FIG. 1. Feynman diagram describing DIS at small Bjorken
x. The virtual photon γ∗ emitted by the scattered lepton
(not shown) splits into a virtual quark-antiquark pair. The
Reggeized gluons are exchanged between the virtual quark-
antiquark pair and the hadron.

The chain was mapped to the spin (−1) [10] and to
lattice nonlinear Schrödinger model [11]. Here we will
use the nonlinear Schrödinger (NLS) equation [12–15] to
describe the entanglement entropy evolution in DIS. In
our treatment, we will rely on the conformal field theory
(CFT) description of quantum lattice NLS.
Ideas of information theory find new applications in

physics. In particular, the quantum information ap-
proach to high-energy interactions was extended in a re-
cent paper [16], where it was argued that the phases of
light cone wave functions cannot be measured in high-
energy collisions – therefore, the corresponding density
matrix has to be averaged over the phase, with the cor-
responding Haar measure. This leads to the emergence
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˜
)

HERAPDF, Sgluon

� ��� � < �� < �� ��	�

2.×10-4 5.×10-4 1.×10-3
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

<xBj>

S
se
a

FIG. 1: Comparison of the experimental data of the H1 collaboration [6] on the entropy of produced hadrons in DIS [6] with
our theoretical predictions, for which we use the sea quark distributions from the NNLO fit[12, 13] to the combined H1-ZEUS
data.

where N is the average multiplicity of color-singlet dipoles. The distribution (9) leads to the following von Neumann
entropy:

S = �
X

pn ln pn = ln(N � 1) + N ln

✓
1 +

1

N � 1

◆
(10)

One can see that at large N we obtain S ' lnN , but corrections are sizable when N  10 (see Fig. 3). It should
be noted that the distribution of Eq. (9) describes quite well the experimental hadron multiplicity distributions in
proton-proton collisions (see Refs. [1–3]).

For comparison with the H1 experimental data [6](see Fig. 1), we first assume, following [1], that the hadron
multiplicity is equal to the number of color-singlet dipoles. This assumption is based on “parton liberation” picture
[5] and on the ”local parton-hadron duality” [4]. For sea quark and gluon structure functions in Fig. 1 we use NNLO
fit [12, 13] to the combined H1 and ZEUS data.

One can see that our approach in fact describes the H1 data quite well – this is the first test of the relation between
entanglement and the parton model in DIS enabled by the H1 analysis. We stress that once the data in the target
fragmentation region at smaller value of x becomes available at the Electron-Ion Collider, one should be able to use
xG(x,Q2) in the relation (1), as it has been done in Refs. [1–3, 14, 15]. However, the general formula is given by
Eq. (2) which at small x reduces to S = ln(xG(x,Q2)) since x⌃(x,Q2) ! xG(x,Q2).

Acknowledgements: We thank Kong Tu, Thomas Ullrich and our colleagues at BNL, Stony Brook University,
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The quantum mechanics of partons
and entanglement

A

B

The proton is described by 
a vector

in Hilbert space

If                                               only one term

contributes, then the state is separable (not our case!).
Otherwise, the state is entangled. 

Entropy of hadrons derived from PDFs can be related to 
entanglement entropy.



Theory developments

Algorithmic developments

Implementation, benchmark, 
and co-development

We’ve got a long way to go to get to QCD but we know what to do! If one thing 
we learned from the successful conventional lattice-QCD program is that theory/
algorithm/experiment collaborations will be the key. It is even more important in 
the quantum-computing era since our computers are themselves physical systems!
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